Fundamentos Científicos del Currículum I

Números reales

Definición axiomática de los números reales

Los números reales forman conjunto $\mathbb R$ en el que están definidas dos operaciones, llamadas suma y producto:

$$\mathbb{R} \times \mathbb{R} \stackrel{+}{\longrightarrow} \mathbb{R} (x, y) \mapsto x + y, \quad \mathbb{R} \times \mathbb{R} \stackrel{\cdot}{\longrightarrow} \mathbb{R}, \quad (x, y) \mapsto x \cdot y$$

y una relación de orden que lo dotan de estructura de cuerpo conmutativo ordenado.

Definición axiomática de los números reales

Los números reales forman conjunto \mathbb{R} en el que están definidas dos operaciones, llamadas suma y producto:

$$\mathbb{R} \times \mathbb{R} \stackrel{+}{\longrightarrow} \mathbb{R} (x, y) \mapsto x + y, \quad \mathbb{R} \times \mathbb{R} \stackrel{\cdot}{\longrightarrow} \mathbb{R}, \quad (x, y) \mapsto x \cdot y$$

y una relación de orden que lo dotan de estructura de cuerpo conmutativo ordenado.

La suma y el producto satisfacen los siguientes axiomas.

Definición axiomática de los números reales

Los números reales forman conjunto \mathbb{R} en el que están definidas dos operaciones, llamadas suma y producto:

$$\mathbb{R} \times \mathbb{R} \stackrel{+}{\longrightarrow} \mathbb{R} (x, y) \mapsto x + y, \quad \mathbb{R} \times \mathbb{R} \stackrel{\cdot}{\longrightarrow} \mathbb{R}, \quad (x, y) \mapsto x \cdot y$$

y una relación de orden que lo dotan de estructura de cuerpo conmutativo ordenado.

La suma y el producto satisfacen los siguientes axiomas.

Axioma I. Conmutatividad: para todo par de elementos $x, y \in \mathbb{R}$ se cumple que

$$x + y = y + x$$
, $x \cdot y = y \cdot x$

Axioma II. Asociatividad: para toda terna de elementos $x, y, z \in \mathbb{R}$ se cumple que

$$X + (y + z) = (X + y) + z, \quad X \cdot (y \cdot z) = (X \cdot y) \cdot z$$

Axioma III. Propiedad distributiva del producto con respecto a la suma: para toda terna de elementos $x, y, z \in \mathbb{R}$ se cumple que

$$x(y+z)=xy+xz$$

Axioma IV. Existencia de elementos neutros: existen en $\mathbb R$ dos elementos distintos, que se denotan 0 y 1 tales que para todo $x \in \mathbb R$

$$x + 0 = 0 + x = x$$
, $x \cdot 1 = 1 \cdot x = 1$

Axioma V. Existencia de elemento opuesto para la suma y de inverso para el producto:

a) Para cada $x \in \mathbb{R}$ existe un elemento $y \in \mathbb{R}$ tal que

$$x + y = y + x = 0$$

Puede probarse que para cada x este elemento es único. Se denota -x.

b) Para cada $x \in \mathbb{R}$, $x \neq 0$, existe un elemento $y \in \mathbb{R}$ tal que

$$xy = yx = 1$$

Puede probarse que para cada $x \neq 0$ este elemento es único. Se denota x^{-1} .

Por satisfacer estos cinco axiomas, \mathbb{R} es un cuerpo conmutativo.

Axioma V. Existencia de elemento opuesto para la suma y de inverso para el producto:

a) Para cada $x \in \mathbb{R}$ existe un elemento $y \in \mathbb{R}$ tal que

$$x + y = y + x = 0$$

Puede probarse que para cada x este elemento es único. Se denota -x.

b) Para cada $x \in \mathbb{R}$, $x \neq 0$, existe un elemento $y \in \mathbb{R}$ tal que

$$xy = yx = 1$$

Puede probarse que para cada $x \neq 0$ este elemento es único. Se denota x^{-1} .

Axiomas de orden.

 \mathbb{R} contiene un subconjunto, que se denota P ó \mathbb{R}^+ , y sus elementos se llaman positivos, cumpliendo:

Axiomas de orden.

 \mathbb{R} contiene un subconjunto, que se denota P ó \mathbb{R}^+ , y sus elementos se llaman positivos, cumpliendo:

Axioma VI. Propiedad de tricotomía: cada elemento $x \in \mathbb{R}$ satisface una y solo una de las siguientes posibilidades:

$$x \in P$$
; $x = 0$, $-x \in P$

A partir de conjunto P se define en \mathbb{R} una relación de orden:

$$x < y$$
 si $x = y$ o si $y - x \in P$.

Este orden es compatible con la suma:

$$X < Y \implies X + Z < Y + Z, \forall Z$$

y con el producto:

$$x < y, z > 0, \implies xz < yz.$$

 \mathbb{R} es un cuerpo ordenado.

Axiomas de orden.

 \mathbb{R} contiene un subconjunto, que se denota P ó \mathbb{R}^+ , y sus elementos se llaman positivos, cumpliendo:

Axioma VI. Propiedad de tricotomía: cada elemento $x \in \mathbb{R}$ satisface una y solo una de las siguientes posibilidades:

$$x \in P$$
: $x = 0$, $-x \in P$

Axioma VII. Estabilidad de las operaciones: si $x, y \in P$ entonces

$$x + y \in P$$
, $xy \in P$.

4□ → 4♂ → 4 ≧ → 4 ≧ → 5 ♥ 9 Q (~ 10/37

Axioma VIII. De completitud de Dedekind. Si A y B son subconjuntos que forman una partición de $\mathbb R$ tal que a < b para cada $a \in A$ y $b \in B$, entonces existe un número real $c \in \mathbb R$ (que es único) que cumple:

- ▶ si $x \in \mathbb{R}$ y x < c entonces $x \in A$
- ▶ si $x \in \mathbb{R}$ y x > c entonces $x \in B$.

Es decir,

- ▶ o bien $A = \{x \in R : x \le c\}$ y $B = \{x \in R : x > c\}$;
- ▶ o bien $A = \{x \in R : x < c\}$ y $B = \{x \in R : x \ge c\}$.

Sucesiones convergentes en Q

Definición

Se dice que una sucesión (x_n) de números racionales converge a un número racional I y se escribe $\lim_{n\to\infty}(x_n)=I$, o también, $(x_n)\to I$, si

$$\forall \epsilon > 0, \ \epsilon \in \mathbb{Q}, \ \exists \nu \in \mathbb{N} : \ n > \nu \implies |x_n - l| < \epsilon$$

Ejemplos

- 1. La sucesión $\left(\frac{1}{n}\right)_n$ converge a 0.
- 2. La sucesión $((-1)^n)$ no es convergente.

Ejercicio

Compruébese que si una sucesión tiene límite, éste es único.

Sucesiones de Cauchy

Definición

Se dice que una sucesión de números racionales (x_n) es de Cauchy si

$$\forall \epsilon > 0, \epsilon \in \mathbb{Q}, \exists \nu \in \mathbb{N} : p, q \geq \nu \implies |x_p - x_q| < \epsilon$$

Proposición

- 1. Toda sucesión convergente es de Cauchy.
- 2. Toda sucesión de Cauchy es acotada.
- 3. Toda sucesión creciente y acotada superiormente es de Cauchy.
- 4. Toda sucesión decreciente y acotada inferiormente es de Cauchy.

Proposición

- 1. Toda sucesión convergente es acotada.
- 2. La suma (respectivamente el producto) de sucesiones convergentes es una sucesión convergente y su límite es la suma (resp. el producto) de sus límites.
- 3. Sea (x_n) una sucesión convergente. Si $\lim_{n\to\infty}(x_n)=l\neq 0$ y $x_n\neq 0$. $\forall n\in\mathbb{N}$, entonces la sucesión $\left(\frac{1}{x_n}\right)$ es convergente y

$$\lim_{n\to\infty} \left(\frac{1}{x_n}\right) = \left(\frac{1}{l}\right)$$

La sucesión

$$x_1 = 2$$
, $x_{n+1} = \frac{x_n^2 + 2}{2x_n}$

es de Cauchy y no es convergente en Q:

$$x_1 = 2$$
, $x_{n+1} = \frac{x_n^2 + 2}{2x_n}$

Proposición

- 1. La suma y el producto de dos sucesiones de Cauchy es una sucesión de Cauchy.
- 2. Las sucesiones de Cauchy de números racionales forman un subanillo del anillo de todas las sucesiones de números racionales.

Definición

Diremos que una sucesión de Cauchy de números racionales (x_n) es positiva existen un número racional positivo r > 0, y un número natural n_0 tales que

$$\{x_n: n \geq n_0\} \subset [r, \infty)$$

Definición

Diremos que una sucesión de Cauchy de números racionales (x_n) es negativa existen un número racional positivo r>0, y un número natural n_0 tales que

$$\{x_n: n \geq n_0\} \subset (-\infty, -r]$$

Denotaremos por \mathcal{C}^+ al conjunto de las sucesiones de Cauchy positivas y por \mathcal{C}^- al conjunto de las sucesiones de Cauchy negativas

Definición

Diremos que una sucesión de Cauchy de números racionales (x_n) es nula si es convergente y su límite es cero.

Denotemos por $\mathcal C$ al conjunto de sucesiones de Cauchy de números racionales y por $\mathcal N$ al subconjunto de todas las sucesiones nulas.

Ejercicio

Comprueba que la suma de dos sucesiones nulas es una sucesión nula, y que el producto de una sucesión nula por una sucesión de Cauchy es una sucesión de Cauchy nula.

Esto significa que \mathcal{N} es un ideal del anillo \mathcal{C} .

Proposición

Cada sucesión de Cauchy de números racionales pertenece a uno y solo uno de los subconjuntos \mathcal{C}^+ , \mathcal{C}^- o \mathcal{N} . Es decir:

$$\mathcal{C} = \mathcal{C}^+ \sqcup \mathcal{C}^- \sqcup \mathcal{N}$$

Ejercicio

Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de Cauchy no nula. Sabemos que entonces (x_n) es positiva o negativa, es decir que existen un número racional r>0 y un número natural n_0 tales que o bien $\{x_n|n>n_0\}\subset [r,+\infty)$ o bien $\{x_n|n>n_0\}\subset (-\infty,-r]$. Demuestra que la sucesión definida por:

$$y_n = 1$$
, si $n \le n_0$, $y_n = \frac{1}{x_n}$ si $n > n_0$

es de Cauchy y que $\lim_{n\to\infty} (x_n \cdot y_n) = 1$.

Como ejercicio, compruébense las siguientes afirmaciones.

1. La relación $(x_n) \sim (y_n) \iff \lim_{n \to \infty} (x_n - y_n) = 0$ es de equivalencia. La clase de equivalencia de (x_n) es

$$[(x_n)]=(x_n)+\mathcal{N}.$$

2. Dado un número racional, x, la clase de equivalencia de la sucesión constante (x) es

$$[(x)] = \{(x_n) \in \mathcal{C} : \lim_{n \to \infty} (x_n) = x\}$$

3. Si $(x_n) \sim (x'_n)$ e $(y_n) \sim (y'_n)$ entonces:

$$(x_n + y_n) \sim (x'_n + y'_n)$$
 e $(x_n \cdot y_n) \sim (x'_n \cdot y'_n)$

4. Las operaciones

$$[(x_n)] + [(y_n)] := [(x_n + y_n)] \ y \ [(x_n)] \cdot [(y_n)] := [(x_n \cdot y_n)]$$

definen una estructura de anillo conmutativo con unidad en el conjunto cociente \mathcal{C}/\sim . El elemento cero es [(0)] y el elemento unidad es [(1)].

Equivalencia de sucesiones de Cauchy

Definición

Diremos que dos sucesiones de Cauchy de números racionales (x_n) e (y_n) son equivalentes si la sucesión $(x_n - y_n)$ converge a cero. Lo denotaremos:

$$(x_n) \sim (y_n) \iff \lim_{n \to \infty} (x_n - y_n) = 0$$

Ejemplos

- 1. Si $\lim_{n\to\infty}(x_n)=0$, entonces $\forall (y_n)\in\mathcal{C}$ se cumple que $(x_n+y_n)\sim(y_n)$.
- 2. Si $\lim_{n\to\infty} (x_n) = 1$, entonces $\forall (y_n) \in \mathcal{C}$ se cumple que $(x_n \cdot y_n) \sim (y_n)$.

5. La aplicación

$$i: \mathbb{Q} \to \mathcal{C}/\sim x \mapsto [(x)]$$

es un morfismo de anillos (es decir, i(x - y) = i(x) - i(y), $i(x \cdot y) = i(x) \cdot i(y)$, i(1) = [(1)]) inyectivo.

6. Si (x_n) es una sucesión positiva (respectivamente, negativa) y $(x_n) \sim (x'_n)$ entonces (x'_n) es también una sucesión positiva (respectivamente, negativa).

Proposición

El anillo \mathcal{C}/\sim es un cuerpo.

Demostración

Sea $[(x_n)_{n\in\mathbb{N}}] \neq [(0)_{n\in\mathbb{N}}]$. Sabemos que existen un número racional r>0 y un número natural n_0 tales que o bien $\{x_n|n>n_0\}\subset [r,+\infty)$ o bien $\{x_n|n>n_0\}\subset (-\infty,\ -r]$. Por el Ejercicio 3 sabemos que la sucesión definida por:

$$y_n = 1$$
, si $n \le n_0$, $y_n = \frac{1}{x_n}$ si $n > n_0$

es de Cauchy y que $(x_n \cdot y_n) \to 1$. Luego $[(x_n)_{n \in \mathbb{N}}] \cdot [(y_n)_{n \in \mathbb{N}}] = [(1)_{n \in \mathbb{N}}]$

Hemos probado en la Proposicion 4 que toda sucesión de Cauchy que no converge a cero es positiva o negativa, luego todo elemento no nulo de *R* es positivo o negativo:

$$R = \{0\} \sqcup P \sqcup -P$$
 (Axioma VI)

Es sencillo probar que la suma y el producto de dos elementos de P son elementos de P; es decir, que R satisface el Axioma VII.

Definiciones

En el cuerpo $R = \mathcal{C}/\sim$ llamaremos positivos, a los elementos del conjunto P:

$$P = \{ [(x_n)] : (x_n) \in \mathcal{C}^+ \} =$$

$$\{ [(x_n)] : \exists r > 0, \exists \nu \in \mathbb{N} : n > \nu \implies x_n \ge r \}$$

Diremos que un elemento $[(x_n)]$ de R es negativo si $(x_n) \in C^-$.

Observemos que $(x_n) \in \mathcal{C}^+$ sí y sólo sí $(-x_n) \in \mathcal{C}^-$. Luego, el conjunto de los elementos negativos de R es:

$$-P = \{ [(x_n)] : (x_n) \in \mathcal{C}^- \} = \{ [(x_n)] : -[(x_n)] \in P \}$$

Definición

Dados $x = [(x_n)]$ e $y = [(y_n)]$ elementos de R, diremos que x < y si x = y o $y - x \in P$.

Definición

Dados $x = [(x_n)]$ e $y = [(y_n)]$ elementos de R, diremos que $x \le y$ si x = y o $y - x \in P$.

Es sencillo comprobar que se trata de una relación de orden total compatible con la suma y el producto, es decir, $(R, +, \cdot, \leq)$ es un cuerpo ordenado.

Proposición

El cuerpo ordenado ($R = \mathcal{C}/\sim, +, \cdot, \leq$) satisface el Axioma VIII o Axioma de Dedekind, es decir:

Si A y B son dos subconjuntos no vacíos de R tales que:

- $ightharpoonup R = A \sqcup B$
- ▶ $\forall a \in A, \forall b \in B$ se cumple que a < b

entonces existe un único $c \in R$ tal que:

- ▶ o bien $A = \{x \in R : x \le c\}$ y $B = \{x \in R : x > c\}$;
- ▶ o bien $A = \{x \in R : x < c\}$ y $B = \{x \in R : x \ge c\}$.

Definición

Dados $x = [(x_n)]$ e $y = [(y_n)]$ elementos de R, diremos que $x \le y$ si x = y o $y - x \in P$.

Es sencillo comprobar que se trata de una relación de orden total compatible con la suma y el producto, es decir, $(R, +, \cdot, \leq)$ es un cuerpo ordenado.

La aplicación $i: \mathbb{Q} \to R$, i(x) = [(x)] conserva el orden, es decir, $x \le y$ si y solo si, $i(x) \le i(y)$. Así, el orden definido en R extiende al orden de los números racionales.

4□ → 4□ → 4 □ → 4 □ → □ → 9 Q (~ 30/37

Demostración

UNICIDAD: Si dos elementos distintos c_1 y c_2 satsifacen las condiciones del enunciado, entonces como $c_1 < \frac{c_1+c_2}{2} < c_2$, tendríamos que $\frac{c_1+c_2}{2} \in A \cap B$, pero $A \cap B = \emptyset$.

EXISTENCIA:

En primer lugar, veamos que en A hay números racionales. Dado $x=[(x_n)]\in R$ existe algún racional positivo q tal que $-q\leq x\leq q$: por ser (x_n) de Cauchy, es acotada, luego existe un racional positivo q tal que $-q\leq x_n\leq q$, $\forall n\in\mathbb{N}$, luego $-q\leq x\leq q$. Entonces, como A no es vacío, podemos tomar $a\in A$, y si q es un número racional positivo tal que -q< a< q, entonces $-q\in A$ (pues -q no puede pertenecer a B por ser menor que un elemento de A). Análogamente se comprueba que en B hay números racionales.

◆□▶◆□▶◆□▶◆□▶ ■ かくで

Tomemos pues números racionales $a_1 \in A$ y $b_1 \in B$. Si $\frac{a_1+b_1}{2}$ pertenece a A, tomamos $a_2 = \frac{a_1+b_1}{2}$ y $b_2 = b_1$. Si $\frac{a_1+b_1}{2}$ no pertenece a A, entonces pertenece a B y tomamos $a_2 = a_1$ y $b_2 = \frac{a_1+b_1}{2}$.

Con a_2 y b_2 procedemos de la misma forma y así construimos dos sucesiones de números racionales, una creciente, (a_n) , en A y otra decreciente, (b_n) .

La sucesión (a_n) es creciente y está acotada superiormente, y la sucesión (b_n) es decreciente y está acotada inferiormente, luego ambas son de Cauchy.

Además, $|a_n - b_n| \le \frac{1}{2^n} |a_1 - b_1|$, luego lím $_{n \to \infty} (a_n - b_n) = 0$. Esto significa que ambas sucesiones y definen el mismo elemento $c = [(a_n)] = [(b_n)]$ de R, que pertenecerá a A o a B.

Por ser (x_n) una sucesión de Cauchy, dado $\epsilon = \frac{r}{2}$, existe $m \in \mathbb{N}$ tal que, si p, q > m entonces $|x_p - x_q| < \frac{r}{2}$. Luego, si $n_0 = maximo\{\nu, m\}$, tenemos:

$$b_{n_0} \le x_{n_0} - r < x_n + \frac{r}{2} - r = x_n - \frac{r}{2}, \ \forall n > n_0$$

Es decir, $x_n - b_{n_0} > \frac{r}{2}$, $\forall n > n_0$. Esto significa que $(x_n) - b_{n_0} > 0$, es decir, $b_{n_0} < x = [(x_n)]$. Luego, $x \in B$.

Si $c \in A$, entonces todo elemento menor que c estará también en A, por lo que si probamos que todo elemento mayor que c está en B quedará probado que $A = \{x \in R : x \le c\}$ y $B = \{x \in R : x > c\}$. Si $c \in B$, entonces de manera análoga se prueba que $A = \{x \in R : x < c\}$ y $B = \{x \in R : x \ge c\}$. Supongamos que $c \in A$ y sea $c = [(x_n)] \in R$ un elemento tal que $c \in A$ y sea $c = [(x_n)] \in R$ un elemento $c \in A$ podemos concluir que $c \in A$ es mayor que algún elemento $c \in A$ become $c \in A$ podemos concluir que $c \in A$ estará también en $c \in A$ y sea $c \in A$ un elemento $c \in A$ y sea $c \in A$ y sea c

4□▶ 4□▶ 4□▶ 4□▶ □
 34/37

Definición

Llamaremos cuerpo de los números reales al cuerpo ordenado $(\mathcal{C}/\sim,+,\cdot,\leq)$ y lo denotaremos \mathbb{R} .

Algunas propiedades de los números reales

- ightharpoonup El orden de \mathbb{R} es arquimediano, es decir, dado un número real x, existe un número natural n tal que |x| < n.
- ightharpoonup es denso en \mathbb{R} , es decir, para toda pareja de números reales tales que x < y existe un número racional q tal que x < q < y. Es decir, en todo intervalo (x, y) hay algún número racional.
- ► Todo subconjunto de R no vacío y acotado superiormente tiene supremo.
- ► Todo subconjunto de R no vacío y acotado inferiormente tiene ínfimo.
- ► Si *a* es un número real mayor que cero, entonces, para todo $n \ge 2$ existe un único número real positivo b tal que $b^n = a$.

▼ロト ◆御 ▶ ◆ 恵 ▶ ◆ 恵 → りゅで

- ► Todo número real es límite de una sucesión de Cauchy de números racionales.
- ► En ℝ, toda sucesión de Cauchy es convergente.
- ightharpoonup En \mathbb{R} , toda sucesión creciente y acotada superiormente es convergente.
- ► En ℝ, toda sucesión decreciente y acotada inferiormente es convergente.

