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Among other things, we show that L is isomorphic to a complementedq
subspace of the space of multilinear forms on L � ��� � L , where q � 1 isp p1 n

given by 1�p � ��� �1�p � 1�q � 1. The proof strongly depends on the L -1 n �

module structure of the spaces L . � 2001 Academic Pressp
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1. INTRODUCTION AND SAMPLE RESULT

� �This note stems from a misreading of 2, 3 although I hope this is not
entirely obvious. Our main ‘‘concrete’’ result is the following.

THEOREM 1. Let p , . . . , p and q be numbers such that 1�p1 n 1
Ž .� ��� �1�p � 1�q � 1, with 1 � p , q � �. Then L � is a comple-n i q

Ž . Ž .mented subspace of the space of multilinear forms on L � � ��� � L � ,p p1 n

for e�ery �-finite measure �.

Ž . Ž .That L � L �, � is a subspace of LL L , . . . , L is surely wellq q p p1 n

known. Indeed, let f be fixed in L . Then we can define an n-linear formq
on L � ��� � L byp p1 n

x , . . . , x 	 L � ��� � L � f t x t . . . x t d� t .Ž . Ž . Ž . Ž . Ž .H1 n p p 1 n1 n
�
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� � � � � �According to Holder inequality, one has f � x ��� x � f x ���¨ 1 q p1 n 1 1

� �x , which shows that the norm of f acting as a form on L � ��� � Lpn p pn 1 n
� �is at most f . As for the reverse inequality, we may and do assume thatq

� � q� pif is nonnegative, with f � 1. Taking x � f for 1 � i � n, we seeq i
� �that x � 1 andpi i

f t x t ��� x t d� t � f q d� � 1,Ž . Ž . Ž . Ž .H H1 n
� �

� �so that f � 1, as a multilinear form. This shows that L is isometricallyq
Ž .isomorphic to a closed subspace of LL L , . . . , L , provided 1�pp p 11 n

� ��� �1�p � 1�q � 1.n
Ž .The proof that L is a complemented subspace of LL L , . . . , L willq p p1 n

require an intrinsic description of the multilinear forms induced by L -q
functions in terms of certain structural properties of the spaces L viewedp
as L -modules. Then the desired projection is obtained from a standard�

averaging technique.

2. MULTILINEAR FORMS ON BANACH MODULES

Ž . ŽLet X , . . . , X be Banach modules over the same commutative,1 n
. Ž Ž .Banach algebra A. The typical situation will be A � L � and each X� i

� �a Kothe function space on �. See 5, 7 for information on Banach¨
.modules and Kothe spaces, respectively. We are interested in those¨

Žmultilinear forms f : X � ��� � X � � that are balanced with respect to1 n
.the module structure of the spaces X in the sense of satisfyingi

f x , . . . , ax , . . . , x , . . . , x � f x , . . . , x , . . . , ax , . . . , xŽ . Ž .1 i j n 1 i j n

for each 1 � i, j � n and all a 	 A, x 	 X . The set of all these f isk k
Ž .obviously a closed subspace of LL X , . . . , X which we denote by1 n

Ž .LL X , . . . , X . The following result yields a useful characterization ofA 1 n
Ž .these forms LL X , . . . , X .A 1 n

LEMMA 1. Let X be A-modules. For a multilinear form f : X � ��� � Xi 1 n
� �, the following are equi�alent:

Ž . Ž .a f 	 LL X , . . . , X .A 1 n

Ž . Ž . �b The associated n 
 1 -linear operator X � ��� � X � X is1 n
1 n
an A-module homomorphism in each �ariable.

ˆ ˆ �Ž .c The associated linear operator X � ��� � X � X is a homo-1 n
1 n
ˆ ˆŽ .morphism of A � ��� � A -modules.
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Proof. This is a straightforward verification which is left to the reader.
Ž � ² : ² :The A-module structure of X is given by ax*, x � x*, ax forn

� ˆ ˆa 	 A, x 	 X , x* 	 X . The structure of a module over A � ��� � A inn n
ˆ ˆ � Ž . Ž .X � ��� � X and X is given by a � ��� � a � x � ��� � x1 n
1 n 1 n
1 1 n
1

Ž . � Ž . �� a x � ��� � a x and a � ��� � a � x � a ��� a � x ,1 1 n
1 n
1 1 n
1 n 1 n
1 n
.respectively.

An element z of an A-module X will be called cyclic if the set
� 4 ŽA � z � az : a 	 A is dense in X. Clearly, if X is a minimal Kothe¨

function space on a �-finite measure �, then every nonvanishing function
Ž . .in X is a cyclic element for the natural L � -module structure of X.�

The presence of cyclic elements greatly simplifies the determination of
balanced forms. Suppose z 	 X , 1 � i � n 
 1, are cyclic elements overi i

ˆ ˆ �Ž .A and let f 	 LL X , . . . , X . If T : X � ��� � X � X is the associ-A 1 n 1 n
1 n
Žated operator, then we can recover f from the functional T z � ��� �1

. � � Ž .z 	 X . Indeed, if x � T z � ��� � z , thenn
1 n n 1 n
1

² � :f a z , . . . , a z x � x , a . . . a x .Ž .1 1 n
1 n
1 n n 1 n
1 n

Ž .So, at least in the pure linear sense, LL X , . . . , X can be seen as aA 1 n
linear subspace of X �.n

COROLLARY 1. Let X be minimal Kothe function spaces on a �-finite¨i
Ž .measure space �, � . Suppose either that � is finite and X is �-ordern

continuous or that each X is �-order continuous. Then, for each f 	i
Ž . Ž .LL X , . . . , X , there exists a essentially unique measurable, locallyL Ž � . 1 n�

integrable function g : � � � such that

f x , . . . , x � g t x t . . . x t d� t .Ž . Ž . Ž . Ž . Ž .H1 n 1 n
�

Moreo�er, if � is finite, then g belongs to X � .n

Proof. Let us recall here that a Kothe function space X is �-order¨
continuous if every order bounded increasing sequence converges in X.
Ž .Thus, L is �-order continuous if and only if p is finite. It is well knownp
that X is �-order continuous if and only if X* � X �; that is, every

² :bounded linear functional x* on X can be written as x*, x �
Ž . Ž . Ž . Ž .H g t x t d� t , for some obviously locally integrable measurable g.�

Ž .Suppose � is finite. Then L � � X and f must be given by� i

² � :f a , . . . , a � x a ��� a ,Ž .1 n n 1 n
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Ž . �for a 	 L � . On the other hand, x is representable as an integral, soi � n
there is g 	 X � such thatn

f x , . . . , x � g t x t ��� x t d� t ,Ž . Ž . Ž . Ž . Ž .H1 n 1 n
�

Ž . Ž .for x 	 L � . Since L � is dense in each X the same representationi � � i
holds for all x 	 X .i i

As for the �-finite case, write � as an increasing union of measurable
subsets � of finite measure. Since each X is �-order continuousk i

Ž . Ž . Ž .� X � is dense in X . Now, consider X � as an L � -module ink i k i i k � k
Ž . Ž .the obvious way. Taking into account that L � is an ideal in L � we� k �

infer the existence of measurable functions g : � � � such thatk k

f x , . . . , x � g t x t . . . x t d� t ,Ž . Ž . Ž . Ž . Ž .H1 n k 1 n
�k

Ž .provided x 	 X � . Since all these g coincide on the common domaini i k k
they define a locally integrable function g : � � � in such a way that

f x , . . . , x � g t x t . . . x t d� tŽ . Ž . Ž . Ž . Ž .H1 n 1 n
�

Ž .holds for every x 	 � X � and, therefore, for every x 	 X .i k i k i i

Ž . Ž .COROLLARY 2. Let X � L � and A � L � , with � a �-finitei p �i
Ž .measure and p � �. Then LL X , . . . , X is the space of multilinear formsn A 1 n

induced by L -functions, where q is gi�en by 1�p � ��� �1�p � 1�q � 1.q 1 n
Ž . Ž .In particular LL X , . . . , X is isometrically isomorphic to L � .A 1 n q

Proof. If p is finite for all 1 � i � n, this is a straightforward conse-i
quence of Corollary 1 and the computations of Section 1. The general case

Ž .then follows from the obvious fact that LL A, X , . . . , X can be identi-A 1 n
Ž .fied with LL X , . . . , X if A is unital. The isomorphism is given asA 1 n

Ž .follows: for f 	 LL A, X , . . . , X define a balanced form on X � ��� �A 1 n 1
Ž . Ž .X by x , . . . , x � f 1, x , . . . , x . The inverse map transforms g 	n 1 n 1 n

Ž . Ž . Ž .LL X , . . . , X into a, x , . . . , x � g ax , . . . , x .A 1 n 1 n 1 n

Ž . �Remark 1. Of course, if X � L for all i, then LL X , . . . , X � L ,i � A 1 n �

which contains a complemented copy of L .1

Corollary 2 remains true even if � fails to be �-finite. This follows from
a classical result of Maharam about Boolean algebras and the obvious fact
that our arguments still work for strictly localizable measures. Since the
next Section 3 is independent on measure theory, the assumption on �
made in Theorem 1 turns out to be superfluous. We do not give the details
here.
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3. AVERAGING

In this section we shall see that, under rather mild assumptions on the
Ž .ground algebra, LL X , . . . , X is a complemented subspace ofA 1 n

Ž .LL X , . . . , X . Recall that an element u of a Banach algebra A is said to1 n
� � � 
1 �be unitary if u � u � 1. The set of all unitary elements of A is a

group under multiplication and will be denoted by U.

THEOREM 2. Let X be Banach modules o�er the commutati�e Banachi
Ž .algebra A. If U spans a dense subspace of A, then LL X , . . . , X is theA 1 n

Ž .range of a contracti�e projection on LL X , . . . , X .1 n

Ž .Proof. Let d� u , . . . , u be an invariant mean for the locally com-1 n
1
n
1 Ž �pact group U viewed as a discrete space. We refer the reader to 6,

� � �Chap. IV or to the Greenleaf booklet 4 for information on invariant
. Ž .means. For f 	 LL X , . . . , X , put1 n

Pf x , . . . , xŽ .1 n

� f u x , . . . , u x , u
1 ��� u
1 x d� u , . . . , u .Ž .Ž .H 1 1 n
1 n
1 1 n
1 n 1 n
1
n
1U

� � � �Clearly, Pf is a multilinear form on X � ��� � X , with Pf � f . On1 n
Ž .the other hand, it is clear that Pf � f for all f 	 LL X , . . . , X and alsoA 1 n

that Pf depends linearly on f. Thus, the proof will be complete if we see
that Pf is balanced for all f. A moment of reflection shows that it suffices
to verify the identity

Pf x , . . . , ux , . . . , x � Pf x , . . . , x , . . . , uxŽ . Ž .1 i n 1 i n

for each 1 � i � n and all x 	 X , u 	 U. Using the invariance of thek k
Ž .mean d� u , . . . , u and letting � � u u, we get1 n
1 i i

Pf x , . . . , ux , . . . , xŽ .1 i n

� f u x , . . . , u ux , . . . , u x , u
1 ��� u
1 xŽ .H 1 1 i i n
1 n
1 1 n
1 n

� d� u , . . . , uŽ .1 n
1

� f u x , . . . , � x , . . . , u x , u
1 ��� u�
1 u
1 xŽ .H 1 1 i i n
1 n
1 1 i n
1 n

� d� u , . . . , � , . . . , uŽ .1 i n
1

� f u x , . . . , u x , . . . , u x , u
1 ��� u
1 uxŽ .H 1 1 i i n
1 n
1 1 n
1 n

� d� u , . . . , u , . . . , uŽ .1 i n
1

� Pf x , . . . , x , . . . , ux ,Ž .1 i n

as desired.
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Ž .Theorem 1 now follows from Corollary 2 and its Remark and Theorem
2. Taking into account that balanced forms on L spaces are automaticallyp
symmetric, we can adhere the following corollary to Theorem 1.

COROLLARY 3. Suppose n�p � 1�q � 1, with 1 � p, q � �. Then L isq
a complemented subspace of the space of n-homogeneous polynomials on L .p

Remark 2. The hypothesis about A appearing in Theorem 2 can be
Žunderstood as a stronger form of amenability. Amenability is a central
� � .theme in the homology of Banach algebras; see 5 . It seems very likely

Ž . Ž .that LL X , . . . , X is complemented in LL X , . . . , X provided A is anA 1 n 1 n
amenable algebra. This is true, for instance, for group algebras. It is worth

Ž . Ž .noting that if LL X , . . . , X is complemented in LL X , . . . , X by anyA 1 n 1 n
bounded projection and A is amenable, then there is an A-module

Ž . Ž .projection from LL X , . . . , X onto LL X , . . . , X . This is so because1 n A 1 n
Ž .LL X , . . . , X is a dual module over A and all dual modules over anA 1 n

� �amenable algebra are injective; see 5, Theorem VII.1.6.I .

4. DIAGONAL SUBSPACES OF TENSOR PRODUCTS

We close the paper by showing that Theorem 1 can be predualized for
sequence spaces.

Ž k .�Let X be Banach spaces with bases e for 1 � k � n. The maink i i�1
ˆ ˆdiagonal of X � X � ��� � X is the closed subspace � spanned in X by1 n

the diagonal vectors e � ��� � e . Let us show that � is complemented ini i
X provided each factor X has an unconditional basis.k

LEMMA 2. Let X , . . . , X be m-dimensional Banach spaces with 1-un-1 n
Ž k .mconditional bases e for 1 � k � n. Then the ‘‘diagonal’’ projection Qi i�1

ˆ ˆgi�en on X � ��� � X by1 n

e1 � ��� � en if i 1 � ��� � i n ;Ž . Ž .iŽ1. iŽn.1 nQ e � ��� � e �Ž .iŽ1. iŽn. ½ 0 otherwise

Ž .is contracti�e. Consequently, if X , . . . , X are infinite-dimensional Banach1 n
Ž k .�spaces with unconditional bases e , then the diagonal projection isi i�1

ˆ ˆbounded on the space X � ��� � X .1 n

Proof. We only prove the first part. Consider each X as an l m-modulek �

in the obvious way and let U be the unitary group of the Banach algebra
l m, endowed with the norm-topology. Obviously U is compact and so there�
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is a unique normalized Haar measure du on U. define a linear operator R
ˆ ˆon X � ��� � X by1 n

R x � ��� � xŽ .1 n

� ��� u x � ��� � u x � u
1 . . . u
1 x du . . . du .Ž .H H 1 1 n
1 n
1 1 n
1 n 1 n
1

� �Clearly, R is linear and bounded, with R � 1. Routine computations
now show that R � Q. Hence Q is contractive too and the proof is
complete.

This lemma, in combination with Corollary 2, provides us with a very
� �simple proof of the following nice result of Arias and Farmer 1 . From

now on, we make the convention that l means c if p � �.p 0

ˆ ˆŽ .PROPOSITION 1 Arias and Farmer . The main diagonal of l � ��� � lp p1 n

is a complemented subspace isomorphic to l , where p is gi�en by 1�p �p
� n 4min 1,Ý 1�p .i�1 i

ˆ ˆProof. We already know that � is complemented in X � l � ��� � lp p1 n
Ž .�by a contractive projection. We prove that e � ��� �e is an l -basis.i i i�1 p

Take

m

x � x e � ��� � e .Ž .Ý i i i
i�1

We shall consider two cases. First, suppose 1�p � ��� �1�p � 1. Let1 n
Ž . Ž .P : LL 1 , . . . , l � X* � LL l , . . . , l be the averaging projection de-p p l p p1 n � 1 n

Ž . �scribed in the proof of Theorem 2. Since LL l , . . . , l � l � l and,l p p p q� 1 n
² : ² : Žtaking into account that Pf, x � f , x for all f and x 	 � this is

.obvious , we have

� � ² : ² :x � sup f , x � sup Pf , xX
� � � �f �1 f �1

² :� sup f , x : f is induced by a norm-one l -sequence� 4q

1�q
q� �� sup f x : f � 1Ý Ýi i iž /½ 5

i i

1�pm
p� �� x ,Ý iž /

i�1

so that � is isometric to l .p
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Now suppose 1�p � ��� �1�p � 1. Choose s � p in such a way that1 n k k
� � � �1�s � ��� �1�s � 1. Since y � y for each 1 � k � n and alls p1 n k k

ˆ ˆ ˆ ˆy 	 l the formal identity l � ��� � l � l � ��� � l has norm one.p p p s sk 1 n 1 n

Hence,

� � � �x � x e � ��� � e � x e � ��� � e � xŽ . Ž .Ý Ý Ý Ýi i i i i i i i
ˆ ˆl � ��� �li i i iXs s1 n

Ž .and e � ��� � e is an l -basis. This completes the proof.i i 1

5. CONCLUDING REMARKS

Perhaps a few remarks about the module-theoretic content of this note
are in order. First, there is a classical construction which linearizes
balanced forms. Indeed, if the X are modules over the commutativei

ˆ ˆŽ . Ž .Banach algebra A, then LL X , . . . , X � X � ��� � X * in a canon-A 1 n 1 A A n
ˆical way. In fact, this identity could be taken as the definition of X �1 A

ˆ � ���� � X in 5 . To obtain a suitable description of the tensor product ofA n
Ž .modules on an algebra, consider the usual projective, Banach tensor

ˆ ˆproduct X � ��� � X and the closed subspace N spanned by the ele-1 n
ments of the form

x � ��� � ax � ��� � x � ��� � xŽ .1 i j n


 x � ��� � x � ��� � ax � ��� � x .Ž .1 i j n

ˆ ˆ ˆ ˆŽ .Then X � ��� � X equals X � ��� � X �N.1 A A n 1 n
Thus, Corollary 2 and the comments made after Theorem 1 imply that if

ˆ ˆ Ž .1�p � ��� �1�p � 1, then L � ��� � L � L as L -modules ,1 n p L L p p �1 � � n

where p is given by 1�p � 1�p � ��� �1�p . Surprisingly enough, if � is1 n
ˆ ˆnonatomic and 1�p � ��� �1�p � 1, then L � ��� � L � 0 since1 n p L L p1 � � n

in this case the space of balanced forms reduces to zero. We remark,
however, that this situation is not too strange in the pure algebraic setting:
it is easily checked that ��� � ��� � 0.�
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