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THERE IS NO STRICTLY SINGULAR CENTRALIZER ON Lp

FÉLIX CABELLO SÁNCHEZ

Abstract. We prove that if Φ is a centralizer on Lp, where 0 < p <∞, then

there is a copy of `2 inside Lp where Φ is bounded. If Φ is symmetric then it

is also bounded on a copy of `q , provided 0 < p < q < 2. This shows that for
a wide class of exact sequences 0 → Lp → Z → Lp → 0 the quotient map is

not strictly singular and generalizes a recent result of Jesús Suárez.

1. Introduction

An operator acting between Banach or quasi-Banach spaces is said to be strictly
singular if it is not an isomorphism on any infinite dimensional subspace of its
domain.

Exact sequences of Banach or quasi-Banach spaces 0 → Y → Z → X → 0 in
which the quotient map π : Z → X is strictly singular spurred a moderate interest
since the early studies on the ‘three space problem’. Let us call them ‘strictly
singular sequences’. In some sense, if one has an strictly singular sequence in which
the spaces X and Y are ‘nice’, the middle space Z must be ‘exotic’.

Amongst the most striking examples of this phenomenon one finds that for each
p ∈ (0,∞) there is a strictly singular sequence

(1) 0 −−−−→ `p −−−−→ Zp −−−−→ `p −−−−→ 0

These were constructed by Kalton and Peck in [9]; see also [3].
More often than not the construction of strictly singular sequences is achieved

by means of a quasilinear map from X to Y and this is certainly the case for
the Kalton-Peck sequences, whose associated quasilinear maps are centralizers (a
special type of quasilinear map; see Section 1.2). There is a function space analogue
of (1)

(2) 0 −−−−→ Lp −−−−→ ZFp −−−−→ Lp −−−−→ 0

whose associated quasilinear map is the ‘classical’ centralizer

Ω(f) = f log
(
|f |
‖f‖

)
.

The space ZFp was introduced in [5], although it arises quite naturally in interpo-
lation theory; see [10, Section 3D].

Very recently Jesús Suárez has proved the following remarkable results on the
behaviour of Ω on Lp:
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(a) For every 0 < p <∞, there is a copy of `2 in Lp where the restriction of Ω
is bounded.

(b) If 0 < p < q < 2, then Ω is bounded on a copy `q inside Lp.
See [12, Propositions 3.1 and 4.1]. Roughly this means that the sequence (2) is

not strictly singular because the quotient map is invertible on an isomorphic copy
of `2 (or `q) inside Lp.

The purpose of this short note is to prove that (a) holds for all centralizers
and (b) holds (at least) for symmetric centralizers. Our approach is based on a
result by Kalton that describes centralizers as differentials of interpolation scales of
Köthe function spaces from [7]. We also use results from [6] and a recent result of
the author on the behaviour of centralizers acting between two different Lebesgue
spaces [2].

1.1. Function spaces. Let L0 denote the space of all real or complex measurable
functions on the unit interval I, where we identify two functions if they agree almost
everywhere with respect to Lebesgue measure. A function space X is a linear
subspace of L0, together with a quasi-norm ‖ · ‖ having the following properties:

• The unit ball BX = {f ∈ X : ‖f‖ ≤ 1} is closed in L0 for the topology of
convergence in measure.
• If f ∈ X, g ∈ L0 and |g| ≤ |f |, then g ∈ X and ‖g‖ ≤ ‖f‖.

Important examples of function spaces are the spaces Lp for 0 < p ≤ ∞.
Given a function space X and A ⊂ I we write X(A) for the space of those

functions in X vanishing outside A.
We consider Köthe function spaces in the sense of [7]. Thus they are Banach

function spaces whose norm satisfies the inequalities ‖hx‖1 ≤ ‖x‖X ≤ ‖kx‖∞ for
some everywhere positive functions h, k and for every x ∈ X.

1.2. Centralizers and extensions. Let X and Y be function spaces. A central-
izer from X to Y is a homogeneous mapping Φ : X → L0 satisfying the following
condition: there is a constant C such that, for every a ∈ L∞ and for every f ∈ X
the difference Φ(af)− aΦ(f) belongs to Y and

‖Φ(af)− aΦ(f)‖Y ≤ C‖a‖∞‖f‖X .

When Y = X we say that Φ is a centralizer on X.
Although we will not use it, we remark that every centralizer is quasilinear, that

is, there is a constant Q such that for every f, g ∈ X the difference Φ(f+g)−Φf−Φg
falls in Y and one has ‖Φ(f + g)− Φf − Φg‖Y ≤ Q(‖f‖X + ‖g‖X).

A centralizer from X to Y gives rise to an exact sequence

0 −−−−→ Y
ı−−−−→ Y ⊕Φ X

π−−−−→ X −−−−→ 0

as follows:
• The middle space is Y ⊕Φ X = {(g, f) ∈ L0 ×X : g − Φ(f) ∈ Y } with the

quasi-norm given by ‖(g, f)‖Φ = ‖g − Φf‖Y + ‖f‖X .
• ı(g) = (g, 0) and π(g, f) = f .

Actually only quasilinearity of Φ is required here.
We say that two centralizers Φ and Ψ are equivalent, and we write Φ ≈ Ψ, if the

difference takes values in Y and is bounded in the sense that ‖Φ(f) − Ψ(f)‖Y ≤
B‖f‖X for some B and every f ∈ X.
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Let U be a subspace of X and suppose Φ is bounded on U in the sense that Φ
maps U into Y (not L0) and ‖Φ(u)‖Y ≤ B‖u‖X for some constant B and every
u ∈ U . Then the map s : U → Y ⊕ΦX defined by s(u) = (0, u) is a bounded linear
operator and π ◦ s = IU . Thus π cannot be strictly singular if Φ is bounded on
some infinite-dimensional subspace of X.

Important examples of centralizers are the following (see [6], Section 3 and spe-
cially Theorem 3.1). Let ϕ : R2 → R be a Lipschitz function. Then the map
Lp → L0 given by

f 7−→ fϕ

(
log

|f |
‖f‖p

, log
|rf |
‖f‖p

)
.

is a (real, symmetric) centralizer on Lp. Here rg is the so called rank-function of
g ∈ L0 defined by

rg(t) = λ{s ∈ R+ : |g(s)| > |g(t)| or s ≤ t and |g(s)| = |g(t)|},
which arises in real interpolation.

1.3. Real centralizers. Let X be a complex function space and let XR = <(X)
be corresponding real function space. A centralizer on X is said to be real if it
sends real functions into real functions. Clearly, every real centralizer on X induces
a centralizer on XR by restriction. On the other hand each centralizer Φ on XR

extends to a real centralizer on X by the formula ΦCf = Φ(u)+iΦ(v), where u = <f
and v = =f . These processes are each inverse of the other, up to equivalence.

Moreover, if Φ is any centralizer on X there are real centralizers Φ1 and Φ2 such
that Φ ≈ Φ1 + iΦ2; see [7, Lemma 7.1].

2. Results

Let A be a Borel subset of I. A Rademacher sequence in A is a sequence (rn) in
L0(A) such that λ({t ∈ A : rn(t) = 1}) = λ({t ∈ A : rn(t) = −1}) = 1

2λ(A) for all
n and E[rnrm|A] = 0 for n 6= m.

Khintchine’s inequality states that if (rn) is a Rademacher sequence and (tn) is
in `2, then f =

∑
n tnrn belongs to Ls for every s ∈ (0,∞) and, moreover, there is

a constant M , depending only on s and λ(A) such that

M−1‖(tn)‖`2 ≤ ‖f‖s ≤M‖(tn)‖`2 .
Thus a Rademacher sequence spans a subspace isomorphic to `2 in Ls for any
s ∈ (0,∞).

Our first result is based on certain ideas from complex interpolation. Let us
indicate the minimal background one needs to understand the proof.

LetX0 andX1 be (complex) Köthe function spaces on the unit interval. Consider
the closed strip S = {z ∈ C : 0 ≤ <(z) ≤ 1} and let F(X0, X1) denote the space of
bounded, continuous functions F : S→ X0 +X1 having the following properties:

• F is analytic on the interior of S;
• F (k + it) ∈ Xk for each k = 0, 1 and all t ∈ R.
• For k = 0, 1, the map t ∈ R 7→ F (k + it) ∈ Xk is bounded and continuous.

Then F = F(X0, X1) is a Banach space under the norm

‖F‖F = sup{‖F (k + it)‖Xk : t ∈ R, k = 0, 1}.
For θ ∈ [0, 1] we define the interpolation space

Xθ = [X0, X1]θ = {f ∈ L0 : f = F (θ) for some F ∈ F}
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with the (quotient) norm ‖f‖Xθ = inf{‖F‖F : f = F (θ)}.
The equation [X0, X1]θ = X induces a ‘derivation’ on X as follows. We fix a

small ε > 0 and for each f ∈ X we choose F ∈ F(X0, X1) such that F (θ) = f ,
with ‖F‖F ≤ (1 + ε)‖f‖X . Then we put Ω(f) = F ′(θ). The map Ω : X → L0

is a centralizer on X and two centralizers obtained with different choices of F are
equivalent.

An important result by Kalton [7, Theorem 7.6] states that if Φ is a real cen-
tralizer on Lp, with p > 1, then there is a constant c > 0 and a couple of Köthe
functions spaces such that Lp = [X0, X1]θ=1/2 with equivalent norms, in the sense
that both spaces contain the same functions and there is M such that

M−1‖f‖p ≤ inf
f=F ( 1

2 )
‖F‖F ≤M‖f‖p

for all f ∈ Lp, and Φ ≈ cΩ, where Ω is the corresponding derivation on X1/2 = Lp.

Proposition 1. Let Φ be a centralizer on Lp, where 0 < p < ∞. Then for each
δ > 0 there is a set B ⊂ I with λ(B) ≥ 1− δ such that, for each A ⊂ B of positive
measure, Φ is bounded on the closed subspace spanned by any Rademacher sequence
in A. In particular, the sequence 0 → Lp → Lp ⊕Φ Lp → Lp → 0 is not strictly
singular.

Proof. It should be clear from the remarks in Section 1.3 that it suffices to prove
the Proposition assuming that Φ is a real centralizer on the complex Lp.

First suppose p > 1. Then, by the result of Kalton quoted above, we know that
there is a couple of Köthe spaces (X0, X1) and c > 0 such that Lp = [X0, X1]1/2
and Φ ≈ cΩ.

Let us take a look at Ω. First, by iteration, we have Lp = [X1/4, X3/4]1/2 where
Xk/4 = [X0, X1]k/4 for k = 1, 3 and both X1/4 and X3/4 are super-reflexive by [8,
Theorem 5.8]. On the other hand, if F ∈ F(X0, X1), then the function G defined by
G(z) = F ( 1

2 (z + 1
2 )) belongs to F(X1/4, X3/4) and one has ‖G‖F ≤ ‖F‖F, G( 1

2 ) =
F ( 1

2 ) and G′( 1
2 ) = 1

2F ( 1
2 ).

Thus replacing the couple (X0, X1) by (X1/4, X3/4) preserves the induced cen-
tralizer, up to a constant factor, and so we may assume X0 and X1 are super-
reflexive Köthe spaces.

Now, for i = 0, 1, take everywhere positive functions hi and ki so that ‖hif‖1 ≤
‖f‖Xi ≤ ‖kif‖∞ for all f ∈ Xi and observe that for fixed δ > 0 there is M large
enough and a subset B ⊂ I with λ(B) > 1 − δ where ki ≤ M and hi ≥ 1/M for
i = 0, 1.

It follows that L∞(B) ⊂ Xi(B) ⊂ L1(B), with continuous inclusions and since
Xi is super-reflexive it is also si-concave for some finite si and so we have a continu-
ous inclusion Lsi(B) ⊂ Xi(B) (see [4, p. 14]). Taking now s = max si we conclude
that Ls(B) embeds continuously into Xi and so there is a constant M such that
‖f‖Xi ≤M‖f‖s for every f ∈ Ls(B) and i = 0, 1.

Now, let (rn) be a Rademacher sequence in Ls(A), where A ⊂ B and let R the
closed linear span of (rn) in Ls(A). Then, for (λn) ∈ `2 the sum

∑
n λnrn is in

Ls(A) hence in X0(A) ∩ X1(A) and ‖f‖Xi ≤ M‖f‖s ≤ M ′‖f‖p, by Khintchine’s
inequality. Actually the restriction of the norm of the spaces X0, X1, Lp and Ls to
R is equivalent to the norm of (λn) in `2.

Hence for f ∈ R we may take F (z) = f for all z ∈ S since ‖F‖F ≤M ′‖f‖p and
so Ω(f) = F ′( 1

2 ) = 0. As Φ ≈ cΩ we see that Φ is bounded on R.
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Suppose now p ≤ 1 and let Φ be a centralizer on Lp. We define r by the identity
p−1 = r−1 + 2−1. Then there is a centralizer Ψ on L2 and a constant M such that

‖Φ(gf)− gΨ(f)‖p ≤M‖g‖r‖f‖2 (g ∈ Lr, f ∈ L2),

(see [6, Theorem 8.1] for the case p = 1 and [2, Corollary 3] for p < 1). We know
from the first part of the proof that there is a set B with measure arbitrarily close
to 1 such that if A ⊂ B and R is a subspace of L2(A) spanned by a Rademacher
sequence in A, then Ψ is bounded on R: ‖Ψ(f)‖2 ≤ M ′‖f‖2 for f ∈ R. Taking
now g = 1 and f ∈ R we have

‖Φ(f)−Ψ(f)‖p ≤M‖1‖r‖f‖2 ≤M ′′‖f‖p
and so Φ is also bounded on R. �

A centralizer Φ on Lp is said to be symmetric if there is a constant S such that

‖Φ(f ◦ σ)− Φ(f) ◦ σ‖p ≤ S‖f‖p
for every f ∈ Lp and every measure preserving Borel automorphism σ of I.

The decreasing rearrangement of a real-valued f ∈ L0 is defined by the formula

f∗(t) = inf
λ(B)=t

sup
s∈A\B

f(s) (0 ≤ t ≤ 1)

where B runs over the Borel subsets of I. That is, f∗ is the only decreasing,
right-continuous function having the same distribution as f . It is a basic fact
from measure theory that for each f ∈ L0, there is an measure preserving Borel
automorphism σ of I (depending on f) such that f∗ = f ◦ σ (almost everywhere)
and so f∗ is true rearrangement of f ; see [11, Lemma 2].

Note that if Φ is a symmetric centralizer on Lp and f∗ = f ◦ σ, then ‖Φ(f) −
(Φ(f∗)) ◦ σ−1‖p ≤ S‖f‖p and so the map Φs(f) = (Φ(f∗)) ◦ σ−1 is a symmetric
centralizer equivalent to Φ with the additional property that the distribution of
Φs(f) depends only on the distribution of f .

We emphasize that, in general, centralizers take values in L0. For symmetric
centralizers we have, however, the following.

Lemma 1. Suppose 0 < p < r < ∞ and let Φ be a symmetric centralizer on Lp.
If f ∈ Lr, then Φf ∈ Lp.

Proof. It suffices to prove the Lemma for real spaces. Let Φr : Lr → L0 be the
restriction of Φ to Lr. This is a centralizer from Lr to Lp so by the main result in
[2] Φr must be trivial and there is φ ∈ L0 and a constant M such that

‖Φr(f)− φf‖p ≤M‖f‖r (f ∈ Lr).

We claim that φ ∈ Ls, where s−1 + r−1 = p−1. By the Hölder inequality this
implies that φf ∈ Lp and the same occurs to Φ(f) = Φr(f). To see this, observe
that since f 7→ φf is equivalent to Φr it is a symmetric centralizer from Lr to Lp
and so there is a constant S such that

‖(φ ◦ σ)(f ◦ σ)− φ(f ◦ σ)‖p ≤ S‖f‖r (f ∈ Lr)

whenever σ is a measure preserving automorphism of the unit interval. Now, since
for every g ∈ Ls one has ‖g‖s = sup‖f‖r≤1 ‖gf‖p, we see that ‖φ◦σ−φ‖s ≤M ′ for
some M ′ independent on σ. By symmetry one also has ‖φ∗ ◦σ−φ∗‖s ≤M ′, where
φ∗ is the decreasing arrangement of φ and σ is as before. In particular ‖φ∗◦σ−φ∗‖s
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is finite when σ(t) = 1 − t. Let m = φ∗( 1
2 ) be the median of φ. Now, since φ∗ is

decreasing, φ∗ ◦ σ is increasing and both agree with m at t = 1
2 we see that

‖φ−m1‖s = ‖φ∗ −m1‖s ≤ ‖φ∗ ◦ σ − φ∗‖s
is finite and φ ∈ Ls. �

We are now ready to prove the following.

Proposition 2. Let 0 < p < q < 2. There is a subspace U of Lp isomorphic to `q
where the restriction of any symmetric centralizer is bounded.

Proof. It suffices to prove the result for real spaces. Moreover, we may and do
assume that the distribution of Φ(f) depends only on that of f .

We proceed as in [12, Proof of Proposition 4.1]. For fixed q ∈ (p, 2) we consider
a q-stable random variable ϑ ∈ Lp and a sequence of independent copies (ϑn). We
recall that a random variable is said to be q-stable if its characteristic function (=
Fourier transform) is e−|t|

q/q. We refer the reader to [1, Chapter 6, Section 4] for
basic information on stable variables. Here we use the following facts:

• If ϑ is q-stable, then E[|ϑ|r] <∞ for p < r < q.
• If (ϑn) is a sequence on independent copies of a q-stable random variable
ϑ, and (λn) is a sequence normalized in `q, then

∑
n λnϑn has the same

distribution as ϑ.
Therefore the map (λn) ∈ `q 7→

∑
n λnϑn ∈ Lp is well defined and it is an isometric

embedding whose image we denote by U . Moreover, by the Lemma, Φ(ϑ) belongs
to Lp, and then for (λn) normalized `q we have ‖Φ(

∑
λnϑn)‖p = ‖Φ(ϑ)‖p and so

Φ is bounded on U . �

Problem. Is there a strictly singular sequence 0 → Lp → Z → Lp → 0 for
0 < p < 2? (See [3, Theorem 2(c)] for the case 2 ≤ p <∞.)
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