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Nonlinear centralizers in homology

Félix Cabello Sánchez

Abstract. It is shown that every nonlinear centralizer from Lp to Lq is trivial unless
q = p. This means that if q 6= p, the only exact sequence of quasi-Banach L∞-modules and
homomorphisms 0→ Lq → Z → Lp → 0 is the trivial one where Z = Lq⊕Lp. From this it
follows that the space of centralizers on Lp is essentially independent on p ∈ (0,∞), which
confirms a conjecture by Kalton.

1. Introduction

1.1. Background. Quasilinear maps burst onto Banach space theory in [4], where
Enflo, Lindenstrauss and Pisier based their solution to the “three-space” problem for Hilbert
spaces on the construction of a quasilinear map on `2.

Then Kalton [7] and Ribe [16] developed a rather satisfactory theory showing that
extensions of quasi-Banach spaces 0 → Y → Z → X → 0 are in correspondence with
quasilinear maps Φ : X → Y . Both Kalton and Ribe gave examples of non-trivial quasilinear
maps Φ : `1 → R thus producing nontrivial extensions 0 → R → Z → `1 → 0 and solving
the “three-space” problem for local convexity.

Another counterexample was obtained independently and more or less simultaneously
by Roberts in [17].

Soon afterwards the admirable [14] appeared. In it, Kalton and Peck use a kind of
vector-valued version of Ribe’s map to construct quasilinear maps on any quasi-Banach
space with unconditional basis. Let us consider this point in more detail as it is one of
the main motivations of the present paper. What was proved in [14] is that given any
Lipschitz function θ : R+ → R, with θ(0) = 0, the mapping Ωθ defined by Ωθ(f) =
fθ(− log(|f |/‖f‖X)) is quasilinear on every quasi-Banach space with unconditional basis X
—we invariably regard the elements of such an X as functions f : N→ K— and non-trivial
as long as the basis of X contains no subsequence equivalent to the usual basis of c0 and
θ is unbounded on R+. Taking X = `2, and θ as the identity on R+ one obtains another
solution to the three space problem —nowadays called the Kalton-Peck space Z2. All this
can be seen in [3, Chapter 1] or [1, Chapter 16].

The crucial observation here is that the maps appearing in [14] are more than quasi-
linear: they also are `∞-centralizers, that is, they satisfy an estimate of the form

‖Ω(af)− aΩ(f)‖ ≤ C‖a‖∞‖f‖ (a ∈ `∞, f ∈ X).

Equivalently, the induced extension 0 → Y → Z → X → 0 lives in the category of `∞-
modules.
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These examples suggested a correspondence between centralizers defined on different
(sequence) spaces.

This issue was pursued by Kalton himself in the more general setting of function spaces
in [10]. Fix a measure µ and consider the corresponding Lp spaces for 0 < p < ∞. It is
proved in [10, Theorem 5.1] that, when p > 1, every L∞-centralizer Φ on Lp can be pushed
to a centralizer Ψ on L1 defined by

Ψ(f) = u|f |1/qΦ(|f |1/p),
where u|f | is the polar decomposition of f and 1 = p−1 + q−1. Moreover, all centralizers on
L1 arise in this form [10, Theorem 8.1]. As self extensions of Lp spaces in the category of
quasi-Banach L∞-modules are all induced by centralizers we have

Ext(Lp) = Ext(L1) (1 < p <∞).

Actually [10] contains much more general results for Banach function spaces, but in this
paper we will focus on the Lebesgue spaces Lp.

The basic problem left open in [10, p. 83] was to determine whether this correspondence
extends to 0 < p < 1 or not.

This paper solves this problem in the affirmative.
We approach the problem by studying first centralizers acting between two different

Lebesgue spaces, say Lp and Lq with p, q ∈ (0,∞) and we prove that they are all trivial unless
q = p. This means that Ext(Lp, Lq) = 0 for q 6= p, that is, the only exact sequence of quasi-
Banach L∞-modules 0→ Lq → Z → Lp → 0 is the trivial one where Z = Lq⊕Lp. This is the
main result of the paper, and its proof occupies the entire Section 2. Sections 3 and 4 contain
a number of applications including the proof of Kalton’s conjecture. Section 1 contains,
apart from this general introduction, some preliminaries on extensions and centralizers.

Some parts of this paper were written by Nigel Kalton, namely Theorem 2, Lemma 3,
and the proof for Step 2. Nigel sent this material to me to improve an earlier version of
the paper. I never suggested to him to compose a joint paper and so I have to present the
paper authored by me only.

1.2. Quasi-Banach modules. Let A be a (real or complex) Banach algebra that for
all purposes in this paper will be L∞. A quasi-normed module over A is a quasi-normed
space X together with a jointly continuous outer multiplication A × X → X satisfying
the traditional algebraic requirements. If the underlying space is complete (that is, a quasi-
Banach space) we speak of a quasi-Banach module. Given quasi-normed modulesX and Y , a
homomorphism T : X → Y is an operator such that T (ax) = aT (x) for all a ∈ A and x ∈ X.
Operators and homomorphisms are assumed to be continuous unless otherwise stated. If
no continuity is assumed, we speak of linear maps and morphisms. We use HomA(X, Y )
for the space of homomorphisms from X to Y . If there is no possible confusion about the
underlying algebra A, we omit the subscript.

1.3. Extensions. An extension of X by Y is a short exact sequence of quasi-Banach
modules and homomorphisms

(1) 0 −→ Y
ı−→ Z

π−→ X −→ 0

The open mapping theorem guarantees that ı embeds Y as a closed submodule of Z in
such a way that the corresponding quotient Z/ı(Y ) is isomorphic to X. Two extensions
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0→ Y → Zi → X → 0 (i = 1, 2) are said to be equivalent if there exists a homomorphism
u making commutative the diagram

0 −−−→ Y −−−→ Z1 −−−→ X −−−→ 0∥∥∥ yu ∥∥∥
0 −−−→ Y −−−→ Z2 −−−→ X −−−→ 0

By the five-lemma [6, Lemma 1.1], and the open mapping theorem, u must be an isomor-
phism. We say that (1) splits if it is equivalent to the trivial sequence 0→ Y → Y ⊕X →
X → 0. This just means that Y is a complemented submodule of Z (that is, there is a
homomorphism $ : Z → Y such that $ ◦ ı = IY ; equivalently, there is a homomorphism
 : X → Z such that π ◦  = IX) and implies that Z is isomorphic to the direct sum Y ⊕X
(the converse is not true in general). Given quasi-Banach modules X and Y , we denote
by ExtA(X, Y ) (or just ExtA(X) when Y = X) the set of all possible A-module extensions
(1) modulo equivalence. By using pull-back and push-out constructions, it can be proved
(see [2] for the details in the F -space setting) that ExtA(X, Y ) carries a “natural” structure
of A-bimodule (without topology) in such a way that trivial extensions correspond to 0.
(The usual approach using injective or projective representations completely fails dealing
with quasi-Banach modules since there are neither injective nor projective objects.) Thus,
ExtA(X, Y ) = 0 means “every extension of X by Y is trivial”.

Taking A as the underlying field K, one recovers extensions in the quasi-Banach space
setting.

1.4. Function spaces. From now on, µ will denote a fixed countably additive measure
on S. We will assume µ sigma-finite or, at least, decomposable. Our ambient space will be
L0, the space of all measurable functions on S with the topology of convergence in measure
on sets of finite measure and we apply the usual convention about identifying functions equal
almost everywhere. L∞ denotes the Banach algebra of all essentially bounded measurable
functions on S equipped with the essential supremum norm and “pointwise” operations.

A function space is a linear subspace X of L0 containing the simple integrable functions
and equipped with a quasi-norm ‖ · ‖X such that if f ∈ L0, g ∈ X and |f | ≤ |g|, then f ∈ X
and ‖f‖X ≤ ‖g‖X . A function space X is said to be:

• Minimal if simple integrable functions are dense.
• Maximal if whenever (fn) is an increasing sequence of non-negative functions in
X converging almost everywhere to f and supn ‖fn‖X < ∞, then f ∈ X and
‖f‖X = supn ‖fn‖X .

The only function spaces we shall deal with in this paper are the popular Lp spaces for
p ∈ (0,∞). They are both minimal and maximal.

Every function space is a (quasi-normed) L∞-module under pointwise multiplication.
Our “default” category will be that of quasi-Banach modules over L∞. Accordingly, we
use minimal notation in this setting and so Hom(X, Y ) and Ext(X, Y ) always refer to the
algebra L∞ for a measure that should be clear for the context —and will never be the ground
field K.

1.5. Centralizers and the extensions they induce. We now define our main object
of study (Cf. [10, Chapter 3], [11, p. 480], [13, p. 1165]).
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Definition 1. Let X and Y be quasi-normed function spaces and Φ : X → L0 a
homogeneous mapping. (Homogeneous means that Φ(λf) = λΦf for every λ ∈ K and
f ∈ X.)

(a) We say that Φ is a centralizer from X to Y if there is a constant C such that for
every a ∈ L∞, f ∈ X the difference Φ(af)− aΦ(f) belongs to Y and

‖Φ(af)− aΦ(f)‖Y ≤ C‖a‖∞‖f‖X .
We write C(X, Y ) (or just C(X) if Y = X) for the set of all centralizers from X
to Y and we denote by C[Φ] the least constant for which the preceding inequality
holds.

(b) We say that Φ is quasilinear from X to Y if there is a constant Q such that for
every f, g ∈ X the difference Φ(f + g)− Φf − Φg belongs to Y and

‖Φ(f + g)− Φ(f)− Φ(g)‖Y ≤ Q(‖f‖X + ‖g‖X)

The least constant for which the preceding inequality holds is denoted Q[Φ].

Before going further let us state the following simple remark. The proof is the same as
[10, Lemma 4.2].

Lemma 1. Every centralizer is quasilinear. More precisely, if Φ : X → L0 is a centralizer
from X to Y , then Φ is quasilinear and one has Q[Φ] ≤ 3∆2

YC[Φ], where ∆Y is the modulus
of concavity of Y . �

(The modulus of concavity of a quasi-normed space X is the smallest positive constant
∆ such that ‖x + y‖ ≤ ∆(‖x‖ + ‖y‖) for all x, y ∈ X. When X = Lp we just write ∆p.
Clearly, ∆p = 21/p−1 for p ∈ (0, 1) and ∆p = 1 for p ≥ 1.)

We now indicate the connection between centralizers and extensions. Suppose Φ is a
centralizer from X to Y . Define Y ⊕Φ X = {(g, f) ∈ L0 ×X : g − Φf ∈ Y } quasi-normed
by ‖(g, f)‖Φ = ‖g − Φf‖Y + ‖f‖X . Clearly, the map ı : Y → Y ⊕Φ X sending g to (g, 0)
preserves the quasi-norm, while the map π : Y ⊕Φ X → X given as π(g, f) = f is open, so
that we have an extension of quasi-Banach spaces

(2) 0 −→ Y
ı−→ Y ⊕Φ X

π−→ X −→ 0

Actually only the quasi-linearity of Φ is necessary here. The condition that Φ is a centralizer
implies that the multiplication a(g, f) = (ag, af) makes Y ⊕ΦX into an L∞-module in such
a way that (2) becomes an extension of modules.

It is proved in [10, Theorem 4.5] that if X is minimal and Y maximal, then every
extension of modules (1) comes from a centralizer, up to equivalence. This applies, in
particular, when X = Lp and Y = Lq for 0 < p, q < ∞. It is easily seen that two
centralizers Ψ and Φ (from X to Y ) induce equivalent extensions if and only if there is an
L∞-morphism h : X → L0 such that ‖Ψ(f)−Φ(f)−h(f)‖Y ≤ K‖f‖X for some constant K
and all f ∈ X. We write Ψ ∼ Φ in this case and Ψ ≈ Φ if the preceding inequality holds for
h = 0. In particular Φ induces a trivial extension if and only if ‖Φ(f)− h(f)‖Y ≤ K‖f‖X
for some morphism h : X → L0. We then say that Φ is a trivial centralizer and we write
dist(Φ, h) for the least possible constant K in the preceding inequality.

We shall write C∼(X, Y ) and C≈(X, Y ) to denote the set C(X, Y ) factored by ∼ and
≈, respectively. Note that, while C(X, Y ) has two natural outer multiplications, namely
(aΦ)f = aΦf and (Φa)f = Φ(af), these agree on the quotient C≈(X, Y ) and so on C∼(X, Y ).
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1.6. Morphisms, homomorphisms and multiplication operators. Next we iden-
tify the morphisms between function spaces and some spaces of homomorphisms.

Lemma 2. Let X be a function space on a localizable measure µ.

(a) If h : X → L0 is any mapping satisfying h(af) = ah(f) for every a ∈ L∞ and
f ∈ X, then there is φ ∈ L0 such that h(f) = φf for all f ∈ X.

(b) If 0 < q < p < ∞, then Hom(Lp, Lq) = Lr, where r−1 + p−1 = q−1. That is,
if φ ∈ Lr, then the map f ∈ Lp 7−→ φf ∈ Lq is a homomorphism and every
homomorphism arises in this way. Moreover, ‖φ‖r = ‖φ : Lp → Lq‖.

Proof. (a) First we prove the Lemma assuming finite the underlying measure, so that
X contains L∞. Set φ = h(1). We want to see that h(f) = φf for every f ∈ X. Pick f ∈ X
and put g = 1 + |f |. Then 1 = (1/g)g and since 1/g ∈ L∞ we have φ = (1/g)h(g) and so
h(g) = gφ. But f = (f/g)g, with f/g ∈ L∞. Hence

h(f) = h ((f/g)g) = (f/g)h(g) = (f/g)φg = φf,

as required.
Finally, assuming µ decomposable we fix a decomposition S = ⊕iSi into sets of finite

measure and we set φ =
∑

i h(1Si
), where the sum is performed in the pointwise sense. As

1Si
h(f) = h(1Si

f) we have h(f) =
∑

i 1Si
h(f) =

∑
i h(1Si

f) =
∑

i h(1Si
)f = φf .

Part (b) obviously follows from (a) and Hölder inequality. �

2. The main result

In this Section we prove that Ext(Lp, Lq) = 0 whenever q 6= p. We already know that
every extension of Lp by Lq arises from a centralizer and, as the reader can imagine, what
we shall prove is that every centralizer from Lp to Lq is trivial, that is, at finite distance to
a morphism. We have the following slightly stronger statement, which is the main result of
the paper.

Theorem 1. Let µ be a σ-finite measure on S. Suppose p and q are different numbers
in (0,∞). Then there is a constant M = M(p, q) so that for each Φ ∈ C(Lp, Lq) there is
φ ∈ L0 such that ‖Φ(f)− φf‖q ≤MC[Φ]‖f‖p for every f ∈ Lp.

We will assume that the ground field is R. The complex case then follows quickly by
using real centralizers and [11, Lemma 7.1].

We break the proof up into several steps. The first one, based on old results by Kalton,
is rather easy.

Step 1. Theorem 1 holds for bounded centralizers and q = 1.

Proof. In this case p 6= 1 and Lp is a K-space. This means that there is a constant
K such that for each quasilinear functional ϕ : Lp → R there is a true linear function
` : Lp → R such that |ϕ(f) − `(f)| ≤ KQ[ϕ]‖f‖p. (See [7, Theorem 4.3]. An obvious
amalgamation argument shows that K depends only on p.)

Let Φ ∈ C(Lp, L1) be bounded, so that ‖Φ(f)‖1 ≤ B‖f‖p for some B (depending on Φ)
and all f ∈ Lp. Consider the (bounded) functional ϕ : Lp → R given by ϕ(f) =

∫
S

Φ(f)dµ.
By Lemma 1, ϕ is quasi-linear, with Q[ϕ] ≤ Q[Φ] ≤ 3C[Φ] and so there is a (bounded)
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linear functional ` on Lp such that |ϕ(f) − `(f)| ≤ KQ[Φ]‖f‖p for all f ∈ Lp. By Riesz
representation Theorem one has `(f) =

∫
S
φfdµ for some φ ∈ L0 and, therefore,∣∣∣∣∫

S

Φ(f)dµ−
∫

S

φfdµ

∣∣∣∣ ≤ KQ[Φ]‖f‖p (f ∈ Lp).

Let us estimate ‖Φ(f)− φf‖1. One has

‖Φ(f)− φf‖1 = sup
‖a‖∞≤1

∣∣∣∣∫
S

a(Φ(f)− φf)dµ

∣∣∣∣
≤ sup
‖a‖∞≤1

∣∣∣∣∫
S

(aΦ(f)− Φ(af))dµ

∣∣∣∣+ sup
‖a‖∞≤1

∣∣∣∣∫
S

(Φ(af)− φ · af)dµ

∣∣∣∣
≤ C[Φ]‖f‖p +KQ[Φ]‖f‖p
≤M0C[Φ]‖f‖p,

where M0 = M0(p, 1) = 1 + 3K(p). �

Every measurable function f can be written as f = u|f |, where u has the same support
as f . This is often called the polar decomposition of f . Given r ∈ (0,∞) we define the
Mazur map on L0 by Sr(f) = u|f |r, where u|f | is the polar decomposition of f .

Lemma 3. If Φ ∈ C(Lp, Lq) and r ∈ (0, 1], then the composition Φ(r) = Sr ◦ Φ ◦ S1/r is

a centralizer from Lp/r to Lq/r, with C[Φ(r)] ≤ 21/rC[Φ]r.

Proof. The key point is that, when r ∈ (0, 1], one has the pointwise estimate |Sr(f)−
Sr(g)| ≤ 21/rSr(|f − g|) for f, g ∈ L0. Let Φ be in C(Lp, Lq) and take a ∈ L∞ and f ∈ Lp/r
with polar decompositions a = v|a| and f = u|f |, respectively. Then

‖Φ(r)(af)− aΦ(r)(f)‖q/r = ‖Sr(Φ(uv|a|1/r|f |1/r))− aSr(Φ(u|f |1/r)‖q/r
= ‖Sr(Φ(uv|a|1/r|f |1/r))− Sr(v|a|1/rΦ(u|f |1/r)‖q/r
≤ 21/r‖Sr(|Φ(uv|a|1/r|f |1/r))− v|a|1/rΦ(u|f |1/r|)‖q/r
= 21/r‖Φ(uv|a|1/r|f |1/r))− v|a|1/rΦ(u|f |1/r)‖rq
≤ 21/rC[Φ]r‖|a|1/r‖r∞‖|f |1/r‖rp
= 21/rC[Φ]r‖a‖∞‖f‖p/r,

as required. �

Step 2. Theorem 1 holds for bounded centralizers and q < 1.

Proof. Let Φ : Lp → Lq be a bounded homogeneous map with centralizer constant 1.
We start by picking φ ∈ L0 so that f 7→ Φ(f)− φf has a bound M which is nearly optimal
in the sense that for any v ∈ L0 one has

sup
‖f‖p≤1

‖Φ(f)− vf‖q ≥
M

2
.
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Without loss of generality we can assume φ = 0. Applying Lemma 3 to Φ with r = q
we see that the map Φ(q) = Sq ◦ Φ ◦ S1/q is a (bounded) centralizer from Lp/q to L1, with

C[Φ(q)] ≤ 21/q and so there is v ∈ L0 such that

‖Ω(q)(f)− vf‖1 ≤ N‖f‖p/q (f ∈ Lp/q),
where N = 1 + 3K(p/q) denotes the constant we got in Step 1. If f ∈ Lp, then

‖Φf − (S1/qv)f‖q = ‖S1/q(Φ
(q)(Sqf))− S1/q(v(Sqf))‖q.

Applying the Mean Value Theorem to the function t ∈ R 7→ |t|1/q ∈ R,

|S1/q(Φ
(q)(Sqf))− S1/q(v(Sqf))| ≤ max{|Φ(q)(Sqf)|, |v(Sqf)|}

1
q
−1

q
· |Φ(q)(Sqf)− v(Sqf)|.

Now, applying Hölder inequality with exponents (1/q − 1)−1 and 1, we get

‖S−1
q (Φ(q)(Sqf))−S−1

q (v(Sqf))‖q ≤
1

q

∥∥∥∥(|Φ(q)(Sqf)|
∨
|v(Sqf)|

) 1
q
−1
∥∥∥∥

q
1−q

‖Φ(q)(Sqf)−v(Sqf)‖1

that is,

‖S−1
q (Φ(q)Sqf))− S−1

q (v(Sqf))‖qq ≤
∥∥(|Φ(q)(Sqf)|

∨
|v(Sqf)|

)∥∥1−q
1

qq
· ‖Φ(q)(Sqf)− v(Sqf)‖q1.

Now since
‖Φ(q)(Sqf)− v(Sqf)‖1 ≤ N‖Sqf‖p/q = N‖f‖qp

and
‖Φ(q)(Sqf)‖1 = ‖Sq(Φf)‖1 ≤ ‖Φf‖qq ≤M q‖f‖qp

we have
‖v(Sqf)‖1 ≤ C‖Sqf‖p/q +M q‖f‖qp ≤ (N +M q)‖f‖qp.

Combining,

‖Φ(f)− (S1/qv)f‖q ≤
N(N + 2M q)1/q−1

q
‖f‖q.

Thus we must have

M ≤ 2N(N + 2M q)1/q−1

q

and this leads to a bound on M which depends only on p (through N) and q. �

There are two simplifications concerning centralizers that are important for us. First if
Φ is any centralizer, then the map defined by Ψ(f) = uΦ(|f |) is a centralizer which does not
increase supports, in the sense that supp Ψf ⊂ supp f for each f , and one has C[Ψ] ≤ C[Φ],
and ‖Ψf − Φf‖ ≤ C[Φ]‖f‖ for every f .

Also, if ν is a measure equivalent to µ, in the sense that they have the same null sets,

then L∞(µ) equals L∞(ν) and for each p ∈ (0,∞) the map f 7→ (dν/dµ)1/p f is an isometry
from Lp(ν) onto Lp(µ) which preserves the L∞-module structures. This allows us to replace
any σ-finite measure by a probability and vice versa.

The following trick allows us to approximate a given centralizer by a sequence of bounded
centralizers, when q ≤ p and µ is a probability. In all what follows, for each fixed k > 0, we
denote by τk the truncation function defined by τk(t) = k

∧
(t
∨
−k) for t ∈ R.
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Lemma 4. Let µ be a probability and let Φ ∈ C(Lp, Lq) a centralizer that does not increase
supports, with 0 < q ≤ p. Given a positive constant k, the map

Φkf = fτk

(
Φf

f

)
is a centralizer with C[Φk] ≤ C[Φ], moreover, one has ‖Φkf‖q ≤ k‖f‖p for every f ∈ Lp.

Proof. For the first part just observe that |Φk(af) − aΦk(f)| ≤ |Φ(af) − aΦ(f)| for
every a ∈ L∞ and f ∈ Lp. The second part follows from the inequality ‖ · ‖q ≤ ‖ · ‖p. �

Theorem 2. Let µ be a probability on S and let (vn) be a sequence in L0. Then there
exists a measurable function v with the property that if f, g ∈ L0 and (gn) is a sequence in
L0 converging to g almost everywhere, then for 0 < p <∞,∫

S

|g − vf |pdµ ≤ 2 lim sup
n→∞

∫
S

|gn − vnf |pdµ.

Proof. We can consider the case when S is a Stonean space and µ is a normal measure
on S, that is, µ(E) = 0 for every nowhere dense set E. In this case every function in
L0 can be replaced by a function in the same equivalence class which is continuous into
R = [−∞,∞], the two-point compactification of R. See [18, Example 11.13(f)] for details.

We proceed by considering the measure νn defined on S× R by the formula∫
S×R

F (s, t)dνn =

∫
S

F (s, vn(s))dµ (F ∈ C(S× R)).

Quite clearly, each νn is a probability. Let U be a free ultrafilter on N and set ν = limU νn,
where the limit is taken with respect to the weak* topology in M(S × R) regarded as the
dual of C(S× R). Note that if f ∈ C(S), then∫

S×R
f(s)dν(s, t) =

∫
S

f(s)dµ(s).

Given f ∈ L∞(S× R, ν), we denote by Ef the function in L∞(µ) such that∫
S

g(s)Ef(s)dµ(s) =

∫
S×R

g(s)f(s, t)dν(s, t) (g ∈ L1(S, µ)).

(Basically E is the conditional expectation operator.)
Let F denote the set of continuous functions h : S→ R such that E(1A(h)) ≤ 1

2
in L∞(µ),

where A(h) = {(s, t) ∈ S×R : t < h(s)}. It is easy to show that there is a maximal function
u with this property and that then

E(1A),E(1B) ≤ 1

2
(in L∞(µ)),

where A = {(s, t) ∈ S× R : t < u(s)} and B = {(s, t) ∈ S× R : t > u(s)}.
We let

v(s) =

{
u(s) if u(s) is finite

0 otherwise.
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Now suppose f, g and (gn) are as in the statement. We may assume that they are continuous
into R and assume the values ±∞ on sets of measure zero. We also may assume the existence
of a similar function G with G ≥ |gn| everywhere. Suppose

lim
U

∫
S

|gn − vnf |p <∞.

First, let

L1 = lim
U

∫
|f |>0

|gn − vnf |p and L2 = lim
U

∫
|f |=0

|gn − vnf |p = lim
U

∫
|f |=0

|gn|pdµ.

Consider a clopen set E ⊂ S such that, for some M ∈ R, we have 1/M ≤ |f | ≤M and G ≤
M on E. For each positive k ∈ R, let τk : R→ R be as before, that is, τk(t) = k

∧
(t
∨
−k)

for t ∈ R. Then, for k > M2, the function (s, t) 7→ (g(s)− τk(t)f(s))1E(s) is continuous on
S× R and so∫

E×R
|g(s)− τk(t)f(s)|pdν(s, t) = lim

U

∫
E×R
|g(s)− τk(t)f(s)|pdνn(s, t)

= lim
U

∫
E

|g(s)− τk(vn(s))f(s)|pdµ(s) ≤ lim
U

∫
E

|g(s)− vn(s)f(s)|pdµ(s) = L1.

Since this is true for all k > M2 we conclude that ν(E × {±∞}) = 0. In particular u is
finite almost everywhere on E and so v = u almost everywhere on E. Moreover,∫

E×R
|g(s)− tf(s)|pdν(s, t) ≤ L1.

Now let E+ = {s ∈ E : g(s) > v(s)f(s)}. Then if B̃ is the complement of B in S × R one
has E(1B̃) ≥ 1/2 and so∫

E+

|g − vf |pdµ ≤ 2

∫
E+

|g − vf |pE(1B̃)dµ = 2

∫
B̃∩(E+×R)

|g(s)− v(s)f(s)|pdν(s, t)

≤ 2

∫
B̃∩(E+×R)

|g(s)− tf(s)|pdν(s, t) ≤ 2

∫
E+×R

|g(s)− tf(s)|pdν(s, t).

Arguing similarly with E− = {s ∈ E : g(s) ≤ v(s)f(s)} we have∫
E

|g − vf |pdµ ≤ 2

∫
E×R
|g(s)− tf(s)|pdν(s, t) ≤ 2L1.

We conclude that
∫
|f |>0
|g−vf |pdµ ≤ 2L1. On the other hand,

∫
f=0
|g−vf |pdµ =

∫
f=0
|g|p ≤

L2. The proof is complete. �

Step 3. Theorem 1 holds if q < p and q ≤ 1. �

The next Step is also easy. We remark that this time the bound p < 1 is required.

Step 4. Theorem 1 holds if p < q and p < 1.

Proof. We may assume that Φ does not increase supports. Let µ = α + ν be the
decomposition of µ into its purely atomic and continuous parts. Then Φ sends Lp(α) to
L0(α) and Lp(ν) to L0(ν) and after a moment’s reflection one realizes that it suffices to
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prove the result assuming that µ is either continuous or purely atomic. Let us consider the
two cases separately.

First, suppose µ non-atomic. Then there is a constant M = M(p, q) such that whenever
Φ : Lp → L0 is quasi-linear from Lp to Lq, there is a linear map ` : Lp → L0 so that
‖Φ(f) − `(f)‖q ≤ MQ[Φ]‖f‖p —a specialization of [7, Theorem 3.6 (ii)]. We must check
that ` is in fact a morphism of L∞-modules. But, if we fix a ∈ L∞, the linear map
f ∈ Lp 7→ `(af)− a`(f) ∈ Lq is bounded and since every operator from Lp to Lq is zero we
have `(af) = a`(f) and we are done.

Now, suppose µ is purely atomic. There is no loss of generality in assuming that each
atom has mass one, so that Lr(µ) = `r(I) for r > 0 and L0(µ) = RI . We define φ : I → R
by the formula Φ(ei) = φ(i)ei, where (ei) is the unit basis of `p(I). We claim that

(3) ‖Φ(f)− φf‖q ≤MC[Φ]‖f‖p,

whereM depends only on p and q. Indeed, we known from [7, Lemma 3.4] that if f =
∑

i λiei
is finitely supported, then∥∥∥∥∥Φ

(∑
i

λiei

)
−
∑
i

λiΦ(ei)

∥∥∥∥∥
q

≤MQ[Φ]‖f‖p,

where M = M(p, q) =
(∑∞

n=1(2/n)r/p
)1/r

, with r = min(1, q). Thus (3) holds for finitely
supported f . If f ∈ `p(I) is arbitrary as supp f is countable there is an increasing se-
quence (un) of finitely supported idempotents in `∞(I) such that supp f =

⋃
n suppun.

One has ‖Φ(unf)− φunf‖q ≤ MC[Φ]‖f‖p and since ‖Φ(unf)− unΦ(f)‖q ≤ C[Φ]‖f‖p and
supp Φ(f) ⊂ supp f , we have

‖Φ(f)− φf‖q ≤ lim sup
n→∞

‖un(Φ(f)− φf)‖q ≤ ∆qC[Φ](1 +K)‖f‖p,

which completes the proof. �

At this point we have proved Theorem 1 for 0 < q ≤ 1. The following result allows us
to shift the parameters p and q from the locally convex zone to the “Kalton zone” (cf. [5,
Section 2]).

Lemma 5. Let Φ ∈ C(Lp, Lq) have centralizer constant 1 and let r ∈ (0,∞). We define
p̃ and q̃ by letting p̃−1 = p−1 + r−1 and q̃−1 = q−1 + r−1.

(a) The map Ψ : Lp̃ → L0 given by Ψ(f) = u|f |p̃/rΦ(|f |p̃/p) is a centralizer from Lp̃ to
Lq̃, with C[Ψ] ≤ 1.

(b) Moreover, Ψ is trivial if and only if Φ is trivial. Precisely, if φ ∈ L0 and D ≥ 0
are such that ‖Ψf − φf‖q̃ ≤ D‖f‖p̃ for f ∈ Lp̃, then ‖Φ(f)− φf‖q ≤ ∆q̃(8∆p∆q̃ +
D)‖f‖p for f ∈ Lp.
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Proof. (a) Take f ∈ Lp̃ and a ∈ L∞, with polar decompositions u|f | and v|a| respec-
tively. Then,

‖Ψ(af)− aΨf‖q̃ = ‖uv|a|p̃/r|f |p̃/rΦ(|a|p̃/p|f |p̃/p)− au|f |p̃/rΩ(|f |p̃/p)‖q̃
= ‖|a|p̃/r|f |p̃/rΦ(|a|p̃/p|f |p̃/p)− |a||f |p̃/rΩ(|f |p̃/p)‖q̃
≤ ‖|f |p̃/r‖r‖|a|p̃/rΦ(|a|p̃/p|f |p̃/p)− |a|Ω(|f |p̃/p)‖q
≤ ‖|f |p̃/r‖r‖|a|p̃/r‖∞‖Φ(|a|p̃/p|f |p̃/p)− |a|p̃/pΩ(|f |p̃/p)‖q
≤ ‖|f |p̃/r‖r‖|a|p̃/r‖∞‖|a|p̃/p‖∞‖|f |p̃/p‖p
= ‖a‖∞‖f‖p̃.

(b) That Ψ is trivial when Φ is trivial is obvious. We show the converse. Following
[10, Proof of Theorem 5.1] we prove first that if f1, f2 ∈ Lp and g1, g2 ∈ Lr are such that
f1g1 = f2g2, then

(4) ‖Φ(f1)g1 − Φ(f2)g2‖q̃ ≤ 4∆p∆q̃ (‖f1‖p‖g1‖r + ‖f2‖p‖g2‖r) .
Indeed, let h = f1g1 = f2g2 and take f = |f1|+|f2|. Then from ‖Φ(fi)−fif−1Φ(f)‖q ≤ ‖f‖p
we get

‖Φ(fi)gi − hf−1Φ(f)‖q̃ ≤ ‖f‖p‖gi‖r (i = 1, 2).

And so,

‖Φ(f1)g1 − Φ(f2)g2‖q̃ ≤ ∆q̃‖f‖p(‖g1‖r + ‖g2‖r) ≤ 2∆q̃∆p(‖f1‖p + ‖f2‖p)(‖g1‖r + ‖g2‖r).
By homogeneity of Φ we also have

‖Φ(f1)g1 − Φ(f2)g2‖q̃ ≤ 2∆q̃∆p(‖f1‖p + α‖f2‖p)(‖g1‖r + α−1‖g2‖r)
for every α > 0.

Minimizing the right-hand side of the preceding inequality over α, we get

‖Φ(f1)g1 − Φ(f2)g2‖q̃ ≤ 2∆q̃∆p

(
‖f1‖1/2

p ‖g1‖1/2
r + ‖f2‖1/2

p ‖g2‖1/2
r

)2

≤ 4∆q̃∆p(‖f1‖p‖g1‖r + ‖f2‖p‖g2‖r)
and (4) follows.

Now, assume ‖Ψ(h) − φh‖q̃ ≤ D‖f‖p̃ for some φ ∈ L0 some D ≥ 0 and every h ∈ Lp̃.
Then

‖Ψ(fg)− φfg‖q̃ ≤ D‖f‖p‖g‖r (f ∈ Lp, g ∈ Lr)
and, according to (4),

‖Ψ(fg)− Φ(f)g‖q̃ ≤ 8∆q̃∆p‖f‖p‖g‖r.
Thus,

‖Φ(f)g − φfg‖q̃ ≤ ∆q̃(8∆q̃∆p +D)‖f‖p‖g‖r
and so

‖Φ(f)− φf‖q = sup
‖g‖r≤1

‖Φ(f)g − φfg‖q̃ ≤ ∆q̃(8∆q̃∆p +D)‖f‖p.

�

Step 4. Theorem 1 holds in all cases.

Proof. We known that the result is true for q ≤ 1. If q > 1 the result follows from the
case q = 1 and Lemma 5 taking r so that 1 = r−1 + q−1. �
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3. Basic applications

3.1. Isomorphisms of spaces of centralizers. Now we turn our attention to the
description of the action of the functors Hom(−, Lr) and Hom(Ls,−) on centralizers. We
begin with the contravariant case.

Corollary 1. Let p, q, r ∈ (0,∞) be such that p−1 + q−1 = r−1 and Φ ∈ C(Lp). Then
there is Γ ∈ C(Lq) and a constant K such that

(5) ‖gΦ(f) + Γ(g)f‖r ≤ K‖g‖q‖f‖p (g ∈ Lq, f ∈ Lp).
Moreover Lq ⊕Γ Lq is isomorphic to Hom(Lp ⊕Φ Lp, Lr).

Proof. Let Φ be a centralizer on Lp. Given g ∈ Lq = Hom(Lp, Lr), consider the
mapping f ∈ Lp 7→ gΦ(f) ∈ L0. Clearly, this is a centralizer from Lp to Lr, with constant
at most ‖g‖qC[Φ] and so there is γg ∈ L0 such that ‖gΦ(f) + γgf‖r ≤ MC[Φ]‖g‖q‖f‖p for
all f ∈ Lp. Thus we can define a mapping Γ : Lq → L0 just taking Γ(g) = γg. Of course
this can be done homogeneously and we have the estimate in (5). It is easily seen that Γ is
a centralizer on Lq. Indeed, take a ∈ L∞ and g ∈ Lq. Then

‖Γ(ag)− aΓg‖q = sup
‖f‖p≤1

‖(Γ(ag)− aΓg)‖r

= sup
‖f‖p≤1

‖Γ(ag)f + agΦf − agΦf + gΦ(af)− gΦ(af)− (Γg)af‖r

≤MC[Φ]‖a‖∞‖g‖q.
Let us identify Lq⊕ΓLq with Hom(Lp⊕ΦLp, Lr). If (g′, g) ∈ Lq⊕ΓLq and (f ′, f) ∈ Lp⊕ΦLp,
then

‖g′f + gf ′‖r = ‖g′f − (Γg)f + (Γg)f + gΦf − gΦf + gf ′‖r
≤ C(‖g′ − Γg‖q‖f‖p + ‖g‖q‖f‖p + ‖g‖q‖f ′ − Φf‖p),
≤M(‖(g′, g)‖Γ‖(f ′, f)‖Φ)

Thus we may define u : Lq⊕ΓLq → Hom(Lp⊕ΦLp, Lr) by letting u(g′, g)(f ′, f) = g′f +gf ′.
We have just see that u is a continuous homomorphism and it is clear that we have a
commutative diagram

0 −−−→ Lq −−−→ Lq ⊕Γ Lq −−−→ Lq −−−→ 0∥∥∥ yu ∥∥∥
0 −−−→ Hom(Lp, Lr)

π∗−−−→ Hom(Lp ⊕Φ Lp, Lr)
ı∗−−−→ Hom(Lp, Lr) −−−→ 0

This implies that u is an isomorphism of quasi-Banach modules. �

Let us consider the transformation Φ ∈ C(Lp) 7−→ Γ ∈ C(Lq) in more detail. Although
there is some arbitrariness in the definition of Γ, if Γ′ is another centralizer such that

‖gΦ(f) + Γ′(g)f‖r ≤ K‖g‖q‖f‖p (g ∈ Lq, f ∈ Lp).
for some K and all f ∈ Lp, g ∈ Lq, then Γ′ ≈ Γ. So, after a moment’s reflection we see that
(5) defines a mapping C≈(Lp)→ C≈(Lq) we may denote Hom(−, Lr). It should be obvious
that this map is in fact a morphism over L∞. Actually, it is an isomorphism in view or the
symmetric roles of Φ and Γ in (5).

In a similar vein we have the following.
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Corollary 2. Let p, q, r ∈ (0,∞) be such that q−1 = p−1 + r−1. If Ψ is a centralizer
on Lq, then there is Φ ∈ C(Lp) and a constant K such that

(6) ‖Ψ(fg)− Φ(f)g‖q ≤ K‖f‖p‖g‖r (f ∈ Lp, g ∈ Lr).

Moreover Lp ⊕Φ Lp is isomorphic to Hom(Lr, Lq ⊕Ψ Lq).

Proof. Suppose Ψ is a centralizer on Lq. Given f ∈ Lp = Hom(Lr, Lq) we consider the
map g ∈ Lr 7→ Ψ(fg) ∈ L0. This is a centralizer from Lr to Lq with centralizer constant
at most C[Ψ]‖f‖p and so we may choose φf ∈ L0 in such a way that ‖Ψ(fg) − φfg‖q ≤
MC[Ψ]‖f‖p‖g‖r. Letting Φ(f) = φf homogeneously we obtain a map Φ : Lp → L0 which
satisfies (6). We left to the reader the verification that Φ is a centralizer. We define a
mapping v : Lp ⊕Φ Lp → Hom(Lr, Lq ⊕Ψ Lq) by the formula

v(f ′, f)g = (f ′g, fg) (f ′, f) ∈ Lp ⊕Φ Lp, g ∈ Lr).

This is a homomorphism, since

‖(f ′g, fg)‖Ψ = ‖f ′g −Ψ(fg)‖q + ‖fg‖q
= ‖f ′g − Φ(f)g + Φ(f)g −Ψ(fg)‖q + ‖fg‖q
≤M(‖f ′ − Φ(f)‖p‖g‖r + ‖f‖p‖g‖r)
= M‖(f ′, f)‖Φ‖g‖r.

As before, the following diagram is commutative

0 −−−→ Lp −−−→ Lp ⊕Φ Lp −−−→ Lp −−−→ 0∥∥∥ yv ∥∥∥
0 −−−→ Hom(Lr, Lq)

π∗−−−→ Hom(Lr, Lq ⊕Ψ Lq)
ı∗−−−→ Hom(Lr, Lq) −−−→ 0

which implies that v is actually an isomorphism of quasi-Banach modules over L∞. �

The solution to Kalton’s problem we mentioned in the Introduction comes now.

Corollary 3. Suppose 0 < q < p < ∞ and let Ψ ∈ C(Lq). Then there is Φ ∈ C(Lp)
and a constant K such that

‖Ψ(f)− u|f |q/rΦ(|f |q/p)‖q ≤ K‖f‖q (f ∈ Lq),

where u|f | is the polar decomposition of f and r is given by q−1 = p−1 + r−1.

Proof. Apply Corollary 2 to Ψ and look at (6). �

3.2. Homology. Let us explain the homological meaning of the results we have proved
so far. Needless to say, Theorem 1 means that Ext(Lp, Lq) vanishes unless q = p. Now
suppose we are given an extension

(7) 0 −−−→ Lp
ı−−−→ Z

π−−−→ Lp −−−→ 0

Fixing r < p and applying Hom(−, Lr) to (7) one obtains an exact sequence (see [2, Ap-
pendix 7])

(8) 0 −−−→ Hom(Lp, Lr)
π∗−−−→ Hom(Z,Lr)

ı∗−−−→ Hom(Lp, Lr) −−−→ Ext(Lp, Lr)
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But Hom(Lp, Lr) = Lq, where q−1 + p−1 = r−1 and since Ext(Lp, Lr) = 0 the sequence (8)
can be seen as a self-extension of Lq which corresponds to the centralizer Γ appearing in
Corollary 1.

Similarly if 0 −→ Lq
ı−→ Z

π−→ Lq −→ 0 is an extension and we apply Hom(Lr,−) with
r > q we obtain another exact sequence

(9) 0 −−−→ Hom(Lr, Lq)
ı∗−−−→ Hom(Lr, Z)

π∗−−−→ Hom(Lr, Lq) −−−→ Ext(Lr, Lq)

As before, Ext(Lr, Lq) = 0 and Hom(Lr, Lq) = Lp where p−1 + r−1 = q−1, so that (9) is a
self-extension of Lp which corresponds to the centralizer Φ of Corollary 2.

The construction of Lemma 5 works as a tensor product and indeed it is. Let X and
Y be quasi-Banach modules over L∞. The tensor product of X and Y (over L∞) is a
quasi-Banach module T = X ⊗ Y (recall that our default category is that of quasi-Banach
modules over L∞) together with a bihomomorphism θ : X × Y → T having the following
‘universal’ property: if E is a quasi-Banach space and B : X×Y → E is a bilinear operator
which is ‘balanced’ in the sense that B(ax, y) = B(x, ay) for all a ∈ L∞, x ∈ X, y ∈ Y ,
then there is a linear operator β : T → E such that B = β ◦ θ. It is not hard to see that
if p−1 + r−1 = q−1, then Lp ⊗ Lr = Lq. Moreover, if Φ ∈ C(Lp) and Z = Lp ⊕Φ Lp, then
Lq ⊕Ψ Lq = Z ⊗ Lr, where Ψ is related to Φ is in Lemma 5. Therefore, the functor −⊗ Lr
is “exact” at self-extensions of Lp and Corollaries 2 and 3 together show that − ⊗ Lr and
Hom(Lr,−) are “adjoint” functors, at least on self-extensions of Lebesgue spaces. Details
will appear elsewhere.

3.3. Duality. Just for fun, let us take r = 1 in Corollary 1 so that p and q are conjugate
exponents. Fix Φ ∈ C(Lp) and consider the centralizer Γ ∈ C(Lq) defined by (5). We claim
that Lq ⊕Γ Lq is isomorphic to the dual of Lp ⊕Φ Lp under the pairing

〈(g′, g), (f ′f)〉 =

∫
S

g′f + gf ′dν.

Taking a look to the proof of Corollary 1 se see that

|〈(g′, g), (f ′f)〉| ≤ ‖g′f + gf ′‖1 ≤M(‖(g′, g)‖Γ‖(f ′, f)‖Φ.

This yields an operator w making commutative the diagram

0 −−−→ Lq −−−→ Lq ⊕Γ Lq −−−→ Lq −−−→ 0∥∥∥ yu ∥∥∥
0 −−−→ L∗p

π∗−−−→ (Lp ⊕Φ Lp)
∗ ı∗−−−→ L∗p −−−→ 0

Now suposse p = q = 2. Then (5) becomes ‖gΦf + (Γg)f‖1 ≤ K‖g‖2‖f‖2. But taking
f1 = g2 = f and f2 = g1 = g in (4) we see that ‖gΦf − (Φg)f‖1 ≤ 4C[Φ]‖g‖2‖f‖2. It
follows that Γ ≈ −Φ. We have proved the following generalization of [1, Proposition 16.12]
(cf. [14, Theorem 5.1]).

Corollary 4. If Φ is any centralizer on L2, then L2 ⊕Φ L2 is isomorphic to its own
dual under the pairing 〈(g′, g), (f ′f)〉 =

∫
S
g′f − gf ′dν, where (g′, g), (f ′, f) ∈ L2 ⊕Φ L2.

We do not know if all “twisted Hilbert spaces” are isomorphic to their duals.
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4. Further applications

Now we give some miscellaneous applications of Corollary 3. These extend some results
already known for p ≥ 1 (or p > 1) to any p. First recall that Φ ∈ C(Lp) is said to be
symmetric if there is a constant S such that ‖Φ(f ◦ σ) − (Φf) ◦ σ‖p ≤ S‖f‖p for every
f ∈ Lp and all measure-preserving automorphisms σ of S. From now on the ground field is
C.

4.1. Factorization (complex interpolation). The following result is stated here
without any reference to interpolation theory. That this is really a generalization of [11,
Theorem 7.6] needs some explanations the reader will find in [13, Sections 8 to 11] and [11,
p. 487]. The key fact that Calderón’s formula [X, Y ]θ = X1−θY θ survives in our (quasi-
Banach function space) setting for analytically-convex spaces can be seen in [12, Theorem
3.4]. Analytic convexity is equivalent to lattice-convexity for quasi-Banach function spaces
[9, Theorem 4.4].

Corollary 5. Let Ψ be a real centralizer on Lp. Then there is a factorization Lp = UV
and constants c and M such that

‖Ψf − cf(log v − log u)‖p ≤M‖f‖p (f ∈ Lp),

whenever f = uv is an (almost) optimal factorization in the sense that (1 + ε)‖f‖p ≥
‖u‖U‖v‖V .

Proof. If 1 < p < ∞ this was proved by Kalton in [11, Theorem 7.6] (see also [13,
Theorem 11.6]), so let us assume p < 2. Take r so that Lp = L2Lr (that is, p−1 = 2−1 +r−1)
and use Corollary 3 to get a (real) centralizer Φ on L2 such that∥∥Ψf − (Φ(fp/2))fp/r

∥∥
p
≤M‖f‖p (f ≥ 0).

We know that there is a factorization L2 = XY and constants M and c such that

‖Φf − cf(log x− log y)‖2 ≤M‖f‖2 (f ∈ L2),

as long as f = xy is an almost optimal factorization in the sense that (1 + ε)‖f‖2 ≥
‖x‖X‖y‖Y . Take now U = L2rX and V = L2rY and check the details. �

4.2. Commutator estimates. As explained in [13, Sections 8 to 11] Corollary 5 im-
plies that, with respect to the complex interpolation method, one has Lp = [X0, X1]1/2 (with
equivalent norms) where X0 = U2, X1 = V 2 and Φ is strongly equivalent to the correspond-
ing derivation. Now, proceeding as in the proof of [11, Corollary 7.8], we get the following
version of [10, Theorem 6.10] for Lp when p < 1, and where [T,Φ](f) = T (Φ(f))− Φ(Tf).
The Boyd type interpolation result (for quasi-Banach function spaces) required here can be
found, for instance, in [8, Theorem 1.3].

Corollary 6. Suppose µ is either Lebesgue measure on an interval or counting measure
on the integers. Suppose 0 < p0 < p < p1 < ∞ and that T is an operator of strong types
(p0, p0) and (p1, p1). Then for any symmetric centralizer Φ on Lp there is a constant C so
that ‖[T,Φ](f)‖p ≤ C‖f‖p for all f ∈ Lp.
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4.3. Hardy classes. Let T be the unit circle of the complex plane, with its Haar mea-
sure. As usual we denote by Hp the closed subspace of Lp(T) generated by the polynomials.

Corollary 7. Let Φ be a symmetric centralizer on Lp(T). Then there is a constant
C (depending on Φ) such that, whenever f ∈ Hp and Φ(f) ∈ Lp(T) (which is always the
case if f ∈ Lr for some r > p, in particular if f is a trigonometric polynomial), one has
dist(Φf,Hp) ≤ C‖f‖p.

Proof. Combine the corresponding result for Banach spaces proved by Kalton in [10,
Theorem 7.3] with Corollary 3. Take into account that Hp = HqHr if 1/p = 1/q + 1/r. �

Thus, a symmetric centralizer on Lp gives rise to a self-extension of Hp (and of Lp/Hp)
in the category of quasi-Banach H∞-modules.
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