
Olimpiada
Matemática
Española RSME

LXII Olimpiada Matemática

Española

Primera Fase

16 de enero de 2026
Soluciones

1. Encuentra todas las soluciones reales del sistema de ecuaciones{
x3 = 5x+ y
y3 = 5y + x

Solución propuesta: El sistema de ecuaciones anterior equivale a{
y = x3 − 5x
x = y3 − 5y

Si se de�ne la función f(x) = x3 − 5x, el problema consiste en buscar valores reales de x
tales que f(f(x)) = x, en cuyo caso, tanto (x, f(x)) como (f(x), x) veri�carán el sistema
de ecuaciones (es decir, las soluciones son simétricas respecto al eje y = x). Por lo tanto,
el objetivo se reduce a encontrar las raíces reales del polinomio

(x3 − 5x)3 − 5(x3 − 5x)− x = x(x8 − 15x6 + 75x4 − 130x2 + 24)

Así pues, tenemos la raíz x = 0 que se corresponde con la solución trivial (0, 0). Los
cuadrados del resto de raíces son las raíces del polinomio p(z) = z4−15z3+75z2−130z+24.
Afortunadamente, este último cuenta con dos raíces enteras, 4 y 6. Mediante la regla de
Ru�ni probamos que p(z) = (z−4)(z−6)(z2−5z+1). Las raíces del polinomio z2−5z+1
son (5 +

√
21)/2 y (5−

√
21)/2. Los nueve puntos siguientes son las soluciones al sistema

de ecuaciones, que coinciden con los puntos de corte entre las grá�cas azul y roja.
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2. Encuentra todos los enteros no negativos a que cumplen que

351 + 351 + 350+a

es un cuadrado perfecto.

Solución propuesta: Si 350(3+3+3a) = z2 para algún entero z, debe existir otro entero
d tal que (3+3+3a) = d2. El caso a = 0 quedaría descartado pues 7 no es cuadrado perfecto.
El caso a = 1 es válido y se correspondería con z = 326. Si a > 1, entonces tendríamos
351(1+ 1+3a−1) = z2. Existiría entonces otro entero e tal que 3(1+ 1+3a−1) = e2. Luego,
e sería múltiplo de 3 y e2 sería múltiplo de 9. Según eso, 1 + 1 + 3a−1 sería múltiplo de 3,
lo cual no es posible si a > 1. Por lo tanto, la única posibilidad es a = 1.



3. Razona cuál es el área del cuadrado azul.

1

Solución: El ángulo θ de la �gura veri�ca estas dos condiciones:
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sen θ =
(2r − 1)/2

r
, cos θ =

r − 1

r

Como sen2 θ + cos2 θ = 1, se tiene que

(2r − 1)2

4r2
+

(r − 1)2

r2
= 1

Por lo tanto, r tiene que ser una de las dos
soluciones de la ecuación 4r2− 12r+5 = 0,
que son 0.5 y 2.5. La primera se desecha
pues r > 1. Por lo tanto, el lado del cua-
drado es 4 y su área, 16.

4. Consideremos un trapecio isósceles y los seis segmentos correspondientes a sus cuatro lados

y a sus dos diagonales. Tres de esos segmentos se pintan de rojo y los tres restantes se

pintan de azul. Demuestra que siempre es posible escoger tres segmentos de un mismo color

cuyas longitudes coincidan con las de los lados de algún triángulo.

Solución propuesta: Téngase en cuenta que tres segmentos pueden componer un trián-
gulo cuando la suma de los dos segmentos más cortos es mayor que la del más largo. Así
pues, todos los casos que puedan plantearse tienen una solución trivial para alguno de los
dos colores excepto el que presentamos a continuación:
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En ese caso, se pueden dar dos situaciones:

(i) Si b ≥ a, como en el trapecio de la izquierda, podremos formar un triángulo con
los segmentos azules si |AB|<|BC| + |CD|, lo cual es cierto pues |AB| = 2a + b,
|BC| > a+ b y |CD| = b ≥ a .

(ii) Si b < a, como en el trapecio de la derecha, podremos formar un triángulo con los seg-
mentos rojos siempre y cuando |AD|<|AC|+ |AD|, es decir, cuando

√
(a+ b)2 + c2 <

2
√
a2 + c2. Eso equivale a 3a2 > b2 + 2ab, lo cual es cierto en estas condiciones.



5. Ensartamos en un cordel 2n bolas blancas y otras 2n bolas negras, formando una cadena

abierta. Prueba que, independientemente del orden en que se ensarten las bolas, siempre

es posible cortar un segmento de la cadena con 2n bolas y con el mismo número de bolas

blancas y negras.

Solución propuesta: La idea es la siguiente: si en la mitad izquierda de la cadena hay
más negras que blancas, en la mitad derecha ocurrirá lo contrario. Parece razonable pensar
que, si nos vamos desplazando una posición cada vez, de izquierda a derecha, habrá algún
momento en que los números se igualen. A continuación vamos a intentar formalizarlo.

La cadena consta de 4n bolas. DenóteseD1 = N1−B1, siendo B1 el número de bolas blancas
que se encuentran en la mitad izquierda de la cadena, es decir, entre las 2n posiciones
que van de la 1 a la 2n, ambas inclusive, y N1 el número de bolas negras en las mismas
posiciones. Este cálculo se repite a medida que nos desplazamos hacia la derecha hasta llegar
a la mitad derecha de la cadena. Es decir, que podemos de�nir, para cada i = 1, 2, . . . 2n+1,
Di = Ni − Bi. Como Bi + Ni = 2n, que es par, entonces Bi y Ni son ambos pares o bien
ambos impares. En cualquiera de los dos casos se veri�ca que Di = Ni −Bi será un entero
par. Por lo tanto, cada vez que avanzamos una posición en la cadena ocurre que Di+1 es
igual a Di más 0, más 2 o más -2, según la situación.

Si D1 = 0, efectuaremos un único corte entre las posiciones 2n y 2n+ 1. Supongamos que
D1 ≥ 2. Como dijimos al principio, eso implica que D2n+1 ≤ −2. Necesariamente debe
existir algún i entre 2 y 2n tal que Di = 0. En ese caso, cortaremos entre i− 1 e i y entre
i+ 2n− 1 e i+ 2n. Podemos razonar igual para el caso D1 ≤ −2.

6. Prueba que el resultado de sumar 1 al producto de cuatro números naturales consecutivos

es un cuadrado perfecto.

Solución propuesta: Resulta sensato en estos casos ver qué sucede en casos sencillos,
como por ejemplo 1 · 2 · 3 · 4 + 1 = 52, o también 2 · 3 · 4 · 5 + 1 = 112, para inferir que
n(n+ 1)(n+ 2)(n+ 3) + 1 podría ser igual a (n(n+ 3) + 1)2. Para demostrarlo, basta con
comprobar que ambos polinomios equivalen a n4 + 6n3 + 11n2 + 6n+ 1.


