
Ejercicios para la segunda entrega

1. Derivación

Ejercicio 1.1. Se considera la función f(x) = 3x4 − 11x2 + x+ 2. Utilizando los teoremas
de las funciones continuas en un intervalo y los teoremas de las funciones continuas y
derivables en intervalos, se pide:

1. Hallar intervalos donde la función f(x) tiene un extremo y analizar si es un máximo
o un mı́nimo.

2. Hallar los puntos donde la pendiente de f(x) alcanza máximo y mı́nimo locales.

Ejercicio 1.2. Demostrar que la función f(x) = xn + px+ q con n ≥ 2 entero y p, q reales
no puede tener más de dos soluciones reales cuando n par, ni más de tres cuando n impar.

Ejercicio 1.3. Determina el valor del número real k para que exista y sea finito el siguiente
ĺımite:

ĺım
x→0

exp(x)− exp(−x) + kx

x− sen(x)

Calcula el ĺımite para ese valor de k.

Ejercicio 1.4. Sea [a, b] un intervalo que no contiene al 0. Sea h : [a, b] → R una función

continua que es derivable en (a, b) tal que
h(a)

a
=

h(b)

b
. Demostrar que existe un x0 ∈ (a, b)

tal que la tangente a la gráfica de h en el punto (x0, h(x0)) pasa por (0, 0).

Ejercicio 1.5. Se considera la función f(x) definida en R :

f(x) =

{
ax2 + bx+ c si |x| ≤ 1
1
|x| si |x| > 1.

.

1. Calcular los valores de a, b y c que hacen que f sea continua y derivable en todo R.

2. ¿Es la función f ′(x) derivable en todo R? Justifica la respuesta.

Ejercicio 1.6. Justificar si es cierta la siguiente afirmación (demostrarla o poner un con-
traejemplo):

• Si una función f : R → R es derivable en todo R y tiene derivada positiva en todos
los puntos salvo finitos, entonces es estrictamente creciente en todo punto.
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Ejercicio 1.7. Justificar si es cierta la siguiente afirmación (demostrarla o poner un con-
traejemplo):

• Si una función f : R → R es continua en todo R y sabemos que es estrictamente
creciente en todos los puntos salvo finitos, entonces es estrictamente creciente en todo
punto.

Ejercicio 1.8. Justificar si es cierta la siguiente afirmación (demostrarla o poner un con-
traejemplo):

• Si una función f : R → R está definida en todo R y sabemos que es estrictamente
creciente en todos los puntos salvo finitos, entonces es estrictamente creciente en todo
punto.

Ejercicio 1.9. Si una función f : R → R es estrictamente creciente en todo punto, entonces
dada cualquier g : A ⊆ R → R, los máximos y los mı́nimos (relativos y absolutos) de f ◦g
se alcanzan en los mismos puntos que los de g. De hecho, f ◦ g es creciente en x si y sólo
si lo es g.

• Comprobarlo para f(x) = exp(x); g(x) = x3 − 3x+ 2.

Ejercicio 1.10. Si una función f : R → R es estrictamente creciente en todo punto,
entonces dada cualquier g : A ⊆ R → R, los máximos y los mı́nimos (relativos y absolutos)
de f ◦ g se alcanzan en los mismos puntos que los de g. De hecho, f ◦ g es creciente en x
si y sólo si lo es g.

• Comprobarlo para f(x) = x3 + x+ 1; g(x) = sen(x).

Ejercicio 1.11. Si una función f : R → R es estrictamente creciente en todo punto,
entonces dada cualquier g : A ⊆ R → R, los máximos y los mı́nimos (relativos y absolutos)
de f ◦ g se alcanzan en los mismos puntos que los de g. De hecho, f ◦ g es creciente en x
si y sólo si lo es g.

• Utilizar esto para encontrar los intervalos de crecimiento y decrecimiento y los ex-
tremos de

(arc tg(− exp(x3 − x+ 2)))5

sin hacer muchas cuentas, pero indicando las derivadas de las funciones que estamos
componiendo.

Ejercicio 1.12. Si una función f : R → R es estrictamente creciente en todo punto,
entonces dada cualquier g : A ⊆ R → R, los máximos y los mı́nimos (relativos y absolutos)
de f ◦ g se alcanzan en los mismos puntos que los de g. De hecho, f ◦ g es creciente en x
si y sólo si lo es g.

• Poner un ejemplo de que si la función f es creciente pero no estrictamente, entonces
los intervalos de crecimiento y decrecimiento de g y de f ◦ g no tienen por qué coincidir.

• Poner un ejemplo de que si f no está definida en todo R, entonces los máximos de
g y de f ◦ g tampoco tienen por qué coincidir.

Ejercicio 1.13. Si una función f : A ⊆ R → R es estrictamente creciente en todo punto
de su dominio y g : B ⊆ R → R cumple que f ◦ g está definida en todo B, entonces los
máximos y los mı́nimos (relativos y absolutos) de f ◦ g se alcanzan en los mismos puntos
que los de g. De hecho, f ◦ g es creciente en x si y sólo si lo es g.
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• Utilizando esto, ¿podemos encontrar los intervalos de crecimiento y decrecimiento y
los extremos de log(arc tg(x4 − x2 + 2))? Encontrarlos como se pueda.

Ejercicio 1.14. Si una función f : A ⊆ R → R es estrictamente creciente en todo punto
de su dominio y g : B ⊆ R → R cumple que f ◦ g está definida en todo B, entonces los
máximos y los mı́nimos (relativos y absolutos) de f ◦ g se alcanzan en los mismos puntos
que los de g. De hecho, f ◦ g es creciente en x si y sólo si lo es g.

• Utilizando esto, ¿podemos encontrar los intervalos de crecimiento y decrecimiento y
los extremos de log(arc tg(x3 − x))? Encontrarlos como se pueda.

Ejercicio 1.15. Si una función f : A ⊆ R → R es estrictamente creciente en todo punto
de su dominio y g : B ⊆ R → R cumple que f ◦ g está definida en todo B, entonces los
máximos y los mı́nimos (relativos y absolutos) de f ◦ g se alcanzan en los mismos puntos
que los de g. De hecho, f ◦ g es creciente en x si y sólo si lo es g.

• Utilizando esto, ¿podemos encontrar los intervalos de crecimiento y decrecimiento y
los extremos de

√
arc tg(x3 − x)? Encontrarlos como se pueda.

Ejercicio 1.16. Si una función f : A ⊆ R → R es estrictamente creciente en todo punto
de su dominio y g : B ⊆ R → R cumple que f ◦ g está definida en todo B, entonces los
máximos y los mı́nimos (relativos y absolutos) de f ◦ g se alcanzan en los mismos puntos
que los de g. De hecho, f ◦ g es creciente en x si y sólo si lo es g.

• Utilizando esto, ¿podemos encontrar los intervalos de crecimiento y decrecimiento y
los extremos de

√
arc tg(x4 − x2 + 2)? Encontrarlos como se pueda.

Ejercicio 1.17. Determinar los valores c ∈ [−3, 4] que cumplen el Teorema de Valor medio
para la función f(x) = x3 − x2 + x+ 8.

Acompañar de algún dibujo que lo relacione con el Teorema de Rolle (no necesaria-
mente hecho a mano).

Ejercicio 1.18. Determinar los valores c ∈ [−1, 1] que cumplen el Teorema de Valor medio
para la función f(x) = x3 − 3.

Acompañar de algún dibujo que lo relacione con el Teorema de Rolle (no necesaria-
mente hecho a mano).

Ejercicio 1.19. Determinar los valores c ∈ [−2, 4] que cumplen el Teorema de Valor medio
para la función f(x) = sen(πx) + x2 + 2.

Acompañar de algún dibujo que lo relacione con el Teorema de Rolle (no necesaria-
mente hecho a mano).

Ejercicio 1.20. Determinar los valores c ∈ [0, 4] que cumplen el Teorema de Valor medio
para la función f(x) = x4 − 4x2 + π.

Acompañar de algún dibujo que lo relacione con el Teorema de Rolle (no necesaria-
mente hecho a mano).

Ejercicio 1.21. Determinar los valores c ∈ [0, 3] que cumplen el Teorema de Valor medio
para la función x4 − 3x2 +

√
π.

Acompañar de algún dibujo que lo relacione con el Teorema de Rolle (no necesaria-
mente hecho a mano).
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2. Integración

Ejercicio 2.1. Determinar la siguiente integral indefinida:∫
x3 + x2 − 2x+ 1

x2 − 2
dx.

Ejercicio 2.2. Determinar la siguiente integral indefinida:∫
2x+ 5

(x2 − 2)2
dx.

Ejercicio 2.3. Determinar la siguiente integral indefinida (utilizando integración por par-
tes): ∫

x3 exp(2x) dx.

Ejercicio 2.4. Determinar la siguiente integral indefinida (utilizando integración por par-
tes): ∫

x2 cos(2x) dx.

Ejercicio 2.5. Determinar la siguiente integral indefinida (utilizando integración por par-
tes): ∫

x2 sen(2x) dx.

Ejercicio 2.6. Determinar la siguiente integral indefinida:∫
x3 + 2x2 − x

x2 + x− 2
dx.

Ejercicio 2.7. Determinar la siguiente integral indefinida:∫
x
√
x− 3 dx.

Ejercicio 2.8. Determinar la siguiente integral indefinida utilizando el cambio de variable
u = sen(x): ∫

3 cos(x)

sen3(x) + 2cos2(x) sen(x)
dx.

Ejercicio 2.9. Determinar la siguiente integral indefinida utilizando el cambio de variable
u = cos(x): ∫

1

sen(x)
dx.

Indicación: En algún momento puede venir bien saber que sen(arc cos(t)) = 1/
√
1− t2.
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Ejercicio 2.10. Partimos de que ∫ 1

0

x2 dx =
1

3
. (1)

Dados b > 0 y n = 1, 2, 3, 4 hallar el área que queda debajo de la poligonal que coincide
con f(x) = x2 en los puntos

(0 = x0, x1 = b/2n, x2 = 2b/2n, . . . , b = x2n)

de manera exacta y aproximada. Deducir que
∫ b

0
x2 dx = b3

3
.

Ejercicio 2.11. Determinar la siguiente integral definida∫ 1

√
2/2

1

sen(x)
dx.

Ejercicio 2.12. Determinar la siguiente integral definida∫ 1

0

x
√
2x− 1 dx.

Ejercicio 2.13. Determinar la siguiente integral definida∫ 2

1

exp(x2)x dx.

Ejercicio 2.14. Determinar la siguiente integral definida (utilizando integración por par-
tes): ∫ 1

0

x2 exp(2x) dx.

Ejercicio 2.15. Determinar la siguiente integral definida (utilizando integración por par-
tes): ∫ 1

0

x cos(2x) dx.

Ejercicio 2.16. Determinar la siguiente integral definida (utilizando integración por par-
tes): ∫ 1

0

x sen(2x) dx.

Ejercicio 2.17. Determinar la siguiente integral definida∫ 3

−2

exp(x2)x dx.
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Ejercicio 2.18. Determinar la siguiente integral definida∫ 3

−2

x(x2 + 1)5 dx.

Ejercicio 2.19. Determinar la siguiente integral definida∫ 3

−2

|x2 − 3x+ 2| dx.

Ejercicio 2.20. Determinar la siguiente integral∫ x

−x

|t2 − 1| dx, x ∈ (0,∞).

Ejercicio 2.21. Determinar la siguiente integral∫ x

−x

| sen(t)| dx, x ∈ (0, 7).
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