A DIRECT PROOF OF THE THEOREM ON FORMAL FUNCTIONS

FERNANDO SANCHO DE SALAS AND PEDRO SANCHO DE SALAS

Abstract. We give a direct and elementary proof of the theorem on formal functions by studying the behaviour of the Godement resolution of a sheaf of modules under completion.

Introduction

Let \(\pi : X \to \text{Spec } A \) be a proper scheme over a ring \(A \). Let \(\mathcal{M} \) be a coherent \(\mathcal{O}_X \)-module and \(Y \subset \text{Spec } A \) a closed subscheme. Let us denote by \(^\wedge \) the completion along \(Y \) (respectively, along \(\pi^{-1}(Y) \)). The theorem on formal functions states that

\[
H^i(X, \mathcal{M})^\wedge = H^i(X, \hat{\mathcal{M}})
\]

Two important corollaries of this theorem are Stein’s factorization theorem and Zariski’s Main Theorem ([H] III, 11.4, 11.5).

Hartshorne [H] gives a proof of the theorem on formal functions for projective schemes (over a ring). Grothendieck [G] proves it for proper schemes. He first gives sufficient conditions for the commutation of the cohomology of complexes of \(A \)-modules with inverse limits (0, 13.2.3 [G]); secondly, he gives a general theorem on the commutation of the cohomology of sheaves with inverse limits (0, 13.3.1 [G]); finally, he laboriously checks that the theorem on formal functions is under the hypothesis of this general one (4.1.5 [G]).

In this paper we give the “obvious direct proof” of the theorem on formal functions. Very briefly, we prove that the completion of the Godement resolution of a coherent sheaf is a flasque resolution of the completion of the coherent sheaf and that taking sections in the Godement complex commutes with completion.

1. Theorem on formal functions

Definition 1. Let \(X \) be a scheme, \(p \subset \mathcal{O}_X \) a sheaf of ideals and \(\mathcal{M} \) an \(\mathcal{O}_X \)-module. The \(p \)-adic completion of \(\mathcal{M} \), denoted by \(\hat{\mathcal{M}} \), is

\[
\hat{\mathcal{M}} := \varprojlim_n \mathcal{M}/p^n\mathcal{M}
\]

If \(U = \text{Spec } A \) is an affine open subset and \(I = p(U) \), one has a natural morphism

\[
\Gamma(U, \mathcal{M}) \otimes_A A/I^n \to \Gamma(U, \mathcal{M}/p^n\mathcal{M})
\]
We say that

\[C \]

and then a morphism

\[\Gamma(U, \mathcal{M})^\wedge \to \Gamma(U, \hat{\mathcal{M}}) \]

where \(\Gamma(U, \mathcal{M})^\wedge \) is the I-adic completion of \(\Gamma(U, \mathcal{M}) \).

Definition 2. We say that \(\mathcal{M} \) is affinely \(p \)-acyclic if for any affine open subset \(U \) and any natural number \(n \), the sheaves \(\mathcal{M} \) and \(\mathcal{M}/p^n\mathcal{M} \) are acyclic on \(U \) and the morphism \(\Gamma(U, \mathcal{M}) \otimes_A A/I^n \to \Gamma(U, \mathcal{M}/p^n\mathcal{M}) \) is an isomorphism. In particular, \(\Gamma(U, \mathcal{M})^\wedge \to \Gamma(U, \hat{\mathcal{M}}) \) is an isomorphism.

Every quasi-coherent module is affinely \(p \)-acyclic.

Notations: For any sheaf \(F \), let us denote

\[0 \to F \to C^0F \to C^1F \to \cdots \to C^nF \to \cdots \]

its Godement resolution. We shall denote \(C^iF = \bigoplus_{i \geq 0} C^iF \) and \(F_i = \text{Ker}(C^iF \to C^{i+1}F) \). One has that \(C^0F_i = C^0F \).

Lemma 3. Let \(X \) be a scheme, \(\mathfrak{p} \) a coherent ideal and \(\mathcal{M} \) an \(\mathcal{O}_X \)-module. Denote \(I = \Gamma(X, \mathfrak{p}) \) and assume that \(\mathfrak{p} \) is generated by a finite number of global sections (this holds for example when \(X \) is affine). For any open subset \(V \subseteq X \) one has

\[\Gamma(V, C^0(\mathfrak{p}, \mathcal{M})) = I \cdot \Gamma(V, C^0\mathcal{M}) \]

In particular, the natural morphism \(pC^0\mathcal{M} \to C^0(\mathfrak{p}, \mathcal{M}) \) is an isomorphism.

Proof. If \(J \) is a finitely generated ideal of a ring \(A \) and \(M_i \) is a collection of \(A \)-modules, then \(J \cdot \prod M_i = \prod(J \cdot M_i) \). Now, by hypothesis \(\mathfrak{p} \) is generated by a finite number of global sections \(f_1, \ldots, f_r \). Let \(J = (f_1, \ldots, f_r) \). Then

\[\Gamma(V, C^0(\mathfrak{p}, \mathcal{M})) = \prod_{x \in V} p_x \cdot \mathcal{M}_x = \prod_{x \in V} J \cdot \mathcal{M}_x = J \cdot \prod_{x \in V} \mathcal{M}_x = J \cdot \Gamma(V, C^0\mathcal{M}) \]

Since \(I \cdot \prod_{x \in V} \mathcal{M}_x \) is contained in \(\Gamma(V, C^0(\mathfrak{p}, \mathcal{M})) \) one concludes. In particular, if \(V \) is affine, then \(\Gamma(V, C^0(\mathfrak{p}, \mathcal{M})) = I_V \cdot \Gamma(V, C^0\mathcal{M}) \), with \(I_V = \Gamma(V, \mathfrak{p}) \). It follows that \(pC^0\mathcal{M} \to C^0(\mathfrak{p}, \mathcal{M}) \) is an isomorphism.

Proposition 4. Let \(X \) be a scheme and let \(\mathfrak{p} \) be a coherent ideal. For any \(\mathcal{O}_X \)-module \(\mathcal{M} \) one has:

1. \(pC^i\mathcal{M} = C^i(\mathfrak{p}, \mathcal{M}) \) and \((C^i\mathcal{M})/p(C^i\mathcal{M}) = C^i(\mathcal{M}/p\mathcal{M}) \), for any \(i \).
2. \(C^0\mathcal{M} \) is affinely \(p \)-acyclic.
3. \(C^0\hat{\mathcal{M}} \) is flasque. Moreover, if \(\mathfrak{p} \) is generated by a finite number of global sections, then

\[\Gamma(X, C^0\hat{\mathcal{M}}) = \Gamma(X, C^0\mathcal{M})^\wedge \]

Proof. 1. We may assume that \(X \) is affine. Hence \(pC^0\mathcal{M} = C^0(\mathfrak{p}, \mathcal{M}) \) by the previous lemma and \((C^0\mathcal{M})/pC^0\mathcal{M} = C^0\mathcal{M}/C^0(\mathfrak{p}, \mathcal{M}) = C^0(\mathcal{M}/p\mathcal{M}) \). From the exact sequence

\[\mathcal{M}/p\mathcal{M} \to C^0\mathcal{M}/pC^0\mathcal{M} \to M_1/p\mathcal{M} \to 0 \]

and the isomorphism \(C^0\mathcal{M}/pC^0\mathcal{M} = C^0(\mathcal{M}/p\mathcal{M}) \) it follows that \(M_1/pM_1 = (\mathcal{M}/p\mathcal{M})_1 \) and \(pM_1 = (p\mathcal{M})_1 \). Consequently \(pC^1\mathcal{M} = pC^0(M_1) = C^0(p\mathcal{M})_1 = C^0((p\mathcal{M})_1) = C^1(p\mathcal{M}) \), and analogously \(C^1\mathcal{M}/pC^1\mathcal{M} = C^1(\mathcal{M}/p\mathcal{M}) \). Repeating this argument one concludes 1.
2. Denote $\mathcal{N} = C^0\mathcal{M}$. By (1), $\mathcal{N}/p^n\mathcal{N}$ is acyclic on any open subset. From the long exact sequence of cohomology associated to $0 \to p^n\mathcal{N} \to \mathcal{N} \to \mathcal{N}/p^n\mathcal{N} \to 0$ and the acyclicity of $p^n\mathcal{N}$ (by (1)) one obtains that
\[\Gamma(U, \mathcal{N}/p^n\mathcal{N}) = \Gamma(U, \mathcal{N})/\Gamma(U, p^n\mathcal{N}). \]
Moreover, if U is affine $\Gamma(U, p^n\mathcal{N}) = p^n(U)\Gamma(U, \mathcal{N})$, by Lemma 3. We have concluded.

3. Let us prove that $\mathcal{N} = C^0\mathcal{M}$ is flasque. It suffices to prove that its restriction to any affine open subset is flasque, so we may assume that X is affine. Let us denote $I = p(X)$. For any open subset V, one has as in the proof of (2)
\[\Gamma(V, \hat{\mathcal{N}}) = \lim_{\to} \Gamma(V, \mathcal{N}/p^n\mathcal{N}) = \lim_{\to} \Gamma(V, \mathcal{N})/\Gamma(V, p^n\mathcal{N}) \]
and by Lemma 3, $\Gamma(V, p^n\mathcal{N}) = I^n\Gamma(V, \mathcal{N})$. In conclusion, $\Gamma(V, \hat{\mathcal{N}}) = \Gamma(V, \mathcal{N})\hat{\to}$. One concludes that $\hat{\mathcal{N}}$ is flasque because \mathcal{N} is flasque and the I-adic completion preserves surjections. The same arguments prove the second part of the statement.

Proposition 5. If \mathcal{M} is affinely p-acyclic, then $\hat{\mathcal{M}}$ is a flasque resolution of $\hat{\mathcal{M}}$.

Proof. We already know that $\hat{\mathcal{M}}$ is flasque. Let us prove now that \mathcal{M}_1 is affinely p-acyclic. From the exact sequence
\[0 \to \mathcal{M}/p^n\mathcal{M} \to C^0(\mathcal{M}/p^n\mathcal{M}) \to \mathcal{M}_1/p^n\mathcal{M}_1 \to 0 \]
one has that $\mathcal{M}_1/p^n\mathcal{M}_1$ is acyclic on any affine open subset. Moreover, taking sections on an affine open subset $U = \text{Spec} A$, one obtains the exact sequence (let us denote $I = p(U)$)
\[0 \to \Gamma(U, \mathcal{M}) \otimes_A A/I^n \to \Gamma(U, C^0\mathcal{M}) \otimes_A A/I^n \to \Gamma(U, \mathcal{M}_1/p^n\mathcal{M}_1) \to 0 \]
and then $\Gamma(U, \mathcal{M}_1) \otimes_A A/I^n = \Gamma(U, \mathcal{M}_1/p^n\mathcal{M}_1)$, i. e. \mathcal{M}_1 is affinely p-acyclic.

Now, taking inverse limit in the above exact sequence (and taking into account that the I-adic completion preserves surjections) one obtains the exact sequence
\[0 \to \Gamma(U, \hat{\mathcal{M}}) \to \Gamma(U, C^0\mathcal{M}) \to \Gamma(U, \hat{\mathcal{M}}_1) \to 0 \]
Therefore the sequence $0 \to \hat{\mathcal{M}} \to C^0\hat{\mathcal{M}} \to \hat{\mathcal{M}}_1 \to 0$ is exact. Conclusion follows easily.

Remark 6. In the proof of the preceding proposition it has been proved that if \mathcal{M} is affinely p-acyclic, then $\hat{\mathcal{M}}$ is acyclic on any affine subset.

Lemma 7. Let A be a noetherian ring and $I \subset A$ an ideal. If $0 \to M' \to M \to N \to 0$ is an exact sequence of A-modules and N is finitely generated, then the I-adic completion $0 \to \hat{M}' \to \hat{M} \to \hat{N} \to 0$ is exact.

Proof. Let $L \subset M$ be a finite submodule surjecting on N and $L' = L \cap M'$ which is also finite because A is noetherian. The exact sequences
\[0 \to L \to M \to M/L \to 0, \quad 0 \to L' \to M' \to M'/L' \to 0, \quad 0 \to L' \to L \to N \to 0 \]
remain exact after I-adic completion, because L and L' are finite (this is a consequence of Artin-Rees lemma (10.10 [A])). Since $M/L \simeq M'/L'$ one concludes.
Theorem 8 (on formal functions). Let $f : X \to Y$ be a proper morphism of locally noetherian schemes, \mathfrak{p} a coherent sheaf of ideals on Y and $\mathfrak{p}\mathcal{O}_X$ the ideal induced in X. For any coherent module \mathcal{M} on X, the natural morphisms (where completions are made by \mathfrak{p} and $\mathfrak{p}\mathcal{O}_X$ respectively)

$$R^if_*\mathcal{M} \to R^i f_*(\hat{\mathcal{M}})$$

are isomorphisms. If $Y = \text{Spec } A$, then

$$H^i(X, \mathcal{M})^\wedge = H^i(X, \hat{\mathcal{M}})$$

Proof. The question is local on Y, so we may assume that $Y = \text{Spec } A$ is affine. It suffices to show that $H^i(X, \mathcal{M})^\wedge = H^i(X, \hat{\mathcal{M}})$. It is clear that $\mathfrak{p}\mathcal{O}_X$ is generated by its global sections. As usual, we denote $I = \Gamma(X, \mathfrak{p}\mathcal{O}_X)$.

Let $C\mathcal{M}$ be the Godement resolution of \mathcal{M}. Then $\hat{C}\mathcal{M}$ is a flasque resolution of $\hat{\mathcal{M}}$ (by Proposition 5) and $\Gamma(X, \hat{C}\mathcal{M}) = \Gamma(X, C\mathcal{M})^\wedge$ (by Proposition 4, (3)). Then we have to prove that the natural map

$$H^i(X, \mathcal{M})^\wedge = [H^i\Gamma(X, C\mathcal{M})]^\wedge \to H^i(\Gamma(X, C\mathcal{M})^\wedge) = H^i(\Gamma(X, \hat{C}\mathcal{M})) = H^i(X, \hat{\mathcal{M}})$$

is an isomorphism. Let us denote by d_i the differential of the complex $\Gamma(X, C\mathcal{M})$ on degree i. Completing the exact sequences

$$0 \to \ker d_i \to \Gamma(X, C\mathcal{M}) \to \im d_i \to 0$$

we obtain the exact sequences

$$0 \to \overline{\ker d_i} \to \Gamma(X, \hat{C}\mathcal{M}) \to \overline{\im d_i} \to 0$$

because, as we shall see below, the I-adic topology of $\Gamma(X, C\mathcal{M})$ induces in $\ker d_i$ the I-adic topology. Hence

$$H^i(X, \mathcal{M})^\wedge = (\ker d_i / \im d_{i-1})^\wedge \xrightarrow{\text{Lemma ?}} \overline{\ker d_i / \im d_{i-1}} = H^i(X, \hat{\mathcal{M}})$$

Let \mathcal{M}_i be the kernel of $C^i\mathcal{M} \to C^{i+1}\mathcal{M}$ (recall that $C^i\mathcal{M} = C^0\mathcal{M}_i$). Let us prove that the I-adic topology of $\Gamma(X, C\mathcal{M})$ induces the I-adic topology on $\ker d_i = \Gamma(X, \mathcal{M}_i)$. Intersecting the equality $I^n\Gamma(X, C^0\mathcal{M}_i) = \Gamma(X, C^n(\mathfrak{p}\mathcal{M}_i))$ with $\Gamma(X, \mathcal{M}_i)$, one obtains that the induced topology on $\Gamma(X, \mathcal{M}_i)$ is given by the filtration $\{\Gamma(X, \mathfrak{p}^n\mathcal{M}_i)\}$. Hence it suffices to show that this filtration is I-stable. Since $\mathfrak{p}^n\mathcal{M}_i = (\mathfrak{p}\mathcal{M}_i)_i$ (see the proof of 4.1.), it is enough to prove that the filtration $\{\Gamma(X, \mathfrak{p}^n\mathcal{M}_i)\}$ is I-stable; this is equivalent to show that $\oplus_{n=0}^\infty \Gamma(X, (\mathfrak{p}\mathcal{M}_i)_i)$ is a $D_1\mathcal{A}$-module generated by a finite number of homogeneous components, where $D_1\mathcal{A} = \oplus_{n=0}^\infty I^n$. By the exact sequence

$$\oplus_{n=0}^\infty \Gamma(X, C^{n-1}(\mathfrak{p}\mathcal{M}_i)) \to \oplus_{n=0}^\infty \Gamma(X, (\mathfrak{p}\mathcal{M}_i)_i) \to \oplus_{n=0}^\infty H^i(X, \mathfrak{p}^n\mathcal{M}) \to 0$$

it suffices to see the statement for the first and the third members. For the first one is obvious because $\Gamma(X, C^{n-1}(\mathfrak{p}\mathcal{M}_i)) = I^n\Gamma(X, C^{n-1}\mathcal{M}_i)$. For the third one, it suffices to see that it is a finite $D_1\mathcal{A}$-module. Let $X' = X \times_A D_1\mathcal{A}$, $\pi : X' \to X$ the natural projection and $\mathcal{M}' = \oplus_{n=0}^\infty \mathfrak{p}^n\mathcal{M}$ the obvious $C_{X'}$-module. Since $H^i(X', \mathcal{M}')$ is a finite $D_1\mathcal{A}$-module, one concludes from the equalities $H^i(X', \mathcal{M}') = H^i(X, \pi_*\mathcal{M}') = \oplus_{n=0}^\infty H^i(X, \mathfrak{p}^n\mathcal{M})$, because $\pi_*\mathcal{M}' = \oplus_{n=0}^\infty \mathfrak{p}^n\mathcal{M}$.
Remark 9. Reading carefully the above proof, it is not difficult to see that one has already showed that $H^i(X, \mathcal{M}) = \lim_{\rightarrow} H^i(X, \mathcal{M}/p^n\mathcal{M})$.

REFERENCES

Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain
E-mail address: fsancho@usal.es

Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain
E-mail address: sancho@unex.es