A Lifting Result for Locally Pseudo-Convex Subspaces of L_0

by

Félix CABELLO SÁNCHEZ

Presented by Aleksander PELCZYŃSKI

Summary. It is shown that if F is a topological vector space containing a complete, locally pseudo-convex subspace E such that $F/E = L_0$ then E is complemented in F and so $F = E \oplus L_0$. This generalizes results by Kalton and Peck and Faber.

Introduction. Let L_0 denote the space of all (equivalence classes of) measurable functions on $[0,1]$ equipped with the topology of convergence in measure, E a closed subspace of L_0, and $T : L_0 \to L_0/E$ a (linear, continuous) operator. Under what conditions does T lift to an operator $S : L_0 \to L_0$ in the sense that the diagram

\[
\begin{array}{ccc}
L_0 & \xrightarrow{S} & L_0 \\
\downarrow \pi & & \downarrow \\
L_0/E & \xrightarrow{T} & L_0/E
\end{array}
\]

commutes? As far as I know this problem was raised by Pełczyński. Kalton and Peck [5, Theorem 3.6] proved that such an S exists if E is locally bounded (that is, a quasi-Banach space); see also [6, Theorem 6.4]. The same is true if E is isomorphic to ω, the space of all sequences, as follows from results of Peck and Starbird [7, Corollary]. The interesting work of Domański about the

2000 Mathematics Subject Classification:

Key words and phrases: space of measurable functions, lifting, extension, pull-back, push-out.

Supported in part by DGICYT project MTM2004-02635.
structure of extensions [2] contains alternative proofs of both resuts. Finally, Faber [3, Theorem 2.1] got the corresponding result for locally convex E.

In this short note we generalize the previous results to locally pseudo-convex subspaces of L_0. Actually, we will show that if E is locally pseudo-convex and complete and F is any topological vector space (TVS) containing it, then every operator $L_0 \to F/E$ lifts to F. Thus, the fact that E is a subspace of L_0 plays no role here. However we emphasize that there are locally pseudo-convex subspaces of L_0 that are neither locally convex nor locally bounded (nor even locally p-convex for any fixed p): $\prod_{n=1}^{\infty} L_p(n)$ is an example if the sequence $0 < p(n) \leq 2$ converges to zero.

In contrast to Faber’s proof (which is quite “hard” and depends on specific features of the locally convex subspaces of L_0) our result is obtained straightforwardly from the locally bounded case by means of the universal properties of three basic (and simple) homological constructions: pull-back, push-out and inverse limit.

Before going further we make some conventions. TVSs are assumed to be Hausdorff. Operator means linear and continuous map. If E and F are TVSs, then $L(E, F)$ denotes the space of all operators from E to F. The identity on E is written 1_E.

Let us translate the problem into the language of extensions. An extension (of G by E) is a short exact sequence of TVSs and relatively open operators

\[0 \to E \xrightarrow{i} F \xrightarrow{\pi} G \to 0. \tag{1} \]

Less technically we can regard F as a TVS containing E as a subspace in such a way that F/E is (isomorphic to) G. We say that (1) splits if there is $S \in L(G, F)$ such that $\pi \circ S = 1_G$. And this happens if and only if there is $P \in L(F, E)$ such that $P \circ i = 1_E$; that is, if iE is a complemented subspace of F.

We now describe the algebraic constructions we shall use in the proof. Some verifications are left to the reader. They are really easy; just try or adapt the corresponding proof for (quasi-) Banach spaces in [4] or [1, Appendix].

1. The pull-back extension. Suppose we are given an extension (1) and an operator $L : H \to G$, where H is a TVS. Then we can construct a commutative diagram

\[0 \longrightarrow E \xrightarrow{i} F \xrightarrow{\pi} G \longrightarrow 0 \]

\[0 \longrightarrow E \xrightarrow{\text{PB}} \xrightarrow{\pi_H} H \longrightarrow 0 \quad \tag{2} \]
as follows: the pull-back space is \(PB = \{(f, h) \in F \times H : \pi f = L h\} \), with the relative product topology. The maps from \(PB \) are the restrictions of the projections. The map \(E \to PB \) is just \(e \mapsto (\iota(e), 0) \). It is easily verified that the lower row in (2) is an extension which splits if and only if \(L \) lifts to \(F \). And this is so by the following universal property of the pull-back square: if \(I \) is a TVS and \(\alpha \) and \(\beta \) are operators making the diagram

\[
\begin{array}{ccc}
F & \xrightarrow{\pi} & G \\
\uparrow & & \uparrow L \\
I & \xrightarrow{\beta} & H
\end{array}
\]

commutative, then there is a unique operator \(\gamma : I \to PB \) such that \(\alpha = \pi_F \circ \gamma \) and \(\beta = \pi_H \circ \gamma \) (the converse is obvious).

Hence the following statements about a pair of TVSs \(E \) and \(H \) are equivalent:

- Whenever \(F \) is a TVS containing \(E \) every operator \(H \to F/E \) lifts to \(F \).
- Every extension \(0 \to E \to I \to H \to 0 \) splits.

Thus, the promised generalization of Faber’s result is contained in the following:

Fact. Every extension of \(L_0 \) by a complete, locally pseudo-convex space splits.

Before going into the proof, let us describe

2. The push-out extension. The push-out construction is just the categorical dual of the pull-back. So assume we are given an extension (1) and an operator \(T : E \to J \). The push-out of the operators \(\iota \) and \(T \) is the quotient space \(PO = (F \oplus J)/\Delta \), where \(\Delta = \{-\iota(e) + T(e) : e \in E\} \). In our setting \(\Delta \) is closed because \(\iota \) has closed range. We have a commutative diagram

\[
\begin{array}{ccc}
0 & \xrightarrow{} & E & \xrightarrow{\iota} & F & \xrightarrow{\pi} & G & \xrightarrow{} & 0 \\
\downarrow T & & \downarrow \iota_F & & \Downarrow \pi_F & & \Downarrow & & \\
0 & \xrightarrow{} & J & \xrightarrow{\iota_J} & PO & \xrightarrow{} & G & \xrightarrow{} & 0
\end{array}
\]

The arrows ending in \(PO \) are induced by the inclusions of \(F \) and \(J \) into their direct sum \(F \oplus J \). The operator \(PO \to G \) sends \((f \oplus j) + \Delta \) to \(\pi(f) \). This is clearly a quotient operator and it is easily seen that the lower sequence in (3) is an extension. Moreover this extension splits if and only if \(T \) extends to \(F \) (in the sense that there is \(\tau \in L(F, J) \) such that \(\tau \circ \iota = T \)). Again, this is immediate from the universal property of the push-out construction: if \(\alpha \)
and β are operators making the diagram

\[
\begin{array}{ccc}
E & \xrightarrow{r} & F \\
\downarrow T & & \downarrow \alpha \\
J & \xrightarrow{\beta} & K
\end{array}
\]

commutative, then there is a unique operator $\gamma : PO \to K$ such that $\alpha = \gamma \circ r_F$ and $\beta = \gamma \circ r_J$ (the converse is obvious).

3. The inverse limit. The topology of a locally pseudo-convex space E can be obtained through a system of functions

$$
\varrho : E \to \mathbb{R}^+ \quad (\varrho \in \Gamma),
$$

where each ϱ is a homogeneous semi-p_ϱ-norm [8, Theorem 3.14]. We may assume that given $\alpha, \beta \in \Gamma$ there is $\delta \in \Gamma$ such that $\delta \geq \alpha, \beta$ (in the pointwise sense). For $\varrho \in \Gamma$, let E_ϱ denote the completion of $E/\ker \varrho$. This is clearly a p_ϱ-Banach space and we have an obvious operator $\pi_\varrho : E \to E_\varrho$. Moreover, if $\alpha \geq \beta$ the map π_β factors through E_α and we have a further operator $\pi_\alpha^\beta : E_\alpha \to E_\beta$. It is clear that these form a projective system in the sense that for $\alpha \geq \beta \geq \gamma$ the map $E_\alpha \to E_\gamma$ coincides with the composition $E_\alpha \to E_\beta \to E_\gamma$.

Just as in the locally convex case, it is easily seen that if E is complete, then it is isomorphic to the inverse (projective) limit of the system $\{E_\gamma : \gamma \in \Gamma\}$, that is, the space

$$
\text{proj } E_\gamma = \left\{(e_\gamma) \in \prod E_\gamma : \pi_\beta^\alpha(e_\alpha) = e_\beta \text{ for all } \alpha \geq \beta\right\}
$$

equipped with the relative product topology. We leave to the reader the verification that the map $e \in E \mapsto (\pi_\gamma(e))_\gamma \in \prod E_\gamma$ defines an isomorphism between E and $\text{proj } E_\gamma$. Every operator $T : F \to E$ gives rise to a system of operators $T_\gamma : F \to E_\gamma$ (namely, $T_\gamma = \pi_\gamma \circ T$), compatible in the sense that for $\alpha \geq \beta$ we have $T_\beta = \pi_\beta^\alpha \circ T_\alpha$.

The universal property of the inverse limit states the converse: if $T_\gamma : F \to E_\gamma$ is a compatible system, then there is a unique operator $T : F \to E$ such that $T_\gamma = \pi_\gamma \circ T$.

Proof of the Fact. Let E be a complete, locally pseudo-convex space. We show that every extension

$$
0 \to E \xrightarrow{r} F \xrightarrow{p} L_0 \to 0
$$

splits. If ϱ is a semi-p-norm on E we can apply the push-out procedure to
\(\pi_\varnothing \) and obtain the diagram

\[
\begin{array}{c}
0 \longrightarrow E \xrightarrow{\pi_\varnothing} F \xrightarrow{\pi} L_0 \longrightarrow 0 \\
\downarrow \quad \downarrow \quad \downarrow \\
0 \longrightarrow E_\varnothing \longrightarrow PO \longrightarrow L_0 \longrightarrow 0
\end{array}
\]

We know from [5] that the push-out extension splits and so there is \(P_\varnothing : F \to E_\varnothing \) such that \(\pi_\varnothing = \iota \circ P_\varnothing \). In fact \(P_\varnothing \) is unique: for if \(P : F \to E_\varnothing \) is another extension of \(\pi_\varnothing \) we have \((P - P_\varnothing) \circ \iota = 0 \) and so \(P - P_\varnothing \) factors through \(L_0 \). But the only operator from \(L_0 \) to a quasi-Banach space is zero, and so \(P = P_\varnothing \).

We claim that the system \((P_\gamma)_{\gamma \in \Gamma} \) defines an operator \(P : F \to E \) such that \(P \circ \iota = 1_E \). Suppose \(\alpha \geq \beta \) and let \(P_\alpha \) and \(P_\beta \) be as above. We have \(\pi_\alpha = P_\alpha \circ \iota \) and \(\pi_\beta = P_\beta \circ \iota \). Since \(\pi_\beta = \pi_\alpha \circ \pi_\alpha \) we have \(\pi_\beta = \pi_\alpha \circ P_\alpha \circ \iota \) and by the uniqueness of \(P_\beta \) we see that \(P_\beta = \pi_\beta \circ P_\alpha \). This implies that there is an operator \(P : F \to E \) such that \(P_\gamma = \pi_\gamma \circ P \) for all \(\gamma \in \Gamma \), which clearly implies that \(P \circ \iota = 1_E \) and completes the proof.

Concluding remarks. Of course, the result just proved implies that if \(E \) and \(F \) are locally pseudo-convex (closed) subspaces of \(L_0 \) such that \(L_0/E \) and \(L_0/F \) are isomorphic, then there is an automorphism of \(L_0 \) mapping \(E \) onto \(F \).

Let us say that a TVS \(G \) has \(L_0 \)-structure if for every neighborhood of the origin \(U \) there is a topological decomposition \(G = G_1 \oplus \cdots \oplus G_k \) with \(G_i \subset U \) for \(1 \leq i \leq k \). By [5, Theorem 3.6] (or [2, Proposition 4.3]) every extension of such a \(G \) by any quasi-Banach space splits. Moreover, there is no nonzero operator from \(G \) into any quasi-Banach space, and so the above proof shows that every extension of \(G \) by a complete, locally pseudo-convex space splits. The condition on the operators cannot be removed: indeed, \(\omega \) has “almost” \(L_0 \)-structure; if \(U \) is a neighborhood of zero, we can write \(\omega = F \oplus G \), where \(F \) is finite-dimensional and \(G \subset U \). It follows that every extension of \(\omega \) by a quasi-Banach space splits. However, it is shown in [2] (see the counterexamples on p. 166) that there exists an extension \(0 \to E \to F \to \omega \to 0 \) in which \(F \) (and so \(E \)) is a Fréchet space that does not split.

The completeness hypothesis is also necessary in the Fact. Indeed, assume \(E \) is locally pseudo-convex but not complete and let \(\hat{E} \) be its completion (clearly locally pseudo-convex). Consider the extension \(0 \to E \to \hat{E} \to \hat{E}/E \to 0 \), where the quotient space carries the trivial topology (the only open sets are the empty one and the whole space). Now, let \(T : L_0 \to \hat{E}/E \) be any nonzero linear map; this is clearly an operator that cannot be lifted to \(\hat{E} \) since \(L(L_0, \hat{E}) = 0 \). Thus, the lower extension in the pull-back diagram
(which can be defined as in the Hausdorff case and has the same properties)

\[
\begin{array}{cccccc}
0 & \longrightarrow & E & \longrightarrow & \tilde{E} & \longrightarrow & \pi \ E & \longrightarrow & 0 \\
\| & & \uparrow & & \uparrow & & \uparrow T & & \\
0 & \longrightarrow & E & \longrightarrow & \text{PB} & \longrightarrow & L_0 & \longrightarrow & 0
\end{array}
\]

does not split. This is clearly a rewording of [2, “only if” part of Proposition 4.3(c)].

We close with the following

Problem. Does every extension \(0 \rightarrow L_0 \rightarrow F \rightarrow L_0 \rightarrow 0 \) split?

Acknowledgements. I thank Jesús M. F. Castillo for explaining to me—again—how a projective limit works (and many other things), and Javier Cabello Sánchez for reading a preliminary \LaTeX{}-script of this note.

References

Félix Cabello Sánchez
Departamento de Matemáticas
Universidad de Extremadura
Avenida de Elvas
06071 Badajoz, Spain
E-mail: fcabello@unex.es
Web: http://kohmogorov.unex.es/~fcabello

Received March 15, 2006;
received in final form October 2006