ALGEBRA SCHEMES AND THEIR REPRESENTATIONS

AMELIA ÁLVAREZ, CARLOS SANCHO, AND PEDRO SANCHO

INTRODUCTION

The equivalence (Cartier duality) between the category of topologically flat formal \(k \)-groups and the category of flat bialgebras has been treated as a duality of continuous vector spaces (of functions) [G, Exposé VII\(B \) by P. Gabriel, 2.2.1]. This is owing to the fact that the reflexivity of vector spaces of infinite dimension does not hold if one does not provide them with a certain topology and does not consider the continuous dual. In this paper we obtain this duality without providing the vector spaces of functions with a topology.

Let \(R \) be a commutative ring with unit. It is natural to consider \(R \)-modules as \(R \)-module functors in the following way: if \(M \) is an \(R \)-module, let \(\mathcal{M}(S) := M \otimes_R S \) for every \(R \)-algebra \(S \) which belongs to the category \(\mathcal{C}_R \) of \(R \)-algebras. Now, if \(M \) is a functor of \(R \)-modules, its dual \(M^* \) can be defined in a natural way as the functor of \(R \)-modules defined \(M^*(S) := \text{Hom}_S(M_S, S) \). In this work we will prove that the functor defined by an \(R \)-module is reflexive: \(M \sim M^{**} \), even in the case of \(R \) being a ring.

We call the functors \(M^* \) \(R \)-module schemes and if they are \(R \)-algebra functors too, we will say they are \(R \)-algebra schemes. In section 2 we study and characterize the vector space schemes (2.3, 2.17) and we characterize when the module scheme closure of an \(R \)-module functor \(M \) is equal to \(M^{**} \) (2.8, 2.9).

P. Gabriel [G, Exposé VII\(B \), 1.3.5] proved that the category of topologically flat formal \(R \)-varieties is equivalent to the category of flat cocommutative \(R \)-coalgebras, where \(R \) is a pseudocompact ring. We prove (4.2) that the category of \(R \)-algebra schemes is equivalent to the category of \(R \)-coalgebras, where \(R \) is a ring.

From this perspective, on the theory of algebraic groups and their representations \(R \)-module schemes appear in a necessary way, as also do \(R \)-algebra schemes as linear envelopes of groups. Let \(G = \text{Spec} A \) be an \(R \)-group and let \(G^* \) be the functor of points of \(G \), i.e., \(G(S) = \text{Hom}_{R-\text{sch}}(\text{Spec} S, G) \) for all \(S \in \mathcal{C}_R \), and let \(RG^* \) be the “linear envelope of \(G^* \)” (see section 3). We prove that the \(R \)-algebra scheme closure of \(RG^* \) is the \(R \)-algebra scheme \(A^* \) (3.3, 5.4) and the category of \(G \)-modules is equal to the category of \(A^* \)-modules (5.5). So, the theory of linear representations of a group \(G = \text{Spec} A \) is a particular case of the theory of \(A^* \)-modules (5.7, 5.8, 6.4, etc). Moreover, there is a bijective correspondence between the \(R \)-rational points of \(A^* \) and the multiplicative characters of \(G \) (5.6). When \(R \) is an algebraically closed field and \(G \) is smooth we prove that the completion of \(RG^* \) by its ideal functors of finite codimension is also \(A^* \) (3.5, 5.9).

Date: October, 2004.
Finally we prove that every \mathcal{R}-algebra scheme \mathcal{A}^* is an inverse limit of finite \mathcal{R}-algebra schemes (4.12). We characterize the separable algebra schemes (7.4) and we prove the theorem of Wedderburn-Malcev (8.8) in the context of algebra schemes.

This paper is essentially self-contained.

1. \mathcal{R}-module schemes. Reflexivity theorem.

Let R be a commutative ring with unit, let \mathcal{C}_R be the category of commutative R-algebras and let $\mathcal{R} : \mathcal{C}_R \to \mathcal{C}_R$ be the algebra functor that assigns the R-algebra $\mathcal{R}(S) := S$ to S. Let \mathcal{C}_{Ab} be the category of commutative groups.

Definition 1.1. A functor $\mathcal{M} : \mathcal{C}_R \to \mathcal{C}_{Ab}$ with a morphism of functors $\mathcal{R} \times \mathcal{M} \to \mathcal{M}$ is said to be an \mathcal{R}-module functor if $\mathcal{M}(S)$ with the morphism $S \times \mathcal{M}(S) \to \mathcal{M}(S)$ is an S-module for each $S \in \mathcal{C}_R$.

Given an R-module M, the functor \mathcal{M} defined by $\mathcal{M}(S) := M \otimes_R S$ is an \mathcal{R}-module functor.

Unless otherwise stated, we assume that all functors considered in this article are functors from the category \mathcal{C}_R to another one.

Definition 1.2. Given a pair of \mathcal{R}-module functors \mathcal{M} and \mathcal{M}', we will denote by $\mathcal{Hom}_\mathcal{R}(\mathcal{M}, \mathcal{M}')$ the functor of all \mathcal{R}-linear morphisms from \mathcal{M} to \mathcal{M}', i.e.,

$$\mathcal{Hom}_\mathcal{R}(\mathcal{M}, \mathcal{M}')(S) = \mathcal{Hom}_\mathcal{S}(\mathcal{M}_{|\mathcal{S}}, \mathcal{M}'_{|\mathcal{S}})$$

where $\mathcal{M}_{|\mathcal{S}}$ denotes the functor \mathcal{M} restricted to the category of commutative S-algebras \mathcal{C}_S. An element of $\mathcal{Hom}_\mathcal{S}(\mathcal{M}_{|\mathcal{S}}, \mathcal{M}'_{|\mathcal{S}})$ consists of assigning a morphism of T-modules $\mathcal{M}(T) \to \mathcal{M}'(T)$ to each S-algebra T.

We denote by $\mathcal{M}^* = \mathcal{Hom}_\mathcal{R}(\mathcal{M}, \mathcal{R})$ the dual functor of \mathcal{M}.

Proposition 1.3. For every \mathcal{R}-module functor \mathcal{M} and every R-module M, it holds that

$$\mathcal{Hom}_\mathcal{R}(\mathcal{M}, M) = \mathcal{Hom}_\mathcal{R}(M, \mathcal{M}(R))$$

Proof. Given an \mathcal{R}-linear morphism $f : \mathcal{M} \to \mathcal{M}'$, we have for every R-algebra S a morphism of S-modules $f_S : M \otimes_R S \to \mathcal{M}(S)$ and a commutative diagram

$$
\begin{array}{ccc}
M \otimes_R S & \xrightarrow{f_S} & \mathcal{M}(S) \\
\uparrow & & \uparrow \\
M & \xrightarrow{f_R} & \mathcal{M}(R)
\end{array}
$$

Hence, the morphism of S-modules f_S is determined by f_R. \qed

Lemma 1.4. Let S be an R-algebra, let M be an R-module and let \mathcal{M}, \mathcal{M}' be R-module functors. Then

1. $\mathcal{M}_{|S}$ is the functor associated to $M \otimes_R S$ on \mathcal{C}_S.
2. $\mathcal{Hom}_\mathcal{R}(\mathcal{M}, \mathcal{M}')_{|S} = \mathcal{Hom}_\mathcal{S}(\mathcal{M}_{|S}, \mathcal{M}'_{|S})$.

3If $\mathcal{M} = \mathcal{M}$ or $\mathcal{M} = \mathcal{M}^*$ then $\mathcal{Hom}_\mathcal{R}(\mathcal{M}, \mathcal{M}')(S)$ is a set (see 1.3, 1.6 and Yoneda’s lemma) and $\mathcal{Hom}_\mathcal{R}(\mathcal{M}, \mathcal{M}')$ is a functor. When we write \mathcal{M}^* or \mathcal{M}^{**} we will suppose that they are well-defined functors. However, for any M and M', in order for $\mathcal{Hom}_\mathcal{S}(\mathcal{M}_{|\mathcal{S}}, \mathcal{M}'_{|\mathcal{S}})$ to be a set (it will be necessary in 2.2, 2.3 and 8.1), instead of taking into account the category of commutative algebras, we consider an infinite set X and the category of commutative algebras whose cardinal is less than or equal to $\text{card}(X^2)$. See [D, General conventions].
Definition 1.5. Given a commutative R-algebra A, we define the functor $(\text{Spec } A)^{\ast}$ to be $(\text{Spec } A)^{\ast} (S) = \text{Hom}_{R-\text{alg}} (A, S)$ for each commutative R-algebra S. This functor will be called the functor of points of $\text{Spec } A$.

By Yoneda’s lemma (see [E, Appendix A5.3]), $\text{Hom}_{\text{func}}((\text{Spec } A), M) = M(A)$.

Given an R-module M, we will denote by $S_{R}M$ the symmetric algebra of M. Let us recall the next well-known lemma (see [D, II, §1, 2.1] or [G, Exposé VII$_{R}$, 1.2.4]).

Lemma 1.6. If M is an R-module, then $\mathcal{M}^{\ast} = (\text{Spec } S_{R}M)$ as \mathcal{R}-module functors.

Proof. For every R-algebra S, it holds that

\[\mathcal{M}^{\ast} (S) = \text{Hom}_{S} (\mathcal{M}|_{S}, R|_{S}) \overset{1.4}{=} \text{Hom}_{S} (\mathcal{M} \otimes_{R} S, S) \overset{1.4}{=} \text{Hom}_{S} (\mathcal{M} \otimes_{R} S, S) = \]

\[= \text{Hom}_{R} (M, S) = \text{Hom}_{R-\text{alg}} (S_{R}M, S) = (\text{Spec } S_{R}M) (S) \]

\[\square \]

Definition 1.7. The tensorial product of two functors \mathcal{M}, \mathcal{N} in the category of \mathcal{R}-module functors is defined to be $(\mathcal{M} \otimes_{R} \mathcal{N})(S) = \mathcal{M}(S) \otimes_{S} \mathcal{N}(S)$.

Proposition 1.8. Let M, M' be R-modules. Then

\[\text{Hom}_{R} (\mathcal{M}^{\ast}, \mathcal{M}') = \mathcal{M} \otimes_{R} \mathcal{M}' \]

Proof. We know that \mathcal{M}^{\ast} is represented by $\text{Spec } S_{R}M$, therefore

\[\text{Hom}_{R} (\mathcal{M}^{\ast}, \mathcal{M}') \subseteq \text{Hom}_{\text{func}} (\mathcal{M}^{\ast}, \mathcal{M}') = \mathcal{M}' (S_{R}M) = S_{R}M \otimes_{R} M' \]

However, in order for $w \in S_{R}M \otimes_{R} M'$ to be a linear application, it must be $w \in M \otimes_{R} M'$. Hence, $\text{Hom}_{R} (\mathcal{M}^{\ast}, \mathcal{M}') = M \otimes_{R} M'$.

For every R-algebra S, we have that

\[\text{Hom}_{R} (\mathcal{M}^{\ast}, \mathcal{M}') (S) = \text{Hom}_{S} (\mathcal{M}^{\ast}|_{S}, \mathcal{M}'|_{S}) = \text{Hom}_{S} ((\mathcal{M} \otimes_{R} S)^{\ast}, \mathcal{M}' \otimes_{R} S) \]

\[= (M \otimes_{R} S) \otimes_{S} (M' \otimes_{R} S) = (M \otimes_{R} M') (S) \]

\[\square \]

Remark 1.9. If \mathcal{C}_{R} is the category of commutative R-algebras whose cardinal is less than or equal to m, then we have to suppose that $S_{R}M \in \mathcal{C}_{R}$, i.e., that $\text{card } S_{R}M \leq m$. If M is a free R-module of whichever cardinal, we obtain the proposition again: Let $\{ M_{i} \}$ be the set of quotients of M whose cardinal is less than or equal to m. It is easily seen that $\mathcal{M}^{\ast} = \lim_{i} M_{i}^{\ast}$. Then

\[\text{Hom}_{R} (\mathcal{M}^{\ast}, \mathcal{M}') = \text{Hom}_{R} (\lim_{i} M_{i}^{\ast}, \mathcal{M}') = \lim_{i} (M_{i} \otimes_{R} M') = M \otimes_{R} M' \]

where \lim is a consequence of the equality $M \otimes_{R} M' \otimes_{R} S = \lim_{i} (M_{i} \otimes_{R} M' \otimes_{R} S)$ for every R-algebra $S \in \mathcal{C}_{R}$. Even more, we can assume M is a projective R-module, i.e., a direct sum of a free R-module.

As a corollary we obtain the following

Theorem 1.10. Let M be an R-module. Then

\[\mathcal{M}^{**} = \mathcal{M} \]
Definition 1.11. Quasi-coherent \mathcal{R}-modules are defined to be \mathcal{R}-module functors of the type \mathcal{M}, where M is any \mathcal{R}-module. We shall say that M is a coherent \mathcal{R}-module if M is a finitely generated \mathcal{R}-module.

\mathcal{R}-module schemes are defined to be \mathcal{R}-module functors of the type \mathcal{M}^\ast.

If M is a free finitely generated \mathcal{R}-module then \mathcal{M} is a quasi-coherent \mathcal{R}-module and an \mathcal{R}-module scheme.

Theorem 1.12. The category of quasi-coherent modules over \mathcal{R} is equivalent to the category of \mathcal{R}-modules. The category of quasi-coherent modules over \mathcal{R} is anti-equivalent to the category of \mathcal{R}-module schemes (the correspondence is established by taking the dual functor).

In [G, Exposé VII, 1.2.3], the anti-equivalence between the category of flat \mathcal{R}-modules and the category of projective pseudocompact \mathcal{R}-modules is established, where \mathcal{R} is a (commutative) pseudocompact ring.

Proposition 1.13. The \mathcal{R}-linear morphism $\mathcal{M} \to \mathcal{M}'$ is surjective, in the category of \mathcal{R}-module functors, if and only if the morphism $\mathcal{M}'^\ast \to \mathcal{M}^\ast$ is injective, in the category of \mathcal{R}-module functors.

Proof. It follows immediately that if the morphism $\mathcal{M} \to \mathcal{M}'$ is surjective, then the morphism $\mathcal{M}'^\ast \to \mathcal{M}^\ast$ is injective. Inversely, let us suppose the morphism $\mathcal{M}'^\ast \to \mathcal{M}^\ast$ is injective. If V is the cokernel of the morphism $\mathcal{M} \to \mathcal{M}'$, we obtain $V^\ast = 0$. Hence $V = V^\ast = 0$ and the morphism $\mathcal{M} \to \mathcal{M}'$ is surjective. □

If a morphism $\mathcal{M}'^\ast \to \mathcal{M}^\ast$ is surjective then the associated morphism $\mathcal{M} \to \mathcal{M}'$ is injective and it has a retraction. Let us consider the \mathcal{R}-algebra $S := R \oplus M$, where $e_1 \cdot e_2 = 0$ for all $e_1, e_2 \in M$. Let $w \in \mathcal{M}'(S) = \text{Hom}_\mathcal{R}(M, S)$ be defined by $w(e) := e$. Then, there exists a $w' \in \text{Hom}_\mathcal{R}(M', S)$ such that $w'(e) = e$ for all $e \in M$. If $\pi : S \to M$ is the natural projection, then $\pi \circ w'$ is a retraction of the morphism $\mathcal{M} \to \mathcal{M}'$.

Let us recall the Formula of adjoint functors.

Definition 1.14. Let us consider the inclusion of categories

$$\mathcal{C}_R = \{\text{commutative \mathcal{R}-algebras}\} \supset \mathcal{C}_S = \{\text{commutative \mathcal{S}-algebras}\}$$

where S is an \mathcal{R}-algebra. Given a functor \mathcal{N} on \mathcal{C}_S we define $(i_* \mathcal{N})(R') := \mathcal{N}(S \otimes R)$ for each object R' of \mathcal{C}_R. Given a functor \mathcal{M} on \mathcal{C}_R we define $(i^* \mathcal{M})(S') := \mathcal{M}(S')$ for each object S' of \mathcal{C}_S.

Let us give a direct proof of the following theorem, although it can be obtained from [B, 8.4.8.5] after many precisions and complicated technical terms.

Theorem 1.15 (Formula of adjoint functors). Let \mathcal{M} be an \mathcal{R}-module functor and let \mathcal{N} be an \mathcal{S}-module functor. Then it holds that

$$\text{Hom}_\mathcal{S}(i^* \mathcal{M}, \mathcal{N}) = \text{Hom}_\mathcal{R}(\mathcal{M}, i_* \mathcal{N})$$

Proof. Given a $w \in \text{Hom}_\mathcal{S}(i^* \mathcal{M}, \mathcal{N})$, we have morphisms $w_{S \otimes R'} : \mathcal{M}(S \otimes R') \to \mathcal{N}(S \otimes R')$ for each \mathcal{R}-algebra R'. By composition with the morphisms $M(R') \to \mathcal{M}(S \otimes R')$, we have the morphisms $\phi_{R'} : M(R') \to \mathcal{N}(S \otimes R') = i_* \mathcal{N}(S')$, which in their turn define $\phi \in \text{Hom}_\mathcal{R}(\mathcal{M}, i_* \mathcal{N})$.

Given a $\phi \in \text{Hom}_\mathcal{R}(\mathcal{M}, i_* \mathcal{N})$, we have morphisms $\phi_{S'} : \mathcal{M}(S') \to i_* \mathcal{N}(S') = \mathcal{N}(S \otimes S')$ for each \mathcal{S}-algebra S'. By composition with the morphisms $\mathcal{N}(S \otimes S') \to \mathcal{N}(S \otimes S')$
Proof. It holds that instead of and the whole diagram is commutative.

\[\phi \text{ defines } \text{Hom} \]

\[\text{Proposition 1.16.} \]

For simplicity of notation, given a functor \(M \) we will sometimes write \(w \in M \) instead of \(w \in \text{M}(S) \).

Proposition 1.16. Let \(\text{M}_i \) be \(K \)-vector space functors and let \(M \) be a \(K \)-vector space. It holds that

\[\text{Hom}_K(\prod_i \text{M}_i, \mathcal{M}) = \oplus_i \text{Hom}_K(\text{M}_i, \mathcal{M}) \]

Proof. From the injective morphism \(\oplus_i \text{M}_i \rightarrow \prod_i \text{M}_i \) one obtains the morphism

\[j^*: \text{Hom}_K(\prod_i \text{M}_i, \mathcal{M}) \rightarrow \text{Hom}_K(\oplus_i \text{M}_i, \mathcal{M}) = \prod_i \text{Hom}_K(\text{M}_i, \mathcal{M}) \]

The aim is to prove that this morphism is injective and its image is \(\oplus \text{Hom}_K(\text{M}_i, \mathcal{M}) \).

For the first question, let \(w \in \text{Hom}_K(\prod_i \text{M}_i, \mathcal{M}) \) be a linear form such that \(w \neq 0 \) but \(w|_{\oplus_i \text{M}_i} = 0 \). Then there exists a \(K \)-algebra \(S \) and elements \(f_i \in \text{M}_i(S) \) such that \(w((f_i)_i) \neq 0 \), and composing with the morphisms \(\phi : \prod_i S \rightarrow \prod_i \text{M}_i, \phi((s_i)_i) = (s_if_i)_i \) we get a linear form \(w \circ \phi \in \text{Hom}_S(\prod_i S, \mathcal{M} \otimes S) \) that is not null but is null on \(\oplus_i S \), which is impossible since \(\text{Hom}_S(\prod_i S, \mathcal{M} \otimes S) = \text{Hom}_S((\oplus_i S)^*, \mathcal{M} \otimes S) \cong (\oplus_i S) \otimes_S (\mathcal{M} \otimes S) = \oplus_i \mathcal{M} \otimes S \).
To prove that $\text{Im} j^* = \bigoplus_i \text{Hom}_K(M_i, M)$ it is enough to prove that $\text{Hom}_K(\prod_i M_i, M) = \bigoplus_i \text{Hom}_K(M_i, M)$, because in that case we will have

$$\text{Hom}_S(\prod_i M_{i,S}, M_{i|S}) \cong \text{Hom}_K(\prod_i M_i, M \otimes S) = \bigoplus_i \text{Hom}_K(M_i, M \otimes S)$$

Given a linear form $w \in \text{Hom}_K(\prod_i M_i, M)$ we have to prove that there exists at most a finite subset of indices i such that $w|_{M_i} \neq 0$. Let us suppose that this is not true, i.e., that there exists a set of indices i_n, where $n \in \mathbb{N}$, and K-algebras S_n such that $w(m_{i_n}) \neq 0$ for some $m_{i_n} \in M_{i_n}(S_n)$. Let $S = \otimes_n S_n$ and denote by $h_r : S_r \hookrightarrow \otimes_n S_n$ the natural injections and by \bar{m}_r the image of m_{i_n} by the induced morphism $M_{i_n}(h_r) : M_{i_n}(S_r) \to M_{i_n}(\otimes_n S_n)$. It is easy to see that $w(\bar{m}_r) = h_r(w(m_{i_n})) \neq 0$. Therefore, we get a linear form $\bar{w} : \prod_n S \to M \otimes S$, $\bar{w}((s_n)_n) := w((s_n \bar{m}_n)_n)$, which is not null on any factor $S \subset \prod_n S$. Again this contradicts the fact that $\text{Hom}_S(\prod_n S, M \otimes S) = \bigoplus_n M \otimes S$. \hfill \Box

2. Characterizations of vector space schemes.

Let R be a commutative ring with unit and let K be a commutative field.

Definition 2.1. An R-module functor \mathcal{M} is said to be reflexive if $\mathcal{M} = \mathcal{M}^{**}$.

Theorem 2.2. If \mathcal{M} is a reflexive functor of K-vector spaces such that $\text{Hom}_K(\mathcal{M}, -)$ commutes with direct sums, i.e.,

$$\text{Hom}_K(\mathcal{M}, \bigoplus_i M_i) = \bigoplus_i \text{Hom}_K(\mathcal{M}, M_i)$$

for all K-vector space functors M_i, then \mathcal{M} is a K-vector space scheme.

Proof. From the adjoint functor formula, given a commutative K-algebra S, we have that

$$\text{Hom}_K(\mathcal{M}, S) = \text{Hom}_K(\mathcal{M}, i_* i^* K) = \text{Hom}_S(\mathcal{M}_{i|S}, S) = \mathcal{M}^*(S)$$

However, $S = \bigoplus_i K$ and the property that \mathcal{M} satisfies by hypothesis means that $\text{Hom}_K(\mathcal{M}, S) = \mathcal{M}^*(K) \otimes S$. Hence, $\mathcal{M}^*(S) = \mathcal{M}^*(K) \otimes_K S$ and $\mathcal{M}^* = \mathcal{M}$, where $\mathcal{M} = \mathcal{M}^*(K)$, and therefore $\mathcal{M} = \mathcal{M}^{**} = \mathcal{M}^*$. \hfill \Box

We can now rephrase this result in terms of direct limits. The definition that we work with is taken from [E, Appendix 6].

Theorem 2.3. Let \mathcal{M} be a reflexive K-vector space functor. The functor on the category of quasi-coherent K-vector spaces, $\text{Hom}_K(\mathcal{M}, -)$, commutes with direct limits if and only if \mathcal{M} is a K-vector space scheme.

Proof. The necessary condition is a consequence of the previous theorem, since it was only necessary that $\text{Hom}_K(\mathcal{M}, -)$ commuted with direct sums of quasi-coherent vector spaces for \mathcal{M} to be a K-vector space scheme.
The sufficient condition is obtained as an immediate consequence of Proposition 1.8, since the functor \(\lim_{i \in I} M_i \) is again a quasi-coherent \(K \)-vector space and

\[
\text{Hom}_K(M, \lim_{i \in I} M_i) \overset{1.8}{=} M^* \otimes (\lim_{i \in I} M_i) = \lim_{i \in I} (M^* \otimes M_i) \overset{1.8}{=} \lim_{i \in I} \text{Hom}_K(M, M_i)
\]

\(\square \)

Definition 2.4. Given an \(R \)-module functor \(M \), we shall say that \(\bar{M} \) is the \(R \)-module scheme closure of \(M \) if \(\bar{M} \) is an \(R \)-module scheme and

\[
\text{Hom}_R(M, M^*) = \text{Hom}_R(\bar{M}, M^*)
\]

for every \(R \)-module \(M \).

As \(\bar{M} \) is defined to be the representant on the category of \(R \)-module schemes of the functor \(\text{Hom}_R(\bar{M}, -) \) it is unique up to isomorphisms, and there exists a canonical morphism \(\bar{M} \to \bar{M} \) corresponding to the identity morphism \(\bar{M} \to \bar{M} \).

Notation 2.5. We mean by \(M^*(R) \) the quasi-coherent \(R \)-module corresponding to the \(R \)-module \(M^*(R) \), i.e., \(M^*(R)(S) = M^*(R) \otimes_R S \).

Lemma 2.6. Let \(M, N \) be functors of \(R \)-modules. Then

\[
\text{Hom}_R(M, N^*) = \text{Hom}_R(N, M^*)
\]

Proof.

\[
\text{Hom}_R(M, N^*) = \text{Hom}_R(M \otimes_R N, R) = \text{Hom}_R(N, M^*)
\]

\(\square \)

Proposition 2.7. Let \(M \) be an \(R \)-module functor. It holds that \(\bar{M} = M^*(R)^* \).

Proof.

\[
\text{Hom}_R(M, M^*) \overset{2.6}{=} \text{Hom}_R(M, M^*) \overset{1.3}{=} \text{Hom}_R(M, M^*(R)) \overset{1.3}{=} \text{Hom}_R(M, M^*(R)) \overset{2.6}{=} \text{Hom}_R(M^*(R)^*, M^*)
\]

\(\square \)

Unfortunately, the \(R \)-module scheme closure of an \(R \)-module functor \(M \) is not stable under base change.

Proposition 2.8. Let \(M \) be an \(R \)-module functor. If \(M^* \) is a quasi-coherent \(R \)-module then \(\bar{M} = M^{**} \) and \(\bar{M} = M^* \).

Proof. If \(M^* \) is a quasi-coherent \(R \)-module then

\[
\text{Hom}_R(M, M^*) = \text{Hom}_R(M, M^*) = \text{Hom}_R(M^{**}, M^*)
\]

Therefore \(\bar{M} = M^{**} \). Moreover, \(\bar{M} = (M^{**})^* = (M^*)^{**} = M^* \). \(\square \)

Proposition 2.9. The \(R \)-module scheme closure of an \(R \)-module functor \(M \) is stable under base change if and only if \(M^* \) is a quasi-coherent \(R \)-module.

Proof. If \(\bar{M}_{|S} = \bar{M}_{|S} \), then taking \(\text{Hom}_S(-, S) \) we obtain that \(\bar{M}^*(S) = M^*(R) \otimes_R S \). Inversely, if \(M^* \) is quasi-coherent then \(\bar{M}_{|S} = M^{**}_{|S} = M_{|S} = \bar{M}_{|S} \). \(\square \)
If the morphism \(\text{Hom}_R(M_1 \otimes \ldots \otimes M_n, R) = \text{Hom}_R(M_1 \otimes \ldots \otimes M_{n-1}, M_n^*) \) is injective, then \(M \text{-module schemes} \) become \(\text{lim} \) of complete reflexive functors. First, we need some technical results before Definition 2.14.

Lastly, we will show another characterization of \(K \)-vector space schemes by means of complete reflexive functors. First, we need some technical results before Definition 2.14.

Example 2.10. If \(M_1, \ldots, M_n \) are \(R \)-module functors whose duals are quasi-coherent \(R \)-modules, then \((M_1 \otimes \ldots \otimes M_n)^* = M_1^* \otimes \ldots \otimes M_n^* \), which in particular is a quasi-coherent \(R \)-module:

\[
\text{Hom}_R(M_1 \otimes \ldots \otimes M_n, R) = \text{Hom}_R(M_1 \otimes \ldots \otimes M_{n-1}, M_n^*) = \text{Hom}_R(M_1 \otimes \ldots \otimes M_{n-2}, \text{Hom}_R(M_{n-1}, M_n^*)) = \text{Hom}_R(M_1 \otimes \ldots \otimes M_{n-2}, \text{Hom}_R(M_{n-1}, M_n^*)) = \ldots = M_1^* \otimes \ldots \otimes M_n^*.
\]

Hence, \(M_1 \otimes \ldots \otimes M_n = (M_1 \otimes \ldots \otimes M_n)^* \) and \(M_1 \otimes \ldots \otimes M_n = M_1^* \otimes \ldots \otimes M_n^* \).

If we denote by \(\otimes \) the tensorial product in the category of \(R \)-module schemes then \(M_1^* \otimes M_2^* = M_1^* \otimes M_2^* = (M_1 \otimes M_2)^* \). Moreover, \(\otimes \) commutes with inverse limits:

\[
\lim_i (M_i^*) \otimes M^* = \left(\lim_i M_i \right)^* \otimes M^* = ((\lim_i M_i) \otimes M)^* = (\lim_i (M_i \otimes M))^* = \lim_i (M_i \otimes M)^* = \lim_i (M_i^* \otimes M^*)
\]

Henceforward, we shall only work with functors of \(K \)-vector spaces.

Proposition 2.11. The morphism \(M \rightarrow M^{**} \) is injective if and only if the morphism \(M \rightarrow M \) is injective.

Proof. Let us prove the necessary condition. Given \(s \in M(S) \) such that \(s = 0 \) in \(M(S) = M^*(S) \), then \(s(w) := w(s) = 0 \) for all \(w \in M^*(K) \). Given a commutative \(S \)-algebra \(T \), if one writes \(T = \bigoplus K \cdot e_i \), one notices that

\[
M^*(T) = \text{Hom}_T(M, T) = \text{Hom}_K(M, T) = \text{Hom}_K(M, \bigoplus K) \subset \prod \text{Hom}_K(M, K)
\]

which assigns to every \(w_T \in M^*(T) \) a \((w_i) \in \prod M^*(K) \). Explicitly, given \(t \in M(T) \), then \(w_T(t) = \sum_i w_i(t) \cdot e_i \). Therefore \(w_T(s) = 0 \) for all \(w_T \in M^*(T) \). Since the morphism \(M \rightarrow M^{**} \) is injective, this means that \(s = 0 \), i.e., the morphism \(M \rightarrow M \) is injective.

For the sufficient condition, we consider the morphism \(M^*(K) \rightarrow M^* \), which, by taking duals, becomes \(M^{**} \rightarrow M^*(K)^* \). Since the composite morphism \(M \rightarrow M^{**} \rightarrow M = M^*(K)^* \) is injective, so is the morphism \(M \rightarrow M^{**} \).

Lastly, we will show another characterization of \(K \)-vector space schemes by means of complete reflexive functors. First, we need some technical results before Definition 2.14.

Proposition 2.12.

1. The morphism \(M^*(K) \rightarrow M(K)^* \) is injective if and only if the morphism \(M^* \rightarrow M(K)^* \) is injective.

2. The morphism \(M^*(K) \rightarrow M(K)^* \) is injective if and only if for every quasi-coherent vector space \(V \) the image of any \(K \)-linear morphism \(M \rightarrow V \) is a quasi-coherent subspace of \(V \).
Proof.

(1) If the morphism $M^* \to \mathcal{M}(K)^*$ is injective then taking sections on K the morphism $M^*(K) \to \mathcal{M}(K)^*$ is injective. Inversely, from the commutative diagram

$$
\begin{array}{ccc}
\text{Hom}_K(M, \oplus K) & \to & \text{Hom}_K(M(K), \oplus K) \\
\cap & & \cap \\
\cap \text{Hom}_K(M, K) & \leftarrow & \cap \text{Hom}_K(M(K), K)
\end{array}
$$

one has that $\text{Hom}_K(M, \oplus K) \subset \text{Hom}_K(M(K), \oplus K)$. Since $S = \oplus K$, then

$$
M^*(S) = \text{Hom}_S(M(S), S) \supset \text{Hom}_K(M, \oplus K) \subset \text{Hom}_K(M(K), \oplus K)
$$

$$
\supset \text{Hom}_K(M(K) \otimes K S, S) \supset \text{Hom}_S(M(K), K) = M(K)^*(S)
$$

i.e., the morphism $M^* \to \mathcal{M}(K)^*$ is injective.

(2) Let us suppose that the image of any morphism $\mathcal{M} \to V$ is a quasi-coherent subspace of V. Given $w \in M^*(K)$, i.e., a morphism $w : M \to K$, $\text{Im} w$ is equal to the quasi-coherent vector space associated to $w(M(K))$. Hence if $w(M(K)) = 0$ then $w = 0$.

Inversely, let V' be the image of the morphism $\mathcal{M}(K) \to V$ and consider $\mathcal{M} \to W := V/V'$. The morphism $W^* \to \mathcal{M}(K)^*$ is null. Hence the morphism $W^* \to M^*$ is null, and the composite morphism $\mathcal{M} \to M^* \to W^* = W$ is null. Therefore, the image of the morphism $\mathcal{M} \to V$ is V'.

\[\square\]

Corollary 2.13. Let \mathcal{M} be a reflexive functor and let V be a K-vector space. Then the image of any K-linear morphism $\mathcal{M} \to V$ is a quasi-coherent subspace of V.

Proof. If $\mathcal{M} = M^{**}$, by Proposition 2.11 the morphism $M^* \to \mathcal{M} = \mathcal{M}(K)^*$ is injective. Then by Proposition 2.12 the proof is complete. \[\square\]

Definition 2.14. Given a K-vector space functor \mathcal{M} such that the image of any K-linear morphism $\mathcal{M} \to V$ is a quasi-coherent subspace of V, let us consider the K-vector space subfunctors $\mathcal{M}_i \subset \mathcal{M}$ such that $\mathcal{M}/\mathcal{M}_i$ are coherent K-vector spaces. Then we define $\mathcal{M} := \text{lim}_{\leftarrow i} \mathcal{M}/\mathcal{M}_i$.

The direct limit of quasi-coherent vector spaces, in the category of K-vector space functors, is a quasi-coherent vector space. Therefore, the inverse limit of K-vector space schemes is a K-vector space scheme. Hence \mathcal{M} is a K-vector space scheme, namely, $\mathcal{M} := (\text{lim}_{\leftarrow i} (\mathcal{M}/\mathcal{M}_i))^*$.

Proposition 2.15. Let V be a K-vector space. Then, \mathcal{V}^* is complete and separate, i.e., $\mathcal{V}^* = \mathcal{V}^*$.

Proof. By the reflexivity theorem, the coherent cokernels of \mathcal{V}^* correspond to the subspaces $V' \subset V$ of finite dimension. Hence,

$$
\mathcal{V}^* = \lim_{\text{dim}_K V' < \infty} (\mathcal{V}')^* = (\lim_{\text{dim}_K V' < \infty} \mathcal{V}')^* = \mathcal{V}^*
$$

\[\square\]
Proposition 2.16. Let \mathcal{M} be a K-vector space functor such that the image of any K-linear morphism $\mathcal{M} \rightarrow \mathcal{V}$ is a quasi-coherent subspace of \mathcal{V}. Then the vector space closure of \mathcal{M} is equal to the completion of \mathcal{M}, i.e., $\bar{\mathcal{M}} = \mathcal{M}$.

In particular, $\bar{\mathcal{M}} = \mathcal{V}^*$, where $\mathcal{V} = \mathcal{M}^*(K)$, and $\bar{\mathcal{M}}$ is complete, separate, and reflexive.

Proof. First, let us suppose that \mathcal{V} is a finite-dimensional space. Observe that the dual of an inverse limit of K-vector space schemes is equal to the direct limit of the quasi-coherent dual vector spaces, $(\varinjlim \mathcal{V}_i)^* = (\varprojlim \mathcal{V}_i)^* = \lim \mathcal{V}_i$, then

$$\hom_K(\bar{\mathcal{M}}, \mathcal{V}^*) = \hom_K(\varinjlim \mathcal{M}/\mathcal{M}_i, \mathcal{V}^*) = \varprojlim \hom_K(\mathcal{M}/\mathcal{M}_i, \mathcal{V}^*) = \hom_K(\mathcal{M}, \mathcal{V}^*)$$

In general, $\mathcal{V}^* = \varinjlim \mathcal{V}_i^*$, where $\dim \mathcal{V}_i < \infty$. Then

$$\hom_K(\bar{\mathcal{M}}, \mathcal{V}^*) = \hom_K(\varinjlim \mathcal{M}/\mathcal{M}_i, \mathcal{V}_i^*) = \varprojlim \hom_K(\mathcal{M}/\mathcal{M}_i, \mathcal{V}_i^*) = \lim \hom_K(\mathcal{M}, \mathcal{V}_i^*)$$

Therefore, $\bar{\mathcal{M}} = \mathcal{M}$. \hfill \Box

Theorem 2.17. Let $\bar{\mathcal{M}}$ be a reflexive K-vector space functor. Then \mathcal{M} is a K-vector space scheme if and only if $\bar{\mathcal{M}}$ is complete and separate.

Definition 3.1. Let $X = \spec A$ be an affine \mathcal{R}-scheme and let us denote by X^* the functor of points of X, i.e., $X(\mathcal{S}) = \hom_{\mathcal{R}_{\text{alg}}}(A, \mathcal{S})$. Let RX be the \mathcal{R}-module functor defined by $RX(\mathcal{S}) := \varinjlim \mathcal{S} = \{ \text{the formal finite } \mathcal{S}\text{-linear combinations of points of } X \text{ in } \mathcal{S} \}$.

It is clear that for every \mathcal{R}-module functor \mathcal{M} it holds that

$$\hom_{\mathcal{R}}(RX, \mathcal{M}) = \hom_{\text{func}}(X^*, \mathcal{M})$$

Since every morphism of \mathcal{R}-algebras $A \rightarrow \mathcal{S}$ is in particular \mathcal{R}-linear, we have a morphism of functors $\phi : X^* \rightarrow A^*$, where the morphism between schemes is given by the natural epimorphism of \mathcal{R}-algebras $S_{R^*}A \rightarrow A$. Then we have a morphism $RX^* \rightarrow A^*$.

Notation 3.2. It is usual the notation $X_S = \spec A \times_R \spec S = \spec(A \otimes_R \mathcal{S})$ and $A_S = A \otimes_S \mathcal{S}$.

Theorem 3.3. Let $X = \spec A$ be an affine \mathcal{R}-scheme. It holds that

1. $RX^* = A$
2. $\overline{RX}^* = RX^{**} = A^*$

Proof.

$$RX^*(\mathcal{R}) = \hom_{\mathcal{R}}(RX^*, \mathcal{R}) = \hom_{\text{func}}(X^*, \mathcal{R}) = A$$

and likewise

$$RX^*(\mathcal{S}) = \hom_{\mathcal{S}}(RX^*_\mathcal{S}, \mathcal{S}) = \hom_{\mathcal{S}}(SX^*_\mathcal{S}, \mathcal{S}) = A_S = A(\mathcal{S})$$

Hence, $RX^* = A$ and taking duals $A^* = RX^{**} = \overline{RX}^*$. \hfill \Box
Theorem 3.4. If $X = \text{Spec} A$ is an R-scheme and M is a reflexive R-module functor, then the morphism

$$\text{Hom}_R(A^*, M) \to \text{Hom}_\text{functors}(X^*, M)$$

$$A^* \to M \mapsto X^* \mapsto A^* \to M$$

is an isomorphism.

Moreover, if A is a free R-module such linear applications of functors are determined each by its value on global sections, i.e.,

$$\text{Hom}_R(A^*, M) \subset \text{Hom}_R(A^*, M(R))$$

Proof. Firstly, we have

$$\text{Hom}_R(A^*, M) \overset{2.6}{=} \text{Hom}_R(M^*, A) \overset{3.3}{=} \text{Hom}_R(M^*, RX^*)$$

$$\overset{2.6}{=} \text{Hom}_R(RX^*, M) = \text{Hom}_\text{func}(X^*, M)$$

which is the isomorphism to compose with ϕ.

Secondly, since $A = \oplus R \subseteq \prod R$ we get

$$\text{Hom}_R(A^*, M) \overset{2.6}{=} \text{Hom}_R(M^*, A) \subseteq \text{Hom}_R(M^*, \prod R)$$

$$\overset{2.6}{=} \text{Hom}_R(\oplus R, M) \overset{1.3}{=} \text{Hom}_R(\oplus R, M(R))$$

Since the injective morphism $\text{Hom}_R(A^*, M) \hookrightarrow \text{Hom}_R(\oplus R, M(R))$ factors through $\text{Hom}_R(A^*, M(R))$, the morphism $\text{Hom}_R(A^*, M) \to \text{Hom}_R(A^*, M(R))$ is injective.

Theorem 3.5. Let us suppose that the only function $a \in A$ of the K-scheme $X = \text{Spec} A$ that is null on every K-rational point is the zero function $a = 0$. Then, it holds that $\hat{K}X^* = A^*$.

Proof. By hypothesis the morphism $KX^*(K) = A \hookrightarrow (KX^*)(K)^*$ is injective, hence we are under the hypothesis of Definition 2.14 and Proposition 2.12. Therefore, by Proposition 2.16 $\hat{K}X^* = \hat{KX^*} \overset{\text{(1)}}{=} A^*$.

Maybe it is more natural the definition

$$\mathcal{R}X^*(S) := \langle \text{Hom}_{\text{alg}}(A, S) \rangle_S \subset \text{Hom}_R(A, S)$$

i.e., $\mathcal{R}X^*$ is the image of $\mathcal{R}X^*$ in A^*.

Proposition 3.6. It holds

1. $\text{Hom}_R(\mathcal{R}X^*, M) = \text{Hom}_\text{func}(X^*, M)$ for every reflexive functor M.
2. $\mathcal{R}X^* = A$.
3. $\mathcal{R}X' = A^*$.
4. The minimum reflexive subfunctor of A^* that contains $\mathcal{R}X^*$ is A^*.

Proof.

(1) It is a consequence of the equalities

$$\text{Hom}_R(A^*, M) \overset{3.4}{=} \text{Hom}_\text{func}(X^*, M) = \text{Hom}_R(\mathcal{R}X^*, M)$$

(2),(3) They are consequences of (1).
Let us suppose we have morphisms \(R^X \leftrightarrow M \hookrightarrow A^* \), where \(M \) is a reflexive functor. Taking double duals, we obtain that the composite morphism \(A^* \rightarrow M \rightarrow A^* \) is the identity morphism. Therefore, the morphism \(\bar{M} \rightarrow A^* \) is surjective and (4) follows.

\[\square \]

4. **Algebra schemes.**

Definition 4.1. We call an \(R \)-module scheme \(A^* \) an \(R \)-algebra scheme if it is also an \(R \)-algebra functor (i.e., \(A^*(S) \) is a \(S \)-algebra and the morphisms \(A^*(S) \rightarrow A^*(S') \) are morphisms of \(S \)-algebras for every morphism \(S \rightarrow S' \) of \(R \)-algebras).

Proposition 4.2. The category of coalgebras with counit, \(C_{\text{coalg}} \), is anti-equivalent to the category of algebra schemes, \(C_{\text{alg}} \). The functors which give the equivalence are \(C_{\text{coalg}} \rightarrow C_{\text{alg}} \), \(B \rightsquigarrow B^* \) and \(C_{\text{alg}} \rightarrow C_{\text{coalg}} \), \(A^* \rightsquigarrow A \).

Proof. Observe that \(\text{Hom}_R(M^*_1 \otimes \ldots \otimes M^*_n, N^*) \cong \text{Hom}_R(N, (M^*_1 \otimes \ldots \otimes M^*_n)^*) \cong \text{Hom}_R(N, M^*_1 \otimes \ldots \otimes M^*_n) \).

Giving an \(R \)-algebra functor structure on a scheme \(A^* \) is equivalent to giving the morphism of multiplication \(A^* \otimes A^* \rightarrow A^* \) and the unit \(\mathbb{R} \rightarrow A^* \), so that the diagrams that state distributive, associative and the like properties are commutative. This is equivalent to giving morphisms \(A \rightarrow A \otimes A, A \rightarrow \mathbb{R} \) which endow \(A \) with a coalgebra structure with counit. \(\square \)

Notation 4.3. From now on, in this and next sections, \(A^* \) denotes an \(R \)-algebra scheme.

Definition 4.4. Let \(M \) be an \(R \)-module functor and let \(\mathbb{A} \) be an \(R \)-algebra functor. We say that \(M \) is an \(\mathbb{A} \)-module if there exists a morphism of \(R \)-algebra functors \(\mathbb{A} \rightarrow \text{End}_R(M) \).

We will say that an \(R \)-module \(M \) is an \(\mathbb{A} \)-module if \(M \) is an \(\mathbb{A} \)-module.

Giving a structure of \(A^\ast \)-module on \(M \) is equivalent to the existence of a morphism \(A^\ast \otimes M \rightarrow M \) verifying the obvious properties, which is equivalent to the existence of a morphism \(M \rightarrow A \otimes M \) verifying the obvious properties, since

\[
\text{Hom}_R(A^*, \text{Hom}_R(M, M)) = \text{Hom}_R(A^* \otimes M, M) = \text{Hom}_R(M, \text{Hom}_R(A^*, M)) = \text{Hom}_R(M, A \otimes M)
\]

By these equivalences, if we have the morphism \(M \rightarrow A \otimes M, m \mapsto \sum_i a_i \otimes m_i \), then \(w \cdot m = \sum_i w(a_i) m_i \) given \(w \in A^\ast \). If \(w \) is the general linear form, i.e., \(w = \text{Id} \in A^\ast(A) = \text{Hom}_R(A, A) \), then \(w \cdot m = \sum_i a_i \otimes m_i \).

If \(A^\ast \) is an algebra scheme, then \(A \) is in a natural way a right and left \(A^\ast \)-module as it follows:

\[
(w \cdot a)(w') := a(w' \cdot w) \\
(a \cdot w)(w') := a(w \cdot w')
\]

where \(a \in A \), \(w, w' \in A^\ast \). We shall say that \(A \) is the regular \(A^\ast \)-module.

Given an \(R \)-submodule \(M' \subset M \) we will say that \(M' \rightarrow M \) is a quasicohherent submodule.
Lemma 4.5. Let M_1, \ldots, M_n be projective R-modules and let M_0 be an R-module. The R-linear morphism $T : M_1^* \otimes_R \cdots \otimes_R M_n^* \to M_0$ factors via an epimorphism onto a coherent submodule of M_0.

Proof. As M_1, \ldots, M_n are projective R-modules, they are direct summands of free modules L_1, \ldots, L_n. Then, M_i^* is a direct summand of L_i^* and we can assume that $M_i = L_i$ are free modules.

By Proposition 1.8, $\text{Hom}_R(M_1^* \otimes_R \cdots \otimes_R M_n^*, M_0) = M_1 \otimes_R \cdots \otimes_R M_n \otimes_R M_0$. Let $\{e_{ij}\}$ be a basis for M_j, for every j. Then for every $T \in \text{Hom}_R(M_1^* \otimes_R \cdots \otimes_R M_n^*, M_0)$ we can write

$$T = \sum_{i_1, \ldots, i_n} e_{i_1,1} \otimes \cdots \otimes e_{i_n,n} \otimes e_{i_1,\ldots,i_n}$$

where only a finite number of the elements $e_{i_1,\ldots,i_n} \in M_0$ are not null. It is easy to check that T factors via an epimorphism onto the image of the coherent R-module associated to $M = \langle e_{i_1,\ldots,i_n} >_{i_1,\ldots,i_n}$.

Proposition 4.6. Let \mathcal{A}^* be an R-algebra scheme, let M be an \mathcal{A}^*-module and let $M' \subset M$ be an R-submodule. Let us suppose that A is a projective R-module. Then, M' is an \mathcal{A}^*-submodule of M if and only if M' is an \mathcal{A}^*-submodule of M.

Proof. Obviously, if M' is an \mathcal{A}^*-submodule of M then M' is an \mathcal{A}^*-submodule of M. Inversely, let us suppose M' is an \mathcal{A}^*-submodule of M and let us consider the natural morphism of multiplication $\mathcal{A}^* \otimes M' \to M$. By the previous lemma the morphisms $\mathcal{A}^* \to M$, $w \mapsto w \cdot m'$, for each $m' \in M'$, factors via M', then $\mathcal{A}^* \otimes M' = \mathcal{A}^* \otimes M' \to M$ factors via M', which proves that M' is an \mathcal{A}^*-submodule of M.

Proposition 4.7. Let \mathcal{A}^* be an R-algebra scheme and let M be an \mathcal{A}^*-module (respectively a right and left \mathcal{A}^*-module). Let us suppose A is a projective R-module. Every finitely generated R-submodule of M is included in an \mathcal{A}^*-submodule of M (respectively a right and left \mathcal{A}^*-module) that is a finitely generated R-submodule.

Proof. Given a finitely generated R-module $M' \subset M$ then $A^* \cdot M'$ (respectively $A^* \cdot M' \cdot A^*$), the obvious image of the morphism $\mathcal{A}^* \otimes M' \to M$ (respectively $\mathcal{A}^* \otimes M' \otimes A^* \to M$), is an \mathcal{A}^*-submodule (respectively a right and left \mathcal{A}^*-submodule) of M that is a finitely generated R-module.

Remark 4.8. In particular, an \mathcal{A}^*-module M is a K-vector space of finite dimension if and only if is a finitely-generated \mathcal{A}^*-module, i.e., there exists an epimorphism of \mathcal{A}^*-modules $\mathcal{A}^* \otimes \mathcal{A}^* \to M$.

Definition 4.9. Let \mathcal{A}^* be an R-algebra scheme. We will say that a submodule scheme $T^* \subseteq \mathcal{A}^*$ is an ideal scheme if it is an ideal subfunctor. We will say that $T^* \subseteq \mathcal{A}^*$ is a bilateral ideal scheme if it is a bilateral ideal subfunctor.

The kernel of a morphism of algebra schemes is a bilateral ideal scheme.

Definition 4.10. Given a finite R-algebra B, we will say that B is a coherent R-algebra.

Remark 4.11. Owing to the categorial equivalence between the category of R-modules and the category of quasi-coherent R-modules, there is an obvious categorial equivalence between finite R-algebras and coherent R-algebras.
Proposition 4.12. Let A^* be an R-algebra scheme. Let us suppose A is a projective R-module. Then A^* is an inverse limit of quotients B_i, which are coherent R-algebras.

Proof. A is a direct limit of its finitely generated R-submodules $M_i \subset A$. Then by Proposition 4.7 it is a direct limit of its right and left A^*-submodules N_i that are finitely generated R-modules.

The kernels of the morphisms $A^* \rightarrow N_i^*$ are bilateral ideal schemes I_i^* of A^*. Let $R^* \rightarrow N_i$ an epimorphism of R-modules. The composite morphism $A^* \rightarrow N_i^* \leftarrow (R^*)^* = R$ factors via the epimorphism $A^* \rightarrow B_i$, where $B_i = A^*/I_i^*$ and it is a finite R-algebra, by Lemma 4.5. Dually, we obtain the morphisms $N_i^* \rightarrow B_i^* \hookrightarrow A$. Taking direct limit we obtain the sequence $A \rightarrow \lim_i B_i^* \hookrightarrow A$.

Hence, $\lim_i B_i^* = A$. Dually, $\lim_i B_i = A^*$.

5. Closure of an algebra functor.

Definition 5.1. Let M be an R-algebra functor. We define \hat{M} to be the representant on the category of R-algebra schemes, if it exists, of the functor $\text{Hom}_{R-\text{alg}}(M, -)$. I.e.,

$$\text{Hom}_{R-\text{alg}}(M, A^*) = \text{Hom}_{R-\text{alg}}(\hat{M}, A^*)$$

Notation 5.2. We will denote by $A^* \hat{\otimes} B^*$ the representant, on the category of R-algebra schemes, of the functor $\text{Hom}_{R-\text{alg}}(A^* \otimes B^*, -)$.

Then, we have that

$$\text{Hom}_{R-\text{alg}}(A^* \hat{\otimes} B^*, C^*) = \text{Hom}_{R-\text{alg}}(A^* \otimes B^*, C^*) = \text{Hom}_{R-\text{alg}}(A^* \hat{\otimes} B^*, C^*)$$

Therefore, $A^* \hat{\otimes} B^* = A^* \hat{\otimes} B^*$.

Proposition 5.3. If M is an R-algebra functor such that M^* is a quasi-coherent R-module, then $\hat{M} = \hat{M} \hat{\otimes} M^*$. Moreover, if E is an R-module functor such that $N := E^*$ is an R-algebra functor; then

$$\text{Hom}_{R-\text{alg}}(M, N) = \text{Hom}_{R-\text{alg}}(\hat{M}, N)$$

Proof. By Lemma 2.6, Example 2.10 and Proposition 2.8 it holds for every R-module functor $N_1 := N_2$ that

$$\text{Hom}_R(M \otimes \ldots \otimes M, N_1) = \text{Hom}_R(N_2, M^* \otimes \ldots \otimes M^*) = \text{Hom}_R(\hat{M} \otimes \ldots \otimes \hat{M}, N_1)$$

If we consider $N_1 = M$, it follows easily that the structure of algebra of M define a structure of algebra on \hat{M}. Finally, if we consider $N_1 = N$, we see at once that $\text{Hom}_{R-\text{alg}}(M, N) = \text{Hom}_{R-\text{alg}}(\hat{M}, N)$.

Remark 5.4. In particular,

1. If $G = \text{Spec} A$ is an R-group, then $\hat{R}G = \hat{R}G$.

2. If A^* and B^* are R-algebra schemes, then $A^* \hat{\otimes} B^* = A^* \hat{\otimes} B^*$.

Theorem 5.5. Let $G = \text{Spec} A$ be an R-group scheme. The category of G-modules is equal to the category of A^*-modules.
Proof. Let M be an R-module. Let us observe that $\text{End}_R(M) = (M^* \otimes M)^*$. Therefore, by Proposition 5.3 and Theorem 3.3, (2), $\text{Hom}_{R_{\text{alg}}}(RG, \text{End}_R(M)) = \text{Hom}_{R_{\text{alg}}}(A^*, \text{End}_R(M))$. In conclusion, endowing M with a structure of G-module is equivalent to endowing M with structure of A^*-module.

Defining a morphism $RG \otimes M \to M$ is equivalent to defining a morphism $A^* \otimes M \to M$, because $\text{Hom}_R(RG \otimes M, M) = \text{Hom}_R(A^* \otimes M, M)$ by Lemma 2.6, since $(RG \otimes M)^* = (A^* \otimes M)^*$. Now it is easy to check that $\text{Hom}_{G_{\text{mod}}}(M, M') = \text{Hom}_{A^*_{\text{alg}}}(M, M')$.

\begin{proposition}
Let $G = \text{Spec } A$ be an R-group and let $G_m = \text{Hom}_R(R, R) \subset \text{End}_R(R)$. It holds that
\begin{align*}
\text{Hom}_{R_{\text{grp}}}(G, G_m) = \text{Hom}_{R_{\text{alg}}}(A^*, R)
\end{align*}
\end{proposition}

\begin{proposition}
[\text{W}, 3.3] Let V be a G-module. Every vector subspace of V of finite dimension is included in a G-submodule of V of finite dimension.
\end{proposition}

Proof. It is a consequence of Proposition 4.7 \hfill \Box

\begin{proposition}
[\text{W}, 3.4] If $G = \text{Spec } A$ is an algebraic group then it is a subgroup of a linear group G_{lin}.
\end{proposition}

Proof. Let us consider the natural inclusion $G \hookrightarrow A^*$. By Proposition 4.12 we know that $A^* = \lim_{\leftarrow i} A_i^*$ is an inverse limit of finite quotient K-algebras. By the noetherianity of G, there exists an index i such that the morphism $G \to A_i^*$ is injective. However, we have the natural injection $A_i^* \hookrightarrow \text{End}_K(A_i)$, then an injection $G \hookrightarrow \text{End}_K(A_i)$. \hfill \Box

In this section, from now on, A will be an algebraic function such that the image of any K-linear morphism $A \to V$ is a quasi-coherent subspace of V, for example, if A is a reflexive K-vector space functor.

\begin{theorem}
$\hat{A} = \lim_{\leftarrow i} A/\mathbb{I}_i$, where $\{\mathbb{I}_i\}_i$ is the set of bilateral ideal subfunctors of A such that A/\mathbb{I}_i is a coherent K-vector space.
\end{theorem}

Proof. Let us denote $\hat{A}' = \lim_{\leftarrow i} A/\mathbb{I}_i$. We must proof the functorial expression
\begin{align*}
\text{Hom}_{K_{\text{alg}}}(A, B^*) = \text{Hom}_{K_{\text{alg}}}(\hat{A}', B^*)
\end{align*}

First let us suppose that B^* is a finite K-algebra scheme. Every morphism of K-algebra functors $A \to B^*$ has as kernel an \mathbb{I}_i, then it factors through A/\mathbb{I}_i, then through A'. Inversely, let us see that every morphism $A' \to B^*$ factors through A/\mathbb{I}_i:
\begin{align*}
\text{Hom}_K(A', B^*) = \text{Hom}_K(\lim_{\leftarrow i} A/\mathbb{I}_i, B^*) = \text{Hom}_K(B, \lim_{\leftarrow i} (A/\mathbb{I}_i)^*) \\
\cong \lim_{\leftarrow i} \text{Hom}_K(B, (A/\mathbb{I}_i)^*) = \lim_{\leftarrow i} \text{Hom}_K(A/\mathbb{I}_i, B^*)
\end{align*}

where \cong holds because B is a finite-dimensional K-vector space.
In the general case,
\[
\text{Hom}_{K-\text{alg}}(A, B^*) \cong \text{Hom}_{K-\text{alg}}(A, \lim_{i} B_i^*) = \lim_{i} \text{Hom}_{K-\text{alg}}(A, B_i^*) = \text{Hom}_{K-\text{alg}}(A', B^*)
\]

Proposition 5.10. Let A be a K-algebra functor. Then,

1. The category of K-coherent A-modules is the same as the category of K-coherent \tilde{A}-modules.
2. The natural morphism $\bar{A} \to \tilde{A}$ is surjective.

Proof. (1) If $I_i \hookrightarrow A$ is a bilateral ideal functor such that A/I_i is a coherent K-vector space, then the epimorphism $A \to A/I_i$ factors through \tilde{A} and hence the morphism $\tilde{A} \to A/I_i$ is surjective.

If $\tilde{I}_i \hookrightarrow \tilde{A}$ is a bilateral ideal functor such that \tilde{A}/\tilde{I}_i is a coherent K-vector space, then the image of the morphism $A \to \tilde{A}/\tilde{I}_i$ is an algebra scheme, therefore the induced morphism $\tilde{A} \to \tilde{A}/\tilde{I}_i$ values on that image. In conclusion, the morphism $A \to \tilde{A}/\tilde{I}_i$ is surjective.

Now (1) follows easily.

(2) By the last argument, the composite morphism $\bar{A} \to \tilde{A} \to \tilde{A}/\tilde{I}_i$ is surjective. The inverse limit of such surjections is surjective, because dually the direct limit of injections of quasi-coherent vector spaces is an injection. Then the morphism $\bar{A} \to \tilde{A}$ is surjective.

□

Theorem 5.11. Let A be a K-algebra functor such that \bar{A} is a K-algebra functor and $\bar{A} \to \tilde{A}$ is a morphism of K-algebra functors. Then $\bar{A} = \tilde{A}$.

Proof. The morphism of K-algebra functors $A \to \bar{A}$ factors through a morphism $i : \bar{A} \to A$. The morphism of K-algebra functors $A \to \tilde{A}$ is a K-linear morphism, then it factors through a morphism $j : \tilde{A} \to \bar{A}$. As $i \circ j : \tilde{A} \to \tilde{A}$ is the identity morphism on A, $i \circ j = \text{Id}$. Then the morphism j is injective and, since it is surjective by the previous proposition, this proves that $\bar{A} = \tilde{A}$.

□

Definition 5.12. Let A be a K-algebra functor. We call the K-vector space of distributions of finite support of A, and we denote it by D, the vector subspace $D \subseteq A^*(K)$ consisting of linear 1-forms of A that are null on some bilateral ideal of A whose cokernel is a coherent K-vector space.

By Theorem 5.9, $\tilde{A}^* = D$, then $\tilde{A} = D^*$. It holds that
\[
\text{Hom}_{\text{coalg}}(B, D) = \text{Hom}_{K-\text{alg}}(D^*, B^*) = \text{Hom}_{K-\text{alg}}(A, B^*)
\]
for every coalgebra B.

Given a commutative K-algebra A and a closed point $x \in \text{Spec} A$, if we consider it as an ideal of A we will write m_x for it.

Proposition 5.13. Let A be a commutative K-algebra of finite type. It holds that
(1) $\hat{A} = \prod_{x \in \text{Spec}_{\text{max}} A} \hat{A}_x$, where $\hat{A}_x := \lim_{n} A/m_x^n$.

(2) The natural morphism $\hat{D} \to \hat{A}^*$ is surjective, where D is the K-vector space of the distributions of finite support of A.

Proof.

(1) If A/I is a finite K-algebra, then $\text{Spec}(A/I)$ correspond to a finite number of closed points of $\text{Spec} A$, $\{x_1, \ldots, x_n\}$, and there exists an $m \in \mathbb{N}$ such that $(m_{x_1} \cdot \ldots \cdot m_{x_n})^m \subset I$. Therefore,

$$\begin{align*}
\hat{A} &= \lim_{x_1, \ldots, x_n, m} A/(m_{x_1} \cdot \ldots \cdot m_{x_n})^m \\
&= \lim_{x_1, \ldots, x_n, m} A/m_{x_1}^m \times \ldots \times A/m_{x_n}^m = \prod_{x \in \text{Spec}_{\text{max}} A} \hat{A}_x
\end{align*}$$

(2) The morphism $\hat{D} \to \hat{A}^*$ is surjective if and only if the morphism $A \to D^*(K) = D^*$ is injective. By (1) this morphism is obviously injective. \hfill \Box

Lemma 5.14. Let $\phi : M_1 \to M_2$ be a morphism of vector space functors and let $\tilde{\phi} : \hat{M}_1 \to \hat{M}_2$ be the induced morphism on the vector space scheme closure. It holds that $\text{Coker} \tilde{\phi} = \text{Coker} \phi$ and $\phi(M_1)$ is the vector space scheme closure of the image of M_1 in M_2.

Proof. Obviously, $\tilde{\phi}(\hat{M}_1)$ is the same as the minimum vector space subscheme in \hat{M}_2 that contains the image of \hat{M}_1. It follows immediately from the functorial definition of Coker and the vector space scheme closure that $\text{Coker} \tilde{\phi} = \text{Coker} \phi$. \hfill \Box

Notation 5.15. In the next proposition, given $M \subset M^*$, we will denote by M' the module scheme closure of M in M^*.

Proposition 5.16. Let $I_1^*, \ldots, I_n^* \subseteq A^*$ be bilateral ideal schemes and let M be an A^*-module. It holds that

(1) $I_1^* \cdot M$ is a quasi-coherent submodule of M.

(2) $I_1^* \cdot I_2^* \cdot M = (I_1^* \cdot I_2^*)' \cdot M$.

(3) $\{e \in M : I_1^* \cdot e = 0\}$ is a quasi-coherent submodule of M.

(4) $(M^* \cdot I_1^*, \ldots, I_n^*)'$ is an A^*-submodule of M^* and to take the module scheme closure is stable under base change, i.e., given a morphism of rings $K \to B$, then $(M^* \cdot I_1^* \cdot \ldots \cdot I_n^*)'_B = (M^*|_B \cdot I_1^*|_B \cdot \ldots \cdot I_n^*|_B)'$. Therefore, $(M^*/(M^* \cdot I_1^* \cdot \ldots \cdot I_n^*))' = (M^*/(M^*|_B \cdot I_1^*|_B \cdot \ldots \cdot I_n^*))'$.

(5) $(M^* \cdot I_1^* \cdot \ldots \cdot I_n^*)' \cdot (I_{r+1}^* \cdot \ldots \cdot I_n^*)' = (M^* \cdot I_1^* \cdot \ldots \cdot I_n^*)'$.

Proof.

(1) The image of the morphism of A^*-modules $I_1^* \otimes_K M \to M$ is a quasi-coherent A^*-submodule and it coincides with $I_1^* \cdot M$.

(2) It is enough to prove $I_1^* \cdot I_2^* \cdot e = (I_1^* \cdot I_2^*)' \cdot e$. Let us consider the commutative diagram

$$\begin{array}{ccc}
I_1^* \cdot I_2^* & \xrightarrow{e \cdot} & M \\
\downarrow & & \downarrow \\
A^* & \xrightarrow{e} & M
\end{array}$$
Let us consider the exact sequence
\[\mathcal{M} \rightarrow \mathcal{I}_1 \otimes \mathcal{M} \]
We say a \(M \) is a simple right \(A \)-module, therefore of finite dimension, then \(V^* \) is a simple right \(A^* \)-module. Hence, for every \(w \in V^* \) not null, \(V^* = w \cdot A^* \). I.e., \(V^* \) is a quotient of \(A^* \), as a right \(A^* \)-module. Therefore, \(V \) is a submodule of \(A \), as left modules. Let us suppose now that \(V \) is not simple. The morphism of multiplication \(V^* \otimes A^* \rightarrow V^* \) is obviously surjective and it is of right \(A^* \)-modules, where \(A^* \) acts on \(V^* \otimes A^* \) by the second factor (on the right). Taking duals we have the desired injection \(\mathcal{V} \rightarrow A \otimes V = \oplus A \).

Notation 5.17. From now on, when we are in the context of algebra schemes and vector spaces, given a bilateral ideal scheme \(I^* \subset A^* \) and a right \(A^* \)-module \(\mathcal{M} \) we will understand by \(\mathcal{M}^* \cdot I^* \) its module scheme closure \((\mathcal{M}^* \cdot I^*)' \) in the vector space scheme \(\mathcal{M}^* \).

6. MAXIMAL QUOTIENT SEMISIMPLE ALGEBRA SCHEME.

Definition 6.1. We say a \(K \)-algebra scheme \(A^* \) is simple if it does not contain any proper bilateral ideal. We say that an \(A^* \)-module \(V \neq 0 \) is simple if it does not contain any proper \(A^* \)-submodule. We say that an \(A^* \)-module \(V \) is semisimple if it is a sum of simple \(A^* \)-modules.

An \(A^* \)-module \(V \) is semisimple if and only if it is a direct sum of simple \(A^* \)-modules.

By Proposition 4.7, the simple \(A^* \)-modules are \(K \)-vector spaces of finite dimension.

Theorem 6.2. \(A^* \) is simple if and only if it is isomorphic to the endomorphism ring of a finite-dimensional vector space over a non-commutative field of finite degree.

Proof. If \(A^* \) is simple, by Proposition 4.12 \(A^* \) is a finite \(K \)-algebra scheme. Now, this theorem is a consequence of Wedderburn Theorem ([P, 3.5]).

Theorem 6.3. Every simple \(A^* \)-module is an \(A^* \)-submodule of the regular module. Every \(A^* \)-module is a submodule of a direct sum of regular modules.

Proof. If \(V \) is a simple left \(A^* \)-module, therefore of finite dimension, then \(V^* \) is a simple right \(A^* \)-module. Hence, for every \(w \in V^* \) not null, \(V^* = w \cdot A^* \). I.e., \(V^* \) is a quotient of \(A^* \), as a right \(A^* \)-module. Therefore, \(V \) is a submodule of \(A \), as left modules. Let us suppose now that \(V \) is not simple. The morphism of multiplication \(V^* \otimes A^* \rightarrow V^* \) is obviously surjective and it is of right \(A^* \)-modules, where \(A^* \) acts on \(V^* \otimes A^* \) by the second factor (on the right). Taking duals we have the desired injection \(V \rightarrow A \otimes V = \oplus A \).

Corollary 6.4. ([W, 3.5]) Every simple \(G \)-module is a \(G \)-submodule of the regular \(G \)-module. Every \(G \)-module is a \(G \)-submodule of a direct sum of regular modules.
Definition 6.5. We say that a K-algebra scheme A^* is a semisimple K-algebra scheme if every quasi-coherent A^*-module is semisimple.

Proposition 6.6. A^* is a semisimple algebra scheme if and only if A is a semisimple A^*-module.

Proof. If A^* is a semisimple algebra scheme then in particular A is a semisimple A^*-module. Inversely, if A is a semisimple A^*-module, as by Proposition 6.3 every A^*-module V is a submodule of a direct sum of A's, that is semisimple, we have that V is semisimple. Then A^* is a semisimple algebra scheme. □

Definition 6.7. A bilateral ideal scheme $I^* \subseteq A^*$ is said to be a maximal bilateral ideal scheme if A^*/I^* is simple. We shall call maximal spectrum of A^* the set of its maximal bilateral ideal schemes, which we will denote by $\text{Spec}_{\text{max}} A^*$.

If $A^* = A^*_1 \times A^*_2$, then
\[
\text{Spec}_{\text{max}} A^* = \text{Spec}_{\text{max}} A^*_1 \cup \text{Spec}_{\text{max}} A^*_2
\]

because every bilateral ideal scheme $I^* \subseteq A^*$ is $I^* = I^*_1 \times I^*_2$, where I^*_i is a bilateral ideal scheme of A^*_i. Therefore, every epimorphism from a product of two K-algebra schemes to a simple K-algebra scheme factors through the projection on one of the two factors. If A^*_i, B^*_i are simple K-algebras and $\phi : A^*_1 \times \ldots \times A^*_r \to B^*_1 \times \ldots \times B^*_s$ is an epimorphism, then there exist isomorphisms $\phi_j : A^*_i \to B^*_j$ ($i_j \neq i_k$, if $j \neq k$) such that $\phi(a_1, \ldots, a_r) = (\phi_1(a_{i_1}), \ldots, \phi_s(a_{i_s}))$.

Theorem 6.8. A^* is a semisimple K-algebra scheme if and only if it is a direct product of simple K-algebras.

Proof. Let us suppose that A^* is a semisimple algebra scheme. We know that A^* is an inverse limit of quotients A^*_i which are finite K-algebras. Obviously, the A^*_i-modules are A^*-modules, then A^*_i is a semisimple algebra. By the theory of semisimple rings, A^*_i is a direct product of simple finite K-algebras, therefore A^* is a direct product of simple finite K-algebras. □

Proposition 6.9. Every A^*-module $V \neq 0$ contains an only maximal semisimple A^*-submodule not null.

Proof. The maximal semisimple submodule is the sum of every semisimple submodule. As well there exist simple submodules, since given $0 \neq e \in V$, this e is contained in a finite-dimensional A^*-module, which contains simple A^*-submodules. □

Proposition 6.10. The dual of the maximal semisimple submodule of A is the maximal semisimple quotient algebra scheme of A^*, i.e., any other semisimple quotient K-algebra scheme of A^* is a quotient of this one.

Proof. Let $A_M \subseteq A$ be the maximal semisimple submodule. Let us see that it is bilateral. We must prove that it is a right A^*-module. Given $w \in A^*$, it is clear that $A_M \cdot w$ is a left A^*-submodule of A. Then it is a left A^*-submodule of A. It is also clear that it is semisimple, then $A_M \cdot w \subseteq A_M$. Hence A_M is a right A^*-submodule of A, then it is a right A^*-submodule of A.

Moreover, the counit $w : A \to K$ (i.e., the unit of A^*) is not null on the whole A_M: if $m(w) = w(m) = 0$ for every $m \in A_M$, then $0 = (m \cdot w')(w) = m(w' \cdot w) = m(w')$ for every $w' \in A^*$ and $m = 0$, then $A_M = 0$, a contradiction.
Therefore, \(A^*_M \) is a \(\mathcal{K} \)-algebra scheme. \(A_M \) as an \(A^*_M \)-module is semisimple because as an \(A^* \)-module it is semisimple. Hence, by Proposition 6.6, \(A^*_M \) is a semisimple \(\mathcal{K} \)-algebra scheme. If \(B^* \) is a semisimple quotient of \(A^* \) then \(B \) is a \(B^* \)-semisimple module, then it is a semisimple \(A^* \)-submodule of \(A \). Therefore \(B \subseteq A_M \) and \(B^* \) is a quotient of \(A^*_M \).

Notation 6.11. We will denote by \(A^*_M \) the maximal semisimple quotient algebra scheme of \(A^* \).

If \(V \) is a simple \(A^* \)-module then the image of the natural morphism \(A^* \twoheadrightarrow \text{End}_K(V) \) is a simple \(\mathcal{K} \)-algebra scheme, then it is a quotient of \(A^*_M \). Then \(V \) is an \(A^*_M \)-module. If \(V \) is a semisimple \(A^* \)-module then it is a semisimple \(A^*_M \)-module. Obviously,

\[
\text{Spec}_{\text{max}} A^* = \text{Spec}_{\text{max}} A^*_M = \{ \text{Set of isomorphism classes of simple } A^*-\text{modules} \}
\]

Definition 6.12. We call the radical (ideal) of a \(\mathcal{K} \)-algebra scheme the kernel of the quotient morphism from the algebra scheme to its maximal semisimple quotient algebra scheme.

Let \(V \) be an \(A^* \)-module and let \(\mathcal{I}^* \) be the radical of \(A^* \). \(V \) is semisimple if and only if it is an \(A^*_M \)-module, i.e., if it is cancelled by \(\mathcal{I}^* \). If \(0 \neq V_1 \subseteq V \) is the maximal semisimple \(A^* \)-submodule of \(V \), then

\[
V_1 = \{ e \in V : \mathcal{I}^* \cdot e = 0 \}
\]

or equivalently, \(V_1 = \{ e \in V : \mathcal{I}^*(\mathcal{K}) \cdot e = 0 \} \).

Proposition 6.13. Let \(V \) be an \(A^* \)-module and let \(\mathcal{I}^* \) be the radical of \(A^* \). Let \(V_1 \) be the maximal semisimple submodule of \(V \), then

\[
V_1 = (V^* \otimes_{A^*} A^*_M)^* = (V^*/V^* \cdot \mathcal{I}^*)^*
\]

Proof. By base change it is enough to prove that \(V_1 = \text{Hom}_{\mathcal{K}}(V^*/V^* \cdot \mathcal{I}^*, \mathcal{K}) \).

However, \(\text{Hom}_{\mathcal{K}}(V^*/V^* \cdot \mathcal{I}^*, \mathcal{K}) \) identifies with the vectors \(e \in \text{Hom}_{\mathcal{K}}(V^*, \mathcal{K}) = V \) such that \(e(V^* \cdot \mathcal{I}^*) = 0 \). As \(e(w \cdot i) = w(i \cdot e) \) for every \(w \in V^* \) and \(i \in \mathcal{I}^* \), it follows that \(e \in V \) holds that \(e(V^* \cdot \mathcal{I}^*) = 0 \) if and only if \(e \in V_1 \). \(\square \)

The functor \(F(V) := V_1 \) from the category of \(A^* \)-modules to the category of \(A^*_M \)-modules is a left exact functor represented by \(A^*_M \), because

\[
F(V) = V_1 = \text{Hom}_{A^*}(A^*_M, V)
\]

Let us consider the quotient \(V' = V/V_1 \) and \(V'_1 \) the maximal semisimple \(A^* \)-submodule of \(V' \). Let \(V_2 := \pi^{-1}(V'_1) \), where \(\pi : V \to V' \) is the quotient morphism. Then \(V_1 \subseteq V_2 \) and \(V_2/V_1 = V'_1 \). So on we construct a canonical chain \(V_1 \subseteq V_2 \subseteq V_3 \subseteq \ldots \), such that every quotient \(V_i/V_{i+1} \) is a semisimple \(A^* \)-module and \(V_i/V_{i+1} = \{ \bar{e} \in V/V_{i+1} : \mathcal{I}^* \cdot \bar{e} = 0 \} \). Inductively we deduce that

\[
V_i = \{ e \in V : \mathcal{I}^{*i} \cdot e = 0 \}
\]

Again, as in Proposition 6.13, we obtain that

\[
V_i = (V^* \otimes_{A^*} A^*/\mathcal{I}^{*i})^* = (V^*/V^* \cdot \mathcal{I}^{*i})^*
\]

Notation 6.14. Given an \(A^* \)-module \(V \), we will denote by \(V_1 \subseteq V_2 \subseteq \ldots \) the canonical chain of \(A^* \)-submodules of \(V \) we have just constructed. We will denote

\[
G(V) := \bigoplus_{i=1}^{\infty} V_i/V_{i-1}, \text{ where } V_0 = 0 \text{ and } G_{\mathcal{I}^*}V^* := \prod_{i=1}^{\infty} (V^*/V^* \cdot \mathcal{I}^{*i})^*.
\]
Proposition 6.15. Let V be an A^*-module. Then
\[(G_V^*)^* = G(V)\]

In case of the regular A^*-module A, the canonical chain of semisimple factors is $A_1 \subset A_2 \subset \ldots \subset A$ where $A_i = (A^*/I^*)^*$.

Lemma 6.16. Let V be a finitely-generated A^*-module and let I^* be the radical of A^*. There exists an $n > 0$ such that $I^* \cdot V^n = 0$.

Proof. In the natural chain $V_1 \subseteq V_2 \subseteq \ldots$ of V, an inclusion $V_n \subseteq V_{n+1}$ is an equality when $V_n = V$ by Proposition 6.9. Because V is of finite dimension the equality $V = V_n$ must be true for some $n \in \mathbb{N}$. Therefore $I^* \cdot V^n = 0$. □

Theorem 6.17. Let V be an A^*-module and let I^* be the radical of A^*. It holds that
\[
(1) \quad V = \lim_{\rightarrow} V_i \\
(2) \quad V^* = \lim_{\leftarrow} V^*/V^* \cdot I^* \cdot V^n = 0.
\]

Proof.

(1) Every $e \in V$ is included in a finite-dimensional A^*-submodule V' of V. Therefore, there exists an $n \in \mathbb{N}$ such that $I^* \cdot V^n = 0$. Then $V = \lim_{\rightarrow} V_i$.

(2) As $V = \lim_{\rightarrow} V_i$, taking duals and remembering that $V_i = (V^*/V^* \cdot I^*)^*$, it follows that $V^* = \lim_{\leftarrow} V^*/V^* \cdot I^*$. □

Proposition 6.18. (Nakayama) Let V, V' be A^*-modules and let A^*_M be the maximal semisimple quotient algebra scheme of A^*.

(1) $V^* = 0 \iff V^* \otimes A^*. A^*_M = 0$.
(2) A morphism of A^*-modules $V \rightarrow V'$ is surjective \iff the morphism $V^* \otimes A^*. A^*_M \rightarrow V'^* \otimes A^*. A^*_M$ is surjective.
(3) The morphism $V^* \rightarrow V'^*$ is an isomorphism \iff the morphism $G_V^* \rightarrow G_V'^*$ is an isomorphism.

Proof.

(1) If $V^* \otimes A^*. A^*_M = 0$ then $V_i = (V^* \otimes A^*. A^*_M)^* = 0$, then $V = 0$ and $V^* = 0$.
(2) (1) must be applied to the cokernels.
(3) If the morphism $G_V^* \rightarrow G_V'^*$ is an isomorphism, then so is the morphism between the completions, which coincide with the vector space schemes themselves by Theorem 6.17 (2). □

If V is an A^*-module of finite dimension we define the character associated to V, $\chi_V : A^* \rightarrow K$, to be
\[\chi_V(w) := \text{tr} h_w\]
where h_w is the homotethy on V of factor $w \in A^*$ and $\text{tr} h_w$ is the trace of such linear endomorphism. But the trace of $h_w : V \rightarrow V$ is the same as the trace of the
induced endomorphism \(h_v : G(V) := \bigoplus_i V_i/V_i-1 \to \bigoplus_i V_i/V_i-1 =: G(V) \). So we have the commutative diagram

\[
\begin{array}{ccc}
\mathcal{A}^* & \xrightarrow{\chi_V} & K \\
\downarrow{\chi_{\oplus V_i/V_i-1}} \quad & & \quad \downarrow{\chi_{\oplus \bar{V}_i/V_i-1}} \\
\mathcal{A}_M^* \\
\end{array}
\]

Proposition 6.19. Let us suppose that \(\text{car} \ K = 0 \). Then \(\chi_V = \chi_{\bar{V}} \) if and only if \(G(V) \) and \(G(V') \) are isomorphic \(\mathcal{A}_M^* \)-modules.

Proposition 6.20. Let \(K \) be an algebraically closed field. The characters associated to the simple \(\mathcal{A}^* \)-modules are linearly independent.

Notation 6.21. Let \(V^* \) be an \(\mathcal{R} \)-module scheme (respectively \(\mathcal{R} \)-algebra scheme) and let \(R \to S \) be an extension of commutative rings. We will denote by \(V^*_S \) the \(S \)-module scheme (respectively \(S \)-algebra scheme) \(V^*_{|S} = (V \otimes_R S)^* \) associated to the \(S \)-module \(V \otimes_R S \). We will say that \(V^* \) is \(V^*_S \) under the base change \(R \to S \).

Proposition 6.22. Let \(\mathcal{A}^* \) be an algebra scheme, let \(\mathcal{A}_M^* \) be its maximal semisimple quotient algebra scheme and let \(K \to K' \) be an extension of commutative fields. The maximal semisimple quotient \(K' \)-algebra scheme of \(\mathcal{A}^*_K \) is a quotient of \((\mathcal{A}^*_M)_{K'} \). If \(K \) is algebraically closed, then the maximal semisimple quotient \(K' \)-algebra scheme of \(\mathcal{A}^*_K \) is the same as \((\mathcal{A}^*_M)_{K'} \).

Proof. Let \(0 \subset A_1 \subset A_2 \subset \ldots \) be the canonical filtration of \(\mathcal{A}^* \)-modules of \(A \). Let us consider the filtration \(A_1 \otimes_K K' \subset A_2 \otimes_K K' \subset \ldots \) of \(A \otimes_K K' \). If \(V \) is a simple \(A_{\mathcal{A}^*_M} \)-module, then it injects into \(\mathcal{A} \otimes_K K' \) and for some \(i \) there exists an injection \(V \hookrightarrow (A_i \otimes_K K')/(A_{i-1} \otimes_K K') \) of \(\mathcal{A}^*_M \)-modules. However, \((A_i \otimes_K K')/(A_{i-1} \otimes_K K') \) is an \((\mathcal{A}^*_M)_{K'} \)-module, then \(V \) is an \((\mathcal{A}^*_M)_{K'} \)-module. In conclusion, every morphism from \(\mathcal{A}^*_K \) to a simple algebra factors through \((\mathcal{A}^*_M)_{K'} \). Therefore, the maximal semisimple quotient \(K' \)-algebra scheme of \(\mathcal{A}^*_K \) is a quotient of \((\mathcal{A}^*_M)_{K'} \).

If \(K \) is algebraically closed then \(\mathcal{A}^*_M = \prod_i M_n(K) \), then \((\mathcal{A}^*_M)_{K'} = \prod_i M_n(K') \) is semisimple and the maximal semisimple quotient \(K' \)-algebra scheme of \(\mathcal{A}^*_K \) is isomorphic to \((\mathcal{A}^*_M)_{K'} \).

\(\square \)

Proposition 6.23. Let \(\mathcal{A}_M^* \) be the maximal semisimple quotient algebra scheme of \(\mathcal{A}^* \) and let \(\mathcal{B}_M^* \) be the maximal semisimple quotient algebra scheme of \(\mathcal{B}^* \). Then the maximal semisimple quotient algebra scheme of \(\mathcal{A}^* \otimes \mathcal{B}^* \) is a quotient of \(\mathcal{A}_M^* \otimes \mathcal{B}_M^* \).

If \(k \) is algebraically closed, then \(\mathcal{A}_M^* \otimes \mathcal{B}_M^* \) is the maximal semisimple quotient algebra scheme of \(\mathcal{A}^* \otimes \mathcal{B}^* \) and an \(\mathcal{A}^* \otimes \mathcal{B}^* \)-module is simple if and only if it is a tensorial product of a simple \(\mathcal{A}^* \)-module and a simple \(\mathcal{B}^* \)-module.

Proof. Let \(V \) be a simple \(\mathcal{A}^* \otimes \mathcal{B}^* \)-module. In particular \(\text{dim}_k V < \infty \). Let us consider the canonical chain \(V_1 \subset V_2 \subset \ldots \subset V_n = V \) of \(\mathcal{A}^* \)-modules. As \(\mathcal{B}^* \) commutes with \(\mathcal{A}^* \) in \(\mathcal{A}^* \otimes \mathcal{B}^* \), then it has to leave stable the chain. Since \(V \) is simple, then \(V = V_1 \), i.e., \(V \) is a semisimple \(\mathcal{A}^* \)-module. Likewise, \(V \) is a semisimple \(\mathcal{B}^* \)-module. In conclusion, \(V \) is an \(\mathcal{A}_M^* \otimes \mathcal{B}_M^* \)-module, then it is an \(\mathcal{A}_M^* \otimes \mathcal{B}_M^* \)-module. Therefore, every morphism from \(\mathcal{A}^* \otimes \mathcal{B}^* \) to a simple algebra scheme factors through \(\mathcal{A}_M^* \otimes \mathcal{B}_M^* \), then the maximal semisimple quotient algebra scheme of \(\mathcal{A}^* \otimes \mathcal{B}^* \) is a quotient of \(\mathcal{A}_M^* \otimes \mathcal{B}_M^* \).
Let K be an algebraically closed field. As $\text{End}_K(V) \otimes_K \text{End}_K(V') = \text{End}_K(V \otimes_K V')$ $(\dim_K V, V' < \infty)$, $A^*_M = \prod_i \text{End}_{\mathcal{K}}(V_i)$ and $B^*_M = \prod_j \text{End}_K(V'_j)$, then

$$A^*_M \otimes B^*_M = \prod_{i,j} \text{End}_K(V_i \otimes V'_j)$$

\[\square\]

Corollary 6.24. Let K be an algebraically closed field. A^*, B^* are semisimple \mathcal{K}-algebra schemes if and only if $A^* \otimes B^*$ is semisimple.

Let us give some final examples of the application of the representation theory of algebra schemes to the representation theory of algebraic groups.

Let $G = \text{Spec } A$ be an algebraic group. It is easy to prove that G is unipotent if and only if A^* is local (i.e., it only contains one bilateral ideal scheme) and that G is triangulable if and only if A^* is basic (i.e., $A^*_M = \prod K$). It is also easy to prove that subschemes and quotients of a basic algebra scheme (respectively local and basic) are basic (respectively local and basic).

Corollary 6.25. Subgroups, quotients, direct products of triangulable (respectively unipotent) groups are triangulable (respectively unipotent) groups.

We shall say that $X \subset A^*$ is a dense subset in A^* if the minimum vector space subscheme of A^* that contains X is A^*. Dually, X is dense in A^* if the only $a \in A$ such that $a(x) = 0$ for all $x \in X$ is $a = 0$.

Proposition 6.26. Let K be an algebraically closed field, let $\chi : A^* \rightarrow \mathcal{K}$ be a morphism of functors of \mathcal{K}-algebras and let $X \subset A^*$ be a dense subset in A^*. A^* is local if and only if any of the following conditions holds:

1. For every $x \in X$, $x - \chi(x)$ belongs to the radical of A^*.
2. For every $x \in X$ and every morphism of \mathcal{K}-algebra functors $\phi : A^* \rightarrow \text{End}_K(V)$, where $\dim_K V < \infty$, $\phi(x - \chi(x))$ is nilpotent.

Proof.

1. If A^* is local then $x - \chi(x)$ belongs to the kernel of χ, which is the radical of A^*. Let us see the inverse. Let V be a simple A^*-module and let $\phi : A^* \rightarrow \text{End}_K(V)$ be the natural epimorphism. Given an $x \in X$, as $x - \chi(x)$ belongs to the radical of A^* it holds that $\phi(x - \chi(x))$ is nilpotent, then $\chi_V(x - \chi(x)) = 0$. Therefore $\chi_V(x) = n\chi(x)$, where $n = \dim_K V$. Then $\chi_V = n\chi$ because X is dense in A^*. From here it follows that $V = K$ and $\chi_V = \chi$. In conclusion, A^* is local.
2. The proof above works here.

\[\square\]

Let $\chi : A^* \rightarrow \mathcal{K}$ be a morphism of \mathcal{K}-algebra schemes. An A^*-module V is called χ-unipotent if there exists a filtration of A^*-modules $0 \subset V'_1 \subset V'_2 \subset \cdots \subset V$ such that A^* operates on V'_i/V'_{i-1} via χ for all i (and $V = \bigcup_i V'_i$). Then A^* is local if and only if A is χ-unipotent. If $V' \rightarrow V$ is an epimorphism of A^*-modules and V' is χ-unipotent then V is χ-unipotent. If V is χ-unipotent then $V \otimes_K \mathcal{K} \otimes_K V$ is χ-unipotent.
Corollary 6.27. Let \(K \) be an algebraically closed field and let \(G \subseteq \text{GL}_n \) be an integral algebraic group. \(G \) is unipotent if and only if every closed point \(g \in G \) is a unipotent matrix, i.e. \(g - \text{id} \) is nilpotent.

7. Separable algebra schemes.

Definition 7.1. We call a \(K \)-algebra scheme \(\mathcal{A}^* \) separable if and only if under every base change \(K \hookrightarrow K' \), \(\mathcal{A}^*_{K'} := (\mathcal{A} \otimes_K K')^* \) is a semisimple \(K' \)-algebra scheme.

Definition 7.2. Let \(\mathcal{A} \) be a \(K \)-algebra functor. We will call centre of \(\mathcal{A} \) the \(K \)-algebra subfunctor of \(\mathcal{A} \), that we denote by \(Z(\mathcal{A}) \), defined by

\[
Z(\mathcal{A})(S) := \{ a \in \mathcal{A}(S) \mid a = a \}
\]

where \(a : \mathcal{A}|_S \rightarrow \mathcal{A}|_S, \ b \mapsto a \cdot b \) and \(a : \mathcal{A}|_S \rightarrow \mathcal{A}|_S, \ b \mapsto b \cdot a \).

It holds that \(Z(\mathcal{A}^*)(S) = \{ w \in \mathcal{A}^*(S) \mid \mathcal{A}^*_S \overset{\cdot w}{\rightarrow} A^*_S \} \) coincides with the centre of the \(S \)-algebra \((\mathcal{A} \otimes_K S)^* = \mathcal{A}^*(S) \).

\(Z(\mathcal{A}^*) \) is a \(K \)-algebra scheme: \(Z(\mathcal{A}^*) \) is the kernel of the morphism \(\phi : \mathcal{A}^* \rightarrow \text{End}_K(\mathcal{A}), \ w \mapsto w \cdot w \cdot w, \) and \(\text{End}_K(\mathcal{A}) \) is included in the \(K \)-vector space scheme \(\text{Hom}_K(\mathcal{A}, \mathcal{A}) \).

It holds that \(Z(\mathcal{A}^* \otimes B^*) = Z(\mathcal{A}^*) \otimes Z(B^*) \) is a \(K \)-vector space scheme isomorphic to \(\mathcal{A}^* \otimes B^* \) if \(\mathcal{A}^* \otimes B^* \) is a right and left \(\mathcal{A}^*-\text{module} \) isomorphic to \(\prod \mathcal{A}^* \). Now it is easily seen that \(Z(\mathcal{A}^*) \otimes B^* \subseteq Z(\mathcal{A}^*) \otimes Z(B^*). \) Hence, \(Z(\mathcal{A}^* \otimes B^*) \subseteq Z(\mathcal{A}^*) \otimes Z(B^*). \)

Notation 7.3. Given a ring \((R, +, \cdot) \) we denote by \((R^0, +, \cdot) \) the ring that is the same as \(R \) as a set, with the same addition and whose product \(\cdot \) is defined by \(a \cdot b := b \cdot a \).

Theorem 7.4. Let \(\mathcal{A}^* \) be a \(K \)-algebra scheme. The next conditions are equivalent:

1) \(\mathcal{A}^* \) is separable.
2) \(\mathcal{A}^*_{\bar{K}} \) is a direct product of algebras of matrices, where \(\bar{K} \) is an algebraically closed field.
3) \(\mathcal{A}^* \) is semisimple and its centre is a separable algebra scheme.
4) \(\mathcal{A}^* \otimes_K \mathcal{A}^{0^*} \) is semisimple.

Proof. 1) \(\Rightarrow \) 2) It is obvious.

2) \(\Rightarrow \) 3) \(Z(\mathcal{A}^*)_{\bar{K}} = Z(\mathcal{A}^*_{\bar{K}}) = \prod \bar{K}, \) then \(Z(\mathcal{A}^*) \) is separable. Obviously \(\mathcal{A}^* \) is semisimple.

3) \(\Rightarrow \) 2) \(\mathcal{A}^* \) is a direct product of simple algebras. As the centre of a direct product is the direct product of the centres, we can assume that \(\mathcal{A}^* \) is simple, that is a finite \(K \)-algebra. We can write \(\mathcal{A}^* = \mathcal{A}^* \). In this case \(Z(\mathcal{A}^*) \) is a field, because \(A^* = \text{End}_{\mathcal{A}^*}(V) \) and \(Z(\mathcal{A}^*) = Z(K^*) \). Therefore, \(\mathcal{A}^* \) is an Azumaya \(Z(\mathcal{A}^*) \)-algebra and \(\mathcal{A}^* \otimes_K \bar{K} = \mathcal{A}^* \otimes_{Z(\mathcal{A}^*)} Z(\mathcal{A}^*) \otimes_K \bar{K} = \mathcal{A}^* \otimes_{Z(\mathcal{A}^*)} \prod \bar{K} \) which is a direct product of algebras of matrices.

2) \(\Rightarrow \) 4) It is enough to prove that \(\mathcal{A}^* \otimes_K \mathcal{A}^{0^*} \) under base change to the algebraic closure of \(K \) is semisimple. As the tensorial product of algebras of matrices is an algebra of matrices, (4) is proved.
4) \implies 3) Because \(Z(A^* \otimes A^{**}) = Z(A^*) \otimes Z(A^*)\) and since \(A^* \otimes A^{**}\) is a direct product of algebras of matrices (over algebras of division of finite degree), it follows that \(Z(A^*) \otimes Z(A^*)\) is a direct product of commutative fields (of finite degree) and, hence, \(Z(A^*)\) is a direct product of separable finite extensions of commutative fields of \(K\), then it is separable. By Proposition 6.23 \(A^*\) is semisimple. \(\square\)

Lemma 7.5. If \(A^*\) is a semisimple \(K\)-algebra scheme, every \(A^*\)-module scheme is injective and projective (in the category of \(A^*\)-module schemes).

Proof. Dually, we must prove that every \(A^*\)-module \(V\) is projective and injective. However, because \(A^*\) is semisimple every exact sequence of \(A^*\)-modules is split, which implies that every \(A^*\)-module \(V\) is projective and injective. \(\square\)

Definition 7.6. Let \(\mathcal{A}\) be a \(K\)-algebra functor. We shall say \(D \in \text{Hom}_K(\mathcal{A}, \mathcal{M})\) is a derivation from \(\mathcal{A}\) to an \(A \otimes A^{**}\)-module \(\mathcal{M}\) if \(D(ab) = (Da)b + a(Db)\), for every \(a, b \in \mathcal{A}\). We will denote by \(\text{Der}_K(\mathcal{A}, \mathcal{M})\) the set of all derivations from \(\mathcal{A}\) to \(\mathcal{M}\).

Lemma 7.7. [P, 11.5] Let \(\Delta_{\mathcal{A}}\) be the kernel of the morphism \(\mathcal{A} \otimes_K \mathcal{A} \to \mathcal{A}, \ a \otimes b \mapsto ab\). It holds that

\[
\text{Der}_K(\mathcal{A}, \mathcal{M}) = \text{Hom}_{A \otimes A^{**}}(\Delta_{\mathcal{A}}, \mathcal{M})
\]

Notation 7.8. Given a \(K\)-algebra scheme \(A^*\) let us denote by \(\bar{\Delta}_{A^*}\) the kernel of the morphism \(\bar{\Delta}_{A^*}^*: \mathcal{A} \otimes_{K} A^* \to A^*, \ a \otimes a' \mapsto aa'\). Let us observe that \(\bar{\Delta}_{A^*}\) is the \(K\)-module scheme closure of \(\Delta_{A^*}\), since \(A^* \otimes_K A^* = A^* \otimes \bar{\Delta}_{A^*}\).

Proposition 7.9. Let \(\pi: B^* \to A^*\) be an epimorphism of \(K\)-algebra schemes with kernel \(I^*\). Then the “sequence of differentials”

\[
0 \to I^*/I^{*2} \xrightarrow{d^*} \bar{\Delta}_{B^*} \otimes_{B^*} (A^* \otimes A^{**}) \to \bar{\Delta}_{A^*} \to 0
\]

is exact, where \(d^* := i \otimes 1 - 1 \otimes i\) for all \(i \in I^*\).

Proof. If we apply \(\text{Hom}_{A^* \otimes A^{**}}(-, \mathcal{V}^*)\) to the sequence of differentials we obtain the exact sequence

\[
0 \to \text{Der}_K(A^*, \mathcal{V}^*) \to \text{Der}_K(B^*, \mathcal{V}^*) \to \text{Hom}_{A^* \otimes A^{**}}(I^*, \mathcal{V}^*)
\]

Therefore, there is only left to prove that \(d\) is injective. Let \(s: A^* \to B^*\) be a section of \(K\)-vector space schemes of the epimorphism \(\pi: B^* \to A^*\). The map

\[
\bar{\Delta}_{B^*} \otimes_{B^*} (A^* \otimes A^{**}) \to I^*/I^{*2}, \ \sum_i b_i \otimes b'_i \mapsto \sum_i (b_i - s(\pi(b_i))) \cdot b'_i
\]

is a retraction of \(d\). \(\square\)

Theorem 7.10. \(A^*\) is a separable \(K\)-algebra scheme if and only if \(A^*\) is a projective \(A^* \otimes A^{**}\)-module.

Proof. If \(A^*\) is a separable \(K\)-algebra then \(A^* \otimes A^*\) is a semisimple algebra and every module scheme is projective.

Inversely, let us suppose that \(A^*\) is a projective \(A^* \otimes A^{**}\)-module. Therefore, the sequence

\[
0 \to \bar{\Delta}_{A^*} \to A^* \otimes A^{**} \to A^* \to 0 \quad (1)
\]

is split. Let \(\bar{K}\) be the algebraic closure of \(K\). For simplicity of notation we write \(A^*\) instead of \(\bar{A}^*_K\). Let \(\bar{A}^*_M\) be the maximal semisimple quotient scheme of \(A^*\) and let \(I^*\) be the radical of \(A^*\). If we apply \(- \otimes_{A^* \otimes A^{**}} \bar{A}^*_M \otimes \bar{A}^*_M\) to (1) we obtain that

\[
\bar{\Delta}_{A^*} \otimes_{A^* \otimes A^{**}} \bar{A}^*_M \otimes \bar{A}^*_M = \bar{\Delta}_{A^*_M}.
\]
From the exact sequence $0 \rightarrow T^* \rightarrow A^* \rightarrow A^*_M \rightarrow 0$ and the exact sequence of differentials from 7.9

$$0 \rightarrow T^*/I^2 \xrightarrow{d} \Delta_A^* \otimes_A^* \Delta_A^* \otimes_A^* (A^*_M \otimes_A^* A^*_M) \rightarrow \Delta_A^*_M \rightarrow 0$$

we obtain that $T^*/I^2 = 0$. Therefore, $T^* = I^2$ and by Theorem 6.17 $A^* = \lim_{\rightarrow n} A^*/I^* = A^*_M$ and A^* is separable. □

Remark 7.11. In the proof we have seen that if (and only if) the sequence of $A^* \otimes A^{*n}$-modules $0 \rightarrow \Delta_A^* \rightarrow A^* \otimes A^{*n} \rightarrow A^* \rightarrow 0$ is split, then A^* is a separable K-algebra scheme.

8. Extensions of algebra schemes.

In this section the cohomological arguments and descent theory are concisely used to give a proof of the Principal Theorem of Wedderburn-Malcev (see [P, 11.6] or [M, X, 3.2]) in the context of algebra schemes.

Proposition 8.1. Let \mathbb{A} be a K-algebra functor, let $C_{\mathbb{A}-Mod}$ be the category of \mathbb{A}-modules and let C_{Vect} be the category of K-vector space functors. The functor “forget the structure of \mathbb{A}-module” $\phi : C_{\mathbb{A}-Mod} \rightarrow C_{Vect}$, $M \mapsto \hat{M}$ has got an adjoint functor, which is $\text{Ad}(\phi) : C_{Vect} \rightarrow C_{\mathbb{A}-Mod}$, $M \mapsto \text{Hom}_K(A, M)$. I.e., if M is an \mathbb{A}-module and N is a K-vector space functor it holds that

$$\text{Hom}_K(M, N) = \text{Hom}_\mathbb{A}(\hat{M}, \text{Hom}_K(A, N)) \quad (2)$$

Let us denote $R^0 := \text{Ad}(\phi) \circ \phi$, i.e., $R^0(M) = \text{Hom}_K(A, \hat{M})$. The morphism $\text{Id} : \hat{M} \rightarrow M$ defines a natural morphism $\hat{M} \rightarrow R^0(M) = \text{Hom}_K(A, \hat{M})$ by the equation (2). If we apply R^0 to this morphism then we obtain a new morphism $\hat{M} \rightarrow R^0(R^0(M)) = \text{Hom}_K(A \otimes A, \hat{M})$ besides the natural one, and so on we will obtain the sequence

$$\hat{M} \rightarrow R^0(M) \Rightarrow R^0(R^0(M)) \ldots$$

Let us denote by $M \rightarrow R(M)$ this complex, which is exact: The identity morphism $\text{Id} : \text{Ad}(\phi)(N) \rightarrow \text{Ad}(\phi)(N)$ defines by adjointness a canonical morphism $(\phi \circ \text{Ad}(\phi))(N) \rightarrow N$, then we have canonical morphisms $\phi(R(M)) \rightarrow \phi(R^{-1}(M))$ that turn out to be some operators of homotopy of the complex $\phi(M) \rightarrow \phi(R(M))$. Therefore, this complex is homotopic to zero and $M \rightarrow R(M)$ is exact.

If we now consider $A = A^*$, then $R^0(V) = A \otimes V$ and it turns out to be an injective quasi-coherent A^*-module, because $\text{Hom}_{A^*}(-, A \otimes V) = \text{Hom}_K(-, V)$ is exact on the category of quasi-coherent A^*-modules. Therefore $R(V)$ is a resolution of V by injective quasi-coherent A^*-modules.

Let E be an extension of quasi-coherent A^*-modules of the quasi-coherent A^*-module V by the quasi-coherent A^*-module W (see [H, III, 1] or [K, 2.6] for the definition of extension of modules). The automorphisms of extensions of E identifies with $\text{Hom}_{A^*}(V, W)$. If W is an injective A^*-module then $E = W \oplus V$. By the standard arguments from the descent theory we get the following

Theorem 8.2. The extensions of A^*-modules of V by W, modulo isomorphisms of extensions, are classified by the group $\text{Ext}_{A^*}(V, W)$.
Given a morphism of K-algebra functors $\chi : A^* \to K$ and a quasi-coherent A^*-module V let us denote by $V^\chi := \{ e \in V \mid g \cdot e = e \forall g \in A^* \}$. We will denote by $H(\chi, V)$ the derived functors of the functor $V \mapsto V^\chi$. Let us notice that

$$V^\chi = \text{Hom}_{A^*}(K, V)$$

hence $H(\chi, V) = \text{Ext}_{A^*}(K, V)$.

Let $G = \text{Spec } A$ be a K-group. Given a G-module V let $V^G = \{ e \in V \mid g \cdot e = e \forall g \in G \}$. $H(G, V)$ is defined as the derived functors of the functor $V \mapsto V^G$. The morphism $G \to \{1\}, g \mapsto 1$ defines a morphism $\chi : A^* \to K$ and $V^G = V^\chi$. By Theorem 5.5 next proposition holds.

Proposition 8.3. $H(G, V) = H(\chi, V) = \text{Ext}_{A^*}(K, V)$

Corollary 8.4. [S, 8.6] Let $G = \text{Spec } A$ be an algebraic group. The extensions of G-modules of K by V are classified by $H^1(G, V)$.

Proof. The extensions of G-modules of K by V are classified by $\text{Ext}_{A^*}^1(K, V) = H^1(G, V)$.

Dually, let us consider the category of right A^*-modules (i.e., left A^{op}-modules). Given a right A^*-module V^*, we will have the resolution by projective A^*-module schemes of V^*

$$\ldots V^* \otimes A^* \otimes A^* \rightleftarrows V^* \otimes A^* \otimes \ldots \otimes a_i \mapsto a_0 \otimes a_1 \otimes \ldots \otimes a_n$$

(3)

where the morphisms are $V^* \otimes A^* \otimes \ldots \otimes A^* \to V^* \otimes A^* \otimes \ldots \otimes A^*$, $a_0 \otimes a_1 \otimes \ldots \otimes a_n \mapsto a_0 \otimes a_1 \otimes \ldots \otimes a_n$ for $0 \leq i \leq n$ and $a_0 \in V^*$. So we have that

$$\text{Ext}_{A^*}^i(W, V) = \text{Ext}_{A^{op}}^i(V^*, W^*)$$

Let us suppose $V^* = A^*$, which is also a left A^*-module, i.e., precisely it is an $A^* \otimes A^{op}$-module. Then the equation (3) is a resolution of A^* by projective $A^* \otimes A^{op}$-module schemes, which is split as a sequence of left A^*-modules. Given a morphism of K-algebras $\chi : A^* \to K$, every left A^*-module W^* can be seen as an $A^* \otimes A^{op}$-module, where A^* operates on the right by χ. It holds that

$$\text{Ext}_{A^*}^i(A^*, W^*) = \text{Ext}_{A^{op}}^i(K, W^*)$$

Let us suppose V is a G-vector space of finite dimension, then

$$H^i(G, V) = \text{Ext}_{A^*}^i(K, V) = \text{Ext}_{A^{op}}^i(A^*, V)$$

Let B be a (singular) extension of algebras of an algebra A by an $A \otimes K A^*$-module M (see [M, X, 3] for the definition of extension of algebras). Giving an isomorphism of extensions of algebras from B to the trivial extension $T = A \otimes M$ ($m_i, m_j = 0 \forall m_i, m_j \in M$) is equivalent to giving a K-derivation $D : B \to M$ such that D on M is the identity morphism. Let us suppose $M = \text{Hom}_K(A \otimes_k A^*, N)$. If we apply $\text{Hom}_{A^{op}}(-, M) = \text{Hom}_K(-, N)$ to the exact sequence of differentials

$$0 \to M \to \Delta_B \otimes B \to A \otimes A^* \to \Delta_A \to 0$$

associated to the exact sequence $0 \to M \to B \to A \to 0$, we obtain that the morphism $\text{Der}_K(B, M) \to \text{Hom}_{A^{op}}(M, M)$ is a surjection. Therefore there exist a derivation $D : B \to M$ such that on M is the identity. In conclusion, if $M = \text{Hom}_K(A \otimes_k A^*, N)$ then B is isomorphic to the trivial extension.
The extensions of K-algebra schemes of a K-algebra scheme A^* by an $A^* \otimes A^{**}$-module scheme V^* are classified by the group

$$\text{Ext}^2_{A^* \otimes A^{**}}(A^*, V^*) = \text{Ext}^2_{A^* \otimes A^{**}}(V, A)$$

Proof. Let us follow the standard notation from the descent theory (see [W, 17]).

The extensions of algebra functors of A^* by V^* are classified by the group

$$H^1(K\frac{R^0(V^*)}{V^*}, \text{Aut}_{alg.ext.}(A^* \otimes V^*)) = H^1(K\frac{R^0(V^*)}{V^*}, \text{Der}_K(A^*, -)) = H^1(K\frac{\text{Hom}_{A^* \otimes A^{**}}(\Delta_{A^*}, -)}{V^*}) = H^1(K\frac{\text{Hom}_{A^* \otimes A^{**}}(\Delta_{A^*}, R (V^*))}{\text{Hom}_{A^* \otimes A^{**}}(A^*, R (V^*))})$$

where \approx follows from applying $\text{Hom}_{A^* \otimes A^{**}}(-, R (V^*))$ to the K-split exact sequence $0 \to \Delta_{A^*} \to A^* \otimes A^* \to A^* \to 0$ and later taking cohomology.

Finally, we have

$$H^2(\text{Hom}_{A^* \otimes A^{**}}(A^*, R (V^*))) = \ldots = H^2(\text{Hom}_{A^* \otimes A^{**}}(V, R (A))) = \text{Ext}^2_{A^* \otimes A^{**}}(V, A).$$

Let $G = \text{Spec} A$ be a K-group and let V be a G-vector space where $\dim_K V < \infty$.

Definition 8.6. [S, 8.2] Let us denote by $1 + V$ the algebraic group $\text{Spec} S(V^*)$, whose functor of points is V. Given an exact sequence of affine K-groups

$$1 \to 1 + V \to G' \xrightarrow{\pi} G \to 1$$

such that $g' \cdot (1 + v) \cdot g'^{-1} = 1 + g(v)$ for all $g' \in G'$ and $v \in V$ (where $g = \pi(g')$) we shall say G' is an extension of groups of G by V.

The morphism $G \to 1$ induces the morphism of K-algebra schemes $\chi : A^* \to K$.

Theorem 8.7. The set of extensions of groups of G by V, modulo isomorphisms, is equal to the set of extensions of algebras of A^* by the $A^* \otimes A^{**}$-module V, modulo isomorphisms (where A^* operates on V on the right by χ).

Proof. By [H, VI, 10.3] or [S, 8.8], the set of extension of groups of G by V, modulo isomorphisms, is equal to $H^2(G, V) = \text{Ext}^2_{A^*}(K, V) = \text{Ext}^2_{A^* \otimes A^{**}}(A^*, V)$, which coincides with the set of extensions of algebras of A^* by the $A^* \otimes A^{**}$-module V, modulo isomorphisms.

Let us give explicitly the correspondence between the extensions of groups of $G = \text{Spec} A$ by V and the extensions of algebras of A^* by V.

Let B^* be a (singular) extension of algebras of A^* by V, i.e., we have the exact sequence

$$0 \to V \to B^* \xrightarrow{\pi} A^* \to 0$$

where $V^2 = 0$. If we consider the inclusion $G \subset A^*$, then $\pi^{-1}(G)$ is an extension of groups of G by $V \overset{\sim}{=} \pi^{-1}(1)$, where $L(v) := 1 + v$.

Inversely, let be an extension of groups $1 \to N \to G' \xrightarrow{\pi} G \to 1$ where $N = 1 + V$. Let us consider the inclusion $V \to KG^*$, $v \mapsto (1 + v) - 1$, where $(1 + v) \in N$. Let us denote $v = (1 + v) - 1 \in KG^*$. Let $1 = \langle \lambda g' \cdot v - \pi(g')(\lambda v) \rangle_{g' \in G^*, \lambda \in K, v \in V}$ be the bilateral ideal functor of KG^*. Then it holds that the kernel of the natural
epimorphism $K\mathcal{G}^* / \mathbb{I} \to K\mathcal{G}$ is \mathcal{V}. Taking closure, if we denote $B^* = \overline{K\mathcal{G}^* / \mathbb{I}}$, we have an extension of algebras

$$0 \to \mathcal{V} \to B^* \to A^* \to 0$$

Both assignments are mutually inverse.

Now let us generalize the Principal Theorem of Wedderburn-Malcev to algebra schemes.

Theorem 8.8. Let K be an algebraically closed field, let A^* be a K-algebra scheme, let A^*_M be its maximal semisimple quotient scheme and let I^* be the radical of A^*. The morphism $A^* \to A^*_M$ has a section of algebra functors, which is the only one up to conjugations by elements of $1 + I^*$.

Proof. A^*_M is a semisimple algebra scheme, then it is a product of algebras of matrices. Therefore, $A^*_M \otimes A^*_M$ is a product of algebras of matrices, then it is semisimple. By Lemma 7.5 every extension of algebra schemes of A^*_M by any $A^*_M \otimes A^*_M$-module scheme is trivial. A^*/I^2 is an extension of algebra schemes of A^*_M by I^*/I^2, therefore, the epimorphism $\pi_2 : A^*/I^2 \to A^*_M$ has a section s_2. Let $\pi : A^*/I^3 \to A^*/I^2$ be the natural epimorphism and let $B^* = \pi^{-1}(s_2(A^*_M)) \subset A^*/I^3$. B^* is an algebra scheme extension of A^*_M by I^*/I^3, therefore, there exists a section $s' : A^*_M \to B^*$. As $B^* \subset A^*/I^3$, we have a morphism $s_3 : A^*_M \to A^*/I^3$. Acting this way, we finally obtain a commutative diagram of arrows

$$
\cdots \longrightarrow A^*/I^m \longrightarrow \cdots \longrightarrow A^*/I^3 \longrightarrow A^*/I^2 \longrightarrow A^*/I^1 \\
\downarrow s_n \quad \downarrow s_2 \quad \downarrow s_3 \\
A^*_M
$$

that defines the section $A^*_M \to A^*$ we looked for, since $A^* = \lim_{\to} A^*/I^*n$ by Theorem 6.17.

Let s_1, s_2 be two sections of algebra schemes of the epimorphism $A^* \to A^*_M$. The induced morphisms $\bar{s}_1, \bar{s}_2 : A^*_M \to A^*/I^2$ differ on an element of $\text{Der}_K(A^*_M, \bar{I}^*) = \text{Hom}_{A^*_M \otimes K, A^*_M}(\bar{\Delta}_{A^*_M}, \bar{I}^*)$, where $\bar{I}^* = I^*/I^2$. Moreover, the natural morphism

$$\bar{I}^*(K) = \text{Hom}_{A^*_M \otimes K, A^*_M}(\bar{A}^*_M \otimes \bar{A}^*_M, \bar{I}^*) \to \text{Hom}_{A^*_M \otimes K, A^*_M}(\bar{\Delta}_{A^*_M}, \bar{I}^*)$$

is surjective because $\text{Ext}^1_{A^*_M \otimes A^*_M}(A^*_M, \bar{I}^*) = 0$ by Theorem 7.10. In conclusion, there exists an $i_1 \in \bar{I}^*(K)$ such that $s_2(m) = (1 + i_1) \cdot \bar{s}_1(m) \cdot (1 + i_1)^{-1}$. Let s_2' be the composite of s_1 with the automorphism of A^* which is to conjugate by $1 + i_1$. The induced morphisms $\bar{s}_2, \bar{s}_2' : A^*_M \to A^*/I^3$ differ on an element of $\text{Der}_K(A^*_M, I^{2*}) = \text{Hom}_{A^*_M \otimes K, A^*_M}(\bar{\Delta}_{A^*_M}, I^{2*})$, where $I^{2*} = I^2/I^3$. But the natural morphism $I^{2*}(K) = \text{Hom}_{A^*_M \otimes K, A^*_M}(\bar{A}^*_M \otimes \bar{A}^*_M, I^{2*}) \to \text{Hom}_{A^*_M \otimes K, A^*_M}(\bar{\Delta}_{A^*_M}, I^{2*})$ is surjective. Therefore there exists an $i_2 \in I^{2*}(K)$ such that s_2' is the composite of s_2' and the automorphism of conjugation by $1 + i_2$. Then, modulo I^{3*}, s_2 is equal to the composite of s_1 and the conjugation by $1 + i_1 + i_2$. Arguing this way we obtain that s_2 is equal to the composite of s_1 and the conjugation by an element of $1 + I^*$. □
References

Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain
E-mail address: salarma@unex.es

Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain
E-mail address: splus@usal.es

Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain
E-mail address: sancho@unex.es