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CONVEX TRANSITIVE NORMS ON SPACES
OF CONTINUOUS FUNCTIONS

FÉLIX CABELLO SÁNCHEZ

Abstract

A norm on a Banach space X is called maximal when no equivalent norm has a larger group of
isometries. If, besides this, there is no equivalent norm with the same isometries (apart from its
scalar multiples), the norm is said to be uniquely maximal, which is equivalent to the convex-
transitivity of X: the convex hull of the orbits under the action of the isometry group on the unit
sphere is dense in the unit ball of X. The main result of the paper is that the complex C0(Ω) is
convex-transitive in its natural supremum norm if Ω is a connected manifold (without boundary).
As a complement, it is shown that if Ω is a connected manifold of dimension at least two, then
the diameter norm is convex transitive on the corresponding space of real functions.

Introduction

We deal in this paper with maximal symmetric norms on Banach spaces of con-
tinuous functions. Recall that a norm on a Banach space X is called maximal when
no equivalent norm has a larger group of (linear, surjective) isometries. Since each
bounded group of automorphisms of X can be regarded as a subgroup of the
isometry group of some renorming of X, it is clear that a norm is maximal if and only
if its isometry group is maximal among the bounded groups of automorphisms of X.

We are primarily concerned with uniquely maximal norms. These are maximal
norms with the additional property that there is no equivalent norm with the same
isometry group, apart from its scalar multiples.

While proofs of maximality are often rather indirect and delicate, things become
simpler for uniquely maximal norms. This is so because the latter property is known
[10] to be equivalent to the convex-transitivity of X: the convex hull of the orbits
under the action of the isometry group on the unit sphere is dense in the unit ball of
X. If the orbits themselves are dense (in the unit sphere) then X is termed almost
isotropic, but this is a different tale [4, 6].

Although the maximality of (the usual supremum norm on) the spaces C0(Ω)
spurred a considerable interest in the past [15–17, 21, 22], not much is known
about the convex-transitivity of these spaces [2].

The plan of the paper is as follows. Section 1 contains preliminaries. Section 2
deals with complex spaces: our main result in this line is that the complex C0(Ω)
is convex-transitive if Ω is a connected manifold (without boundary). Note that by
previous results of Kalton and Wood, one has maximality when Ω is a manifold
with boundary [15, Theorem 8.2].

In Section 3 we consider spaces of real-valued functions. First, we give a simple
proof of the convex-transitivity of �∞/c0, L∞(0, 1) and C(∆), where ∆ is the Cantor
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set. The remainder of the section studies the ‘diameter’ norm. This is an unusual
norm introduced by Győry and Molnár in [13] (see also [7, 11, 19]). Among other
things, we show that the diameter norm is convex-transitive on C0(Rn) for all
n� 2. This is probably the most surprising result of the paper, since it suggests
that the usual supremum norm is not the ‘right’ norm of C0(Rn) with regard to
the isometries.

1. Preliminaries

Throughout the paper, Ω denotes a locally compact (Hausdorff) space and C0(Ω)
or CK

0 (Ω) the space of all continuous functions f : Ω−→K vanishing at infinity,
where K is either C or R. The usual supremum norm on C0(Ω) is given by

‖f‖∞ = sup
t∈Ω

|f(t)|.

By the Banach–Stone theorem, every isometry of C0(Ω) has the form

T (f) = u · (f ◦ ϕ),

where u : Ω−→K is a continuous unimodular function and ϕ is a homeomorphism
of Ω. The group of homeomorphisms of Ω is denoted in this paper by Γ(Ω).

The Riesz representation theorem identifies the conjugate space C0(Ω)∗ with the
space M(Ω) of all regular Borel measures on Ω with values in the ground field. The
duality is given by

〈µ, f〉 =
∫
Ω

f(t)dµ(t).

Moreover, the norm of a measure acting as a linear functional equals its total
variation:

sup
‖f‖∞�1

|〈µ, f〉| = ‖µ‖1
def= |µ|(Ω),

where |µ| is the semi-variation of µ. Also, it is well known that the extreme points
of the unit ball of M(Ω) are the functionals τ · δt, where τ is a scalar of modulus
one and δt is the unit mass at the point t∈Ω.

As we mentioned in the introduction, the main advantage of unique maximality
is that it can be characterized by the ‘size’ of the orbits of the isometry group.
The following lemma puts together results by Cowie [10] and Becerra Guerrero
and Rodŕıguez Palacios [4, Proposition 2.28]. A proof is sketched for the sake of
simplicity. We write G or GX for the isometry group of X.

Lemma 1. For a Banach space X, the following statements are equivalent.
(a) The norm of X is uniquely maximal: each equivalent norm whose isometry

group contains G is a multiple of the original norm.
(b) Each continuous semi-norm invariant under G is a multiple of the original

norm of X.
(c) X is convex-transitive: for every unit norm x∈X the convex hull of the orbit

G(x)= {T (x) : T ∈G} is strongly dense in the unit ball of X.
(d) For every unit norm x∗ ∈X∗ the convex hull of G∗(x∗)= {T ∗(x∗) : T ∈GX}

is weakly* dense in the unit ball of X∗.
(e) For every unit norm x∗ ∈X∗ the weak* closure of G∗(x∗) contains all extreme

points of the unit ball of X∗.
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Sketch of the proof. Each statement is clearly equivalent to the adjacent ones:
(a) implies (b) because if � is a continuous semi-norm on X, then ‖ · ‖X + �(·) is an
equivalent norm on X; (b) and (c) are equivalent because continuous G-invariant
semi-norms are in exact correspondence (by polarity) with G-invariant closed convex
balanced neighbourhoods of the origin; the equivalence between (c) and (d) is a
simple application of the Hahn–Banach theorem; finally, that (e) implies (d) follows
from the Krĕın–Milman theorem. �

2. Complex functions

After these preliminaries we are ready for the proof of our main result on
complex spaces. By a manifold, we mean a topological manifold without boundary;
that is, a Hausdorff topological space Ω where every point has a neighbourhood
homeomorphic to R

n for some fixed n� 1, which is called the dimension of Ω.

Theorem 1. Let Ω be a connected manifold. The usual supremum norm is
convex transitive on CC

0 (Ω).

The following result asserts that complex measures (which clearly allow ‘polar
decompositions’ [12] with measurable argument) always allow ‘nearly polar
decompositions’ [8] with continuous arguments. Note that if g is a Borel bounded
function on Ω and µ is a Borel measure, the product g · µ should be interpreted as
the measure A �→

∫
A

gdµ.

Lemma 2. Let Ω be a locally compact space. For each µ∈M(Ω) and ε> 0,
there exists a continuous function u : Ω−→T such that

‖ µ − u · |µ| ‖1 < ε.

Proof. Since each Borel measure is absolutely continuous with respect to its
semi-variation, the Radon–Nikodým theorem yields a measurable σ : Ω−→C such
that µ(A)=

∫
A

σd|µ|; that is, µ= σ · |µ|. Since

|µ|(A) =
∫
A

|σ| d|µ|

for every Borel A⊂Ω we see that |σ(t)|= 1 almost |µ|-everywhere. Therefore we
may assume that σ is a Borel unimodular function. Write

σ(t) = eiθ(t),

where θ : Ω−→ (−π, π] is another Borel function. By Luzin’s theorem [14,
Theorem 11.36] there is a continuous ϑ : Ω−→ (−π, π] such that

|µ| ({t ∈ Ω : ϑ(t) 	= θ(t)}) < ε.

The function u = eiϑ is clearly continuous and one has

‖ µ − u · |µ| ‖1 = ‖ σ · |µ| − u · |µ| ‖1 �
∫
Ω

|σ − u| d|µ| � 2ε,

as desired.
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Now, to prove the convex-transitivity of CC
0 (Ω) one has only to verify that Ω

satisfies a certain shrinking property: the precise statement is given by condition
(g) in Lemma 3 below. Note that if T is an endomorphism of the form

T (f) = g · (f ◦ ϕ) (f ∈ C0(Ω)),

the adjoint map T ∗ acts on M(Ω) by the rule

T ∗(µ) = (g · µ) ◦ ϕ−1.

Lemma 3. For a locally compact space Ω, the following are equivalent.
(f) The supremum norm is convex-transitive on CC

0 (Ω).
(g) Given a regular Borel probability µ∈M(Ω), a non-empty open U ⊂Ω and

ε> 0, there exist a (compact) K ⊂Ω with µ(Ω\K)� ε and ϕ∈Γ(Ω) such that
ϕ(K)⊂U .

(h) For all probabilities µ∈M(Ω), the weak* closure of the set {µ◦ϕ : ϕ∈Γ(Ω)}
contains all evaluation functionals δt with t∈Ω.

Proof. That (h) implies the convex transitivity of C0(Ω) follows from Lemmas 1
and 2, taking into account the fact that the set of those x∗ for which condition (e)
– or (c) – of Lemma 1 holds is norm closed in the unit sphere of X∗.

Let us show the implication (f) ⇒ (g). Fix µ, U and ε as in (g). Pick p∈U and
let V ⊂U be a compact neighbourhood of p. Choose a continuous f : Ω−→ [0, 1] so
that f(p) = 1 and f ≡ 0 outside V . By convex transitivity, there is an isometry T
of C0(Ω) such that

|〈T ∗(µ), f〉 − 〈δp, f〉| < ε;

that is, ∣∣∣∣1 −
∫
Ω

u(t)f(ϕ(t))dµ(t)
∣∣∣∣ < ε,

where u∈C0(Ω) is unimodular and ϕ∈Γ(Ω). Therefore,

1−ε<

∣∣∣∣
∫
Ω

u(t)f(ϕ(t))dµ(t)
∣∣∣∣ �

∫
Ω

|u(t)f(ϕ(t))|dµ(t)=
∫
ϕ−1(V )

f ◦ ϕ dµ� µ(ϕ−1(V )).

Hence (g) holds, taking K =ϕ−1(V ).
We end the proof by showing that (g) implies (h).
Fix a probability µ on Ω and p∈Ω. Take f ∈C0(Ω) and ε> 0. We see that there

is a ϕ∈Γ(Ω) such that ∣∣〈δp − µ ◦ ϕ−1, f〉
∣∣ < ε.

There is no loss of generality in assuming that f is non-negative, with ‖f‖∞ � 1.
Let U be a neighbourhood of p such that

|f(p) − f(t)| < ε (t∈U),

and let K be a compact set such that µ(K)> 1− ε and ϕ(K)⊂U for some ϕ∈Γ(Ω).
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One has∣∣〈δp − µ ◦ ϕ−1, f〉
∣∣ =

∣∣∣∣f(p) −
∫
Ω

f d
(
µ ◦ ϕ−1

)∣∣∣∣
=

∣∣∣∣f(p) −
∫
Ω

f(ϕ(t))dµ(t)
∣∣∣∣

� ε +
∣∣∣∣µ(Ω\K)f(p) + µ(K)f(p) −

∫
K

f(ϕ(t))dµ(t)
∣∣∣∣

= 2ε +
∣∣∣∣
∫
K

(f(p) − f(ϕ(t))dµ(t)
∣∣∣∣

� 3ε.

This completes the proof.

It is now clear that, for instance, CC
0 (Rn) has convex-transitive norm. Actually,

R
n has a shrinking property stronger than (g); namely, that if U 	= ∅ is open and

K is compact, then there is a ϕ∈Γ(Rn) mapping K into U .
As for other ‘non-flat’ manifolds such as T

n or S
n, a moment’s reflection shows

that they satisfy condition (g) of Lemma 3 – although not the stronger form just
mentioned.

Our immediate aim is to show that every connected manifold has property (g).
The crucial steps are the following two lemmas. We write B

n for the open unit ball
of R

n, centred at the origin; that is, the set {x∈R
n : ‖x‖< 1}; B

n
and S

n−1 will
denote its closure and its boundary (in R

n), respectively.

Lemma 4. (i) For every p∈B
n there is a ϕ∈Γ(B

n
) such that ϕ(0)= p and

ϕ(x)= x for all x∈ S
n−1.

(ii) For every 0<ε, r < 1 there is a ϕ∈Γ(B
n
) such that ϕ(rB

n
)= εB

n
and

ϕ(x)= x for all x∈ S
n−1.

Proof. (i) For the first part, it suffices to consider the map ϕ(x)= x+(1−‖x‖)p.
(ii) As for the second one, let g : [0, 1]−→ [0, 1] be the only function that is affine

on [0, r] and [r, 1] and takes the values 0, ε and 1 at 0, r and 1, respectively. Then
the desired selfmap can be defined as

ϕ(x) = g(‖x‖) · x

‖x‖ (0 < ‖x‖ � 1)

and ϕ(0)= 0.

Let us say that an open subset V of an n-dimensional manifold Ω is a cube if
there exists a homeomorphism between V (the closure of V ) and B

n
mapping V

onto B
n. One immediate consequence of Lemma 4 is that if U ⊂V is open and

K ⊂V is compact, then there is a ϕ∈Γ(Ω) such that ϕ(K)⊂U and ϕ(x)= x for
x /∈V .

Lemma 5. Let C be a compact set in an n-dimensional manifold Ω. There is a
finite system (Vi, pi)m

i=1 such that:

(i) Each Vi is a cube containing pi and pi /∈ Vj if i 	= j.
(j) C ⊂V1 ∪ . . . ∪ Vm.
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Proof. It is clear that each point of Ω belongs to some cube. By compactness,
we may cover C by a finite number of cubes, which we label V 0

1 , . . . , V 0
m. Removing

some sets if necessary, we may assume that no proper subclass of {V 0
1 , . . . , V 0

m}
covers C. Thus, for each 1 � i� m, we can pick

pi ∈
(
V 0

i ∩ C
) ∖ ⋃

j �=i

V 0
j

and neighbourhoods Ui of pi in such a way that pj /∈Ui for i 	= j.
Finally, define sets

V k
j (1 � j � m; 0 � k � m)

inductively (on k) starting with V 0
j (1� j �m) as follows. Assuming that V k

j has
been defined for some 0� k < m and all 1� j � m, let us define V k+1

j according to
the position of pk+1 relative to V k

j : if pk+1 /∈ ∂V k
j , then V k+1

j = V k
j ; if pk+1 ∈ ∂V k

j ,
then

V k+1
j = Vj(k)\V ,

where V ⊂Uj is a cube containing pk+1 chosen in such a way that V k+1
j is still a

cube.
The mth ‘output’ system (V m

i , pi)m
i=1 fulfils the conditions of the lemma.

Proof of Theorem 1. We show that each connected manifold Ω satisfies condition
(g) of Lemma 3. Fix a probability µ∈M(Ω), a non-empty open U ⊂Ω and ε> 0.
By regularity, there is a compact C ⊂Ω such that µ(C)> 1− ε.

Let (Vi, pi)m
i=1 be a system as in Lemma 5. Choose ϕ∈Γ(Ω) such that ϕ(pi)∈U

for all i. At this point, connectedness is necessary! For each i, let Ui be an open
neighbourhood of pi in Vi such that

ϕ(Ui) ⊂ U and Ui ∩ Vj = ∅ (i 	= j).

Now, take compact Ki ⊂ Vi such that

µ(Vi\Ki) <
ε

m
.

Clearly,

µ

(
m⋃

i=1

Ki

)
� 1 − 2ε.

To finish, for each 1� i� m, let us take ϕi ∈Γ(Ω) so that

ϕi(Ki) ⊂ Ui and ϕi(x) = x (x /∈ Vi);

such a ϕi does exist, by the remark after Lemma 4. Put Ψ = ϕm◦ϕm−1◦. . .◦ϕ2◦ϕ1.
Clearly,

Ψ (K1) ⊂ U1, Ψ (K2\V1) ⊂ U2, Ψ (K3\ (V1 ∪ V2)) ⊂ U3, . . .

and, in general,

Ψ

(
Kj

∖ (
j−1⋃
i=1

Vi

))
⊂ Uj (1 � j � m).
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Consider the disjoint union

K = K1 ⊕ (K2\V1) ⊕ (K3\ (V1 ∪ V2)) ⊕ . . . ⊕
(

Km

∖(
m−1⋃
i=1

Vi

))
.

This is clearly a compact set with µ(K)� 1− 2ε. Moreover, the composition Φ=
ϕ ◦ Ψ sends K into U , which completes the proof.

3. Real functions

In this section we study the isometry group of certain norms on the real space
C0(Ω). First of all, let us remark that Wood proved in [22] that CR

0 (Ω) is convex-
transitive in its usual (supremum) norm if and only if Ω is basically disconnected
and satisfies condition (h) of Lemma 3. However, both (g) and (h) involve only real
functions (or measures), and actually it is easily seen that they are equivalent, so
we have the following extension of [22, Theorem 3.4].

Theorem 2. The supremum norm is convex-transitive on CR
0 (Ω) if and only if

Ω is basically disconnected and satisfies condition (g) of Lemma 3.

In particular, CC
0 (Ω) is convex-transitive if CR

0 (Ω) is. As for concrete examples,
Pe�lczýnski and Rolewicz proved that both CR(∆) and LR

∞[0, 1] are convex-
transitive, where ∆= {0, 1}N is the Cantor set. Although announced in 1962 (at
the Stockholm International Congress of Mathematics), these results were not
published until Rolewicz’s [20] appeared. Unfortunately, all the results in [21] (the
second edition of [20]) concerning the convex-transitivity of spaces of continuous
functions are wrong, and so no proof of the convex-transitivity of the above spaces
is easily available. (Actually, �n

∞ is clearly a counterexample for [21, Theorem 9.7.3,
Corollary 9.7.4 and Theorem 9.7.7]; a less trivial example is the space c0 =C0(N):
by the results in [1, 3] this space cannot be renormed with a convex-transitive
norm. See [4] for further explanations.) A simple proof based on the ‘divisibility’ of
the underlying compact spaces follows. The symbol ‘≈’ indicates homeomorphism.

Corollary 1. Let Ω be a locally compact space whose topology has a base S
of clopen sets such that C ≈ Ω\C ≈ Ω for all C ∈S. Then the supremum norm is
convex-transitive on CR

0 (Ω). In particular, the real spaces C(∆), L∞[0, 1] and �∞/c0

all have convex-transitive norm.

Proof. Clearly, Ω is basically disconnected. Let us verify condition (g) of
Lemma 3. Let µ be a probability on Ω, U an open set and ε> 0. We show there is
a subset K of Ω with µ(K)� 1− ε and ϕ∈Γ(Ω) such that ϕ(K)⊂U .

We may assume that U ∈S, so U ≈ Ω\U ≈ Ω. Since Ω ≈ Ω ⊕ Ω, it is clear that

Ω ≈
n⊕

i=1

Ω (n = 1, 2 . . . ).

Take n so that 1/n< ε. Then Ω can be decomposed as Ω= C1⊕· · ·⊕Cn, with Ci ∈S
and µ(Cn)< ε. Put K = C1 ⊕· · ·⊕Cn−1; clearly µ(K)> 1− ε. Since Ω ≈ U ≈ Ω\U
it is obvious that there is a ϕ∈Γ(Ω) such that ϕ(K)⊂U .
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We now study the space CR
0 (Ω) for connected Ω. In this case it is clear that the

usual norm cannot be convex-transitive unless Ω is a singleton. In [5] we proved
(among other things) that there is an ‘unusual’ norm (the diameter norm) on
C0(Rn) whose isometry group is strictly larger than that of the sup norm. The
main results of [5] were about the maximality of the diameter norm. In this section
we study the convex-transitivity of that norm, thus obtaining simpler proofs of
some results that are stronger than those of [5].

Given f ∈C0(Ω), put

ρ(f) = sup{|f(s) − f(t)| : s, t∈Ω};

that is, ρ(f) is the diameter of the range of f . Clearly, ρ is a semi-norm on C0(Ω)
whose kernel consists of the constant functions that belong to C0(Ω). Thus, ρ is a
norm if (and only if) Ω is locally compact but not compact. If so, then

‖f‖∞ � ρ(f) � 2‖f‖∞ (f ∈ C0(Ω)).

In any case, we can define a norm on C0(Ω)/ ker ρ taking

ρ[f ] = ρ(f),

where [f ] stands for the class of f in C0(Ω)/ ker ρ.
Actually, there is no loss of (isometric types of) diameter norms in restricting our

considerations to the compact case: it was noted in [7, Section 3] that

(C0(Ω), ρ(·)) = (C(αΩ)/ ker ρ, ρ[·]),

up to an (obvious) isometric isomorphism – here, αΩ stands for the one-point
compactification of Ω. Thus, the behaviour of the diameter norm on C0(Ω) depends
only on αΩ. Since αΩ often has more symmetry than Ω (the group Γ(αΩ) always
contains Γ(Ω) and the inclusion may be proper), this explains the possible gain of
symmetry when passing from the usual norm to the diameter norm.

Lemma 6. For a compact space Ω, the following are equivalent.

(l) The diameter norm is convex-transitive on CR(Ω)/ ker ρ.
(m) Given a real measure µ∈M(Ω) with |µ|(Ω)= 2 and µ(Ω)= 0, two disjoint

non-empty open sets U+, U− ⊂Ω and ε> 0, there are disjoint (compact)
sets K+,K− ⊂Ω, with µ(K+)> 1− ε , µ(K−)< ε− 1, and ϕ∈Γ(Ω) such that
ϕ(K+)⊂U+ and ϕ(K−)⊂U−.

Before going into the proof, let us note some further properties of the Banach
space Cρ(Ω)= (C(Ω)/ ker ρ, ρ[·]).

First of all, it is clear that if ϕ is a homeomorphism of Ω and τ is a number of
modulus one, then the map

T [f ] = [τf ◦ ϕ] (f ∈ C(Ω))

is a surjective isometry of Cρ(Ω). Actually, every isometry of Cρ(Ω) has the above
form. See [7, Theorem 2].

Secondly, it will be convenient to have a concrete representation of the conjugate
space of Cρ(Ω). Note that when K = R, one has

ρ(f) = 2 inf
λ∈K

‖f − λ1Ω‖∞.
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(This is not true when K = C!) Therefore CR
ρ (Ω) is isometric, up to a constant

factor 2, to the quotient of (supremum norm) space CR(Ω) by the subspace of
constant functions. Hence the conjugate space CR

ρ (Ω)∗ is (up to a constant factor
1/2) isometric to a subspace of MR(Ω). More precisely,

CR

ρ (Ω)∗ = {µ ∈ MR(Ω) : µ(Ω) = 0},

isometrically.
Finally, a measure µ represents an extreme point of the unit ball of Cρ(Ω)∗ if

and only if (see [7] again)

µ = τ(δs − δt) (|τ | = 1; s, t ∈ Ω; s 	= t).

Proof of Lemma 6. We prove the implication (m) ⇒ (l). In view of Lemma 1
and the preceding remarks, it suffices to see that, given µ∈MR(Ω), with |µ|(Ω)= 2
and µ(Ω)= 0, two points p, q ∈Ω, f ∈CR(Ω) and ε> 0, there is a ϕ∈Γ(Ω) such
that

|〈δp − δq − µ ◦ ϕ, f〉| < ε.

We may assume that f is non-negative, with ‖f‖∞ � 1.
Let U+ be a neighbourhood of p such that |f(p)− f(t)|< ε for t∈U+. Similarly,

let U− be a neighbourhood of q such that |f(q) − f(s)|< ε for s∈U−. Now, if
K+, K− and ϕ are as in Lemma 6(m), then

|〈δp − δq − µ ◦ ϕ−1, f〉| =
∣∣∣∣f(p) − f(q) −

∫
Ω

f ◦ ϕ dµ

∣∣∣∣
�

∣∣∣∣f(p) −
∫
Ω

f ◦ ϕ dµ+

∣∣∣∣ +
∣∣∣∣f(q) −

∫
Ω

f ◦ ϕ dµ−
∣∣∣∣ ,

where µ = µ+−µ− is the Hahn–Jordan decomposition of µ. Since |µ|= |µ+|+ |µ−|,
from µ(Ω)= 0 and |µ|(Ω)= 2, we infer that both µ+ and µ− are probabilities, with
µ+(K+) and µ−(K−) greater than 1− ε. Reasoning as in the proof of Lemma 3, we
find that each summand in the right-hand side of the above inequality is at most
3ε, which proves the first implication.

As for the converse, let us fix µ∈MR(Ω) such that |µ|(Ω)= 2 and µ(Ω)= 0. Fix
also disjoint (non-empty) open sets U+, U− ⊂Ω and ε> 0.

Take p∈U+ and q ∈U− and construct a continuous f : Ω−→ [−1, 1] so that

f(p) = 1, f(q) = −1, f|U+ � 0, f|U− � 0 and f ≡ 0 outside U+ ⊕U−.

By convex-transitivity, there is an isometry T of CR
ρ (Ω) for which

|〈T ∗(µ) − (δp − δq), [f ]〉|< ε.

Hence 〈µ, T [f ]〉> 2− ε. By the form of the isometries of the diameter norm we have
T [f ] = [τf ◦ ϕ], where τ =±1 and ϕ∈Γ(Ω). Assuming that τ = 1 (the case τ =−1
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is similar), we obtain

2−ε �
∫
Ω

f ◦ ϕ dµ

=
∫
ϕ−1(U+⊕U−)

f ◦ ϕ dµ+ −
∫
ϕ−1(U+⊕U−)

f ◦ ϕ dµ−

=
∫
ϕ−1(U+)

f ◦ϕ dµ++
∫
ϕ−1(U−)

f ◦ ϕ dµ+−
∫
ϕ−1(U+)

f ◦ ϕ dµ−−
∫
ϕ−1(U−)

f ◦ ϕ dµ−

�
∫
ϕ−1(U+)

f ◦ ϕ dµ+ −
∫
ϕ−1(U−)

f ◦ ϕ dµ−

� µ+(ϕ−1(U+)) + µ−(ϕ−1(U−)).

Bearing in mind that µσ(Ω)= 1 for σ =±, we see that µσ(ϕ−1(Uσ))> 1− ε and,
a fortiori,

max{µ+(ϕ−1(U−)), µ−(ϕ−1(U+))} < ε.

Therefore,
µ(ϕ−1(U+)) > 1 − 2ε and µ(ϕ−1(U−)) < 2ε − 1.

The proof is now complete.

Theorem 3. Let Ω be a connected, compact manifold of dimension at least 2.
Then CR

ρ (Ω) is convex-transitive.

Proof. We will verify condition (m) of Lemma 6. Suppose that µ,U+, U− and
ε are as in Lemma 6.

First, there are Borel sets Ωσ (σ =±) such that

µ+(Ω+) = µ−(Ω−) = 1 with Ω+ ∩ Ω− = ∅.

By regularity, there exist compact sets Cσ ⊂Ωσ such that µσ(Cσ)> 1− ε. By
compactness of Ω, we can find disjoint open sets Oσ such that Kσ ⊂Oσ. Since the
Oσ are manifolds, we can apply Lemma 5 to obtain two finite systems (V σ

i , pσ
i )mσ

i=1

such that:
(i) each V σ

i is a cube containing pi and pσ
i /∈ V

σ

j if i 	= j;
(ii) Cσ ⊂V σ

1 ∪ . . . ∪ V σ
mσ

for σ =±.
Let us take ϕ∈Γ(Ω) so that ϕ(pσ

i )∈Uσ for all i and each σ. This is the only
point where the hypothesis on the dimension enters!

Also, for each (σ, i), let Uσ
i ⊂V σ

i be a neighbourhood of pσ
i such that

ϕ (Uσ
i ) ⊂ Uσ with Uσ

i ∩ V σ
j = ∅ (i 	= j).

Finally, take compact sets Kσ
i such that

Kσ
i ⊂ V σ

i and |µ| (V σ
i \Kσ

i ) < ε/mσ

and homeomorphisms ϕσ
i such that

ϕσ
i (Kσ

i ) ⊂ Uσ
i and ϕσ

i (x) = x (x /∈ V σ
i ).

Putting Ψσ = ϕσ
mσ

◦ . . . ◦ ϕσ
1 and Ψ = Ψ+ ◦ Ψ−, we have

Ψ

(
Kσ

j

∖(
j−1⋃
i=1

V σ
i

))
⊂ Uσ

j (σ = ±, 1 � j � mσ).
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Finally, set

Kσ =
mσ⊕
j=1

(
Kσ

j

∖(
j−1⋃
i=1

V σ
i

))
.

Then µ(K+)= µ+(K+)> 1− 2ε and µ(K−)=−µ−(K−)< 2ε− 1 and the compos-
ition Φ=ϕ ◦ Ψ maps each Kσ into the corresponding Uσ. This completes the
proof.

Corollary 2. Let Ω be a non-compact, connected manifold of dimension at
least 2. Then the diameter norm is convex-transitive on CR

0 (Ω) if and only if αΩ is
also a manifold.

Proof. The ‘if’ part follows from Theorem 3 – when applied to αΩ. As for the
converse, if αΩ were not a manifold, then the infinity would be fixed by Γ(αΩ) and
Lemma 6(m) would fail.

In particular, the diameter norm is convex-transitive on CR
0 (Ω) if Ω= R

n with
n � 2, or if Ω is, for instance, the Möbius strip, but not if Ω= T × R is a cylinder.

In the setting of Corollary 2, we see that the diameter norm is convex-transitive
on CR

0 (Ω) precisely when the sup norm is not maximal. It is a little ironic that the
failure of maximality for the sup norm on spaces of real functions turns out to be
a ubiquitous phenomenon.

Proposition 1. If Ω is a locally compact, non-compact, connected space (not
necessarily a manifold), then the sup norm fails to be maximal at least on one of
the spaces CR

0 (Ω) or CR(αΩ).

Proof. If Γ(αΩ) 	= Γ(Ω), then the diameter norm has more symmetry than the
sup norm on CR

0 (Ω). Otherwise, each homeomorphism of αΩ fixes the infinity and
we can obtain a larger bounded group of automorphisms in CR(αΩ) adding the
‘reflexion’ given by

I∞(f) = f − 2f(∞)1αΩ.

The idea originates with Partington [17]: if Γ(K) leaves invariant some non-zero
measure in M(K), then CR(K) is not maximal under the sup norm.

We close with two remarks. First, the hypothesis on the dimension is necessary
in Theorem 3: the space CR

ρ (T) = (CR
0 (R), ρ(·)) is not convex transitive; indeed,

condition (m) fails for all ε� 1/2 taking

µ =
δ1 − δi + δ−1 − δ−i

2

with U+ = {z ∈T :�z > 0} and U− = {z ∈T :�z < 0}. As far as I know, the problem
about the maximality of CR

ρ (T) and CR(T) is still open.
Recently, F. Rambla [18] has shown that there exists a (metrizable) locally

compact space Ω such that CC
0 (Ω) is almost isotropic, thus solving a long-standing

problem posed by Wood in [22]. It is worth noting that if CC
0 (Ω) is almost isotropic

and Γ(αΩ) does not fix the infinity (which is the case in Rambla’s example), then
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CR
0 (Ω) is almost isotropic under the diameter norm. Note that (in view of [9]) the

space Ω has dimension one in the (very weak) sense of covering.
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