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1. HISTORICAL INTRODUCTION

The main problem we are going to analyze is the computation of the
zeroes of an application f € C*¥(R",R"). For many of the results in these
pages we need only a small £ (k = 1 or k = 2), but we are interested on
the geometric behaviour of our applications, and so by convenience we always
suppose k = oo.

The study of the system f(xz) = 0 has a long history. The case best
understood is the affine situation in which the system reduces to:

A-x=b, A € Mpxn(R), b e R".

The equation is called “linear system” and there exists a lot of work made in
its comprehension [18]. However, for the general problem:

f(z) =0 with fe C*R™R"), (1.1)

unless we do suppose some restriction on the behaviour of f the problem
becomes unsolvable. Being this the situation it is normal to simplify the
problem by looking for points verifying weaker conditions as:

x € Z(f), (1.2)

with Z.(f) = {x € R": exists zp € R” such that f(z¢) =0 and ||z—=z¢]| < €},
or more frequently:

v e Zl(f), (13)
with Z{ (f) = {x € R": exists z € R™ such that f(z0) = 0 and ||f(z)| < €}
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Assuming some restrictions on f is possible to find points verifying (1.2) or
(1.3). This is the standard analysis of the problem and there are quite works
finding its points (see i.e. [1], [7], [19]). This will be one of our objectives in
this paper. To proceed away we are going to transform problem (1.1) in a
dynamical systems analysis.

1.1. NUMERICAL SCHEMES: NEWTON’S METHOD. The numerical sch-
emes for solving equation (1.1) are based in the construction of a sequence
whose limit is a zero of f. In its more general formulation, we build a sequence:

Ty € Rna Li+1 = Gk(xk7$k—17 ey xO)a (14)

where the application G normally only depends on the m last terms of the
sequence, i.e. Gy = Gi(xp,...,Tr_m+1), such numerical schemes are called
multistep of order m. The method is stationary if G, is independent of k, i.e.
G = G. Obviously the most usual case is m = 1, because of its simplicity.

The Newton’s method for solving the equation (1.1) is a numerical scheme
defined by the sequence:

Thy1 =k — (Jf(2) " flaw), (1.5)

where J f(x) is the jacobian matrix of f evaluated at the point . The com-
putational cost of the method is very large, because in each step we need to
compute n? derivatives and to invert a matrix of order n. It has caused that
a lot of variants of the scheme have been developed to reduce its cost. One of
the possible ways of doing it is to fix the jacobian at a point, so we only have
to compute the inverse once. This gives the so called fixed Newton method:

Tp1 =z — (Jf(20)) 7"+ flap)-

The problem with this scheme comes from the reduction in the order of con-
vergence that it is produced. Other approximation was given by Broyden in
his work [6], his computations are based in a Taylor approximation of .J f(xy)
by considering the values in the precedent points. This scheme gets the same
convergence speed that the classical method (1.5) but with less computations.
There are a lot of results in these directions because Newton’s method is the
natural model for a large class of numerical analysis problems.

Other related problem is the study of the convergence behaviour of the
scheme. There are not general results that assure the convergence of the
sequence (1.5) for a given starting point zp € R™. There are partial results
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assuring this fact when are assumed some conditions on f (see for instance [5],
[9], [12]). To get convergence the scheme can be changed a little. For instance
it can be used:

Thy1 = xp — a(Jf (@)1 fn),

with «y chosen to verify a modulus reduction condition as:

If @rr ) < f(z)ll, Ve =0.

This is the approach of [12]. In this article we will show some other variations
to get convergence in more general cases.

1.2. NEWTON’S VECTOR FIELD. We introduce now the Newton’s vector
field which is going to be the basic analytic tool that we are going to study. We
are going to arrive at the construction of this vector field from two different
perspectives, which will give us the reasons of its importance.

1.2.1. NUMERICAL CONSTRUCTION. Newton developed the first method
based in derivatives to solve a non-linear equation f(z) = 0, with f €
C*(R,R). The key idea is to find the zero by changing the function f by
its Taylor first order approximation at a point xg. Obviously, the zero of the
Taylor approximation is not a zero of the original function, but at least a
“good” approximation. The Taylor first order approximation of f is:

f(@o) + f'(wo) (2 — x0),
computing its zero we find:

(o)
f'(zo)’
iterating this process we get the Newton sequence. These ideas can be trans-
lated to dimension greater than 1, simply substituting f’(zx) by Jf(zx). The
scheme obtained in this case is (1.5).

The following idea to keep in mind is the interpretation of (1.5) as a nu-
merical approximation of a first order equation. In fact, it can be interpreted
as an Euler method with step A = 1 of the differential equation:

dx _

5 = ~Uf@) (). (1.6)
This equation is called the continuous Newton method. The vector field
N(f) = —(Jf(x))~! - f(x) is Newton’s vector field. It is quite natural to

¥ =1z —
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expect that the convergence properties of the Newton’s scheme (1.5) are pre-
served when we study the continuous Newton’s method (1.6).

We will return again to this vector field. Now, we only want to remark
that to make sense of the formula (1.6) we have to assure that Jf(x) has an
inverse. The points in R™ verifying this property are called regular points for
f, and the vector field is only well defined on them.

1.2.2. ANALYTICAL CONSTRUCTION. Another way of expressing prob-
lem (1.1) is to consider it as a vector field. Then to find zeroes of f is the
same that to look for the equilibrium points of the dynamical system:

dx

= f) (L.7)
Following the trajectories of (1.7) we can reach eventually an equilibrium
point of the flux. The problem with this is that normally the computations
to get the flux of (1.7) are more complex than the starting problem. To get
a really effective method we have to assure that the equilibrium points of
the dynamical system are asymptotically stable. This occurs if there exists a
neighborhood of each equilibrium point such that every trajectory, cutting it,
has as limit the equilibrium point. In this case integrating only one trajectory
we obtain the searched zero. In section 2 we will formalize these ideas.

A good way of simplifying (1.7) would be to find a transformation of the
field f preserving the equilibrium points and making all these points asymp-
totically stable. We would want to get in the neighborhood of each equilibrium
point z* the field:

T(z) = (@ —a*),

which is obviously asymptotically stable. To get it we multiply the vector
field by a matrix A which modifies its jacobian. We impose that the later
expression has the desired aspect in a first order approximation:

T() = —(z — 2*) + ol — 2°])).
We need the condition JT'(z*) = —id. The condition is so:
JT(a*) = J(Af(@*) = A~ Tf(z") = —id,
and we obtain A = —(Jf(x*))~! and the new vector field would be:

dz

=@ (@),
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but this dynamical system uses the zero x* as a data. A good way to obtain
a similar result is to use the value of the jacobian matrix at x instead of
x*. Making this, the new vector field is the Newton field (1.6). Thus the
continuous Newton’s method can be interpreted as a transformation which
obtains asymptotic stability in all the equilibrium points of a vector field,
without changing them.

In the following section we are going to make an analysis of the properties
of the Newton field, which we are going to define in a great generality in the
context of fibre bundles with connection. Also we will present some classical
results about the convergence of the trajectories [12], [5].

In the section 3 we will analyze the Newton field in the neighborhood of
a critical point. In one way we will give conditions to get extensions of the
vector field to points with non bijective jacobian. Also we will study the
dependence of the method with respect to changes of coordinates. The other
point of view will be to understand the set of singular points. We will give
some conditions to guarantee convergence in the neighborhood of singular
points. Finally, we analyze the general situation when we only can assure the
existence of convergence cones.

2. NEWTON’S METHOD ON MANIFOLDS

2.1. NOTATIONS. Given a differentiable manifold M, a vector bundle
FE of rank r over M is a manifold and a surjective application 7w: £ — M
verifying:

1. 7~ 1(x) is a r dimensional real vector space.

2. There exists a covering {U,} of M by open sets and a family of ap-
plications ¢, such that ¢,: 7 1(U,) — U, x R". Also we impose for
(#a)x—1(z) to be linear.

The covering U, is called a trivialization for E. We will define a field on F
to be a section s: M — FE of the projection w. The set of all differentiable
fields on FE' is usually denoted by I'(E). This definition is natural, because a
vector field on M is a section of the projection 73;: TM — M, where T M is
the tangent bundle to M. The space TM has a natural structure of vector
bundle over M, the fields on T'M are the classical vector fields on M. We will
develop our theory in this context.

We need to give an additional structure to the vector bundle E to obtain
a definition of the Newton field. We only need the concept of connection:
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DEFINITION 1. A connection D on a vector bundle w: £ — M is an ap-

plication:
D:TM xT'(F) —— FE

(v,8) —— Dys

verifying:

Dyiws = Dys + Dys, for all v,w € TM, s € T'(E).

Dy(s+t) = Dys+ Dyt, for all v € TM, s,t € T'(E).

Dyys = ADys, for all A\ € R, v € TM, s € I'(E).

Dy(fs) =dy(f)s+ fDys, for all f € C®°(M), veTM, seTl(E).
If v € D(T'M), then Dys € D(E).

A e

Fixing a field in the second variable we obtain an application Ds: TM — E
linear in the fibres. This is the natural generalization of the concept of jacobian
of a vector field.

We can select a trivialization (Uy, ¢) for E, imposing also that U, must

be a chart on M. Then the coordinates in the chart are (zj,...,x,) and
(8%1’ e %) is a base of T, M at each point x of U,. In E we can choose
local sections (e1,...,e.) of m: 7~ 1(U,) — U, defining a base at each fibre.

So we can describe the connection locally. If

Z J Z

v = v; s = Si€;

DAL _ %1%
i J

then:

Dys = Z”@'Da%sjej = Zvi((da%sy')ej + sta%e]-), and
ij

)
k
D%Gj = Zfijek = Fzg
' k

The functions Ffj are called the Christoffel symbols of the connection and
they determine it completely. In a simpler notation:

Dy,s = Ej(dej + E,-Agsi)ej, (2.8)

where Ag is a matrix with a 1-form at each entry, constructed from the
Christoffel symbols by A = 3", I, da*.
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A field over a curve c: [a,b] — M is an application s: [a,b] — E verifying
that ¢ = mos. Given a connection D we define the derivative of the field along
the curve as Dacs. The definition is correct because any field over a curve can

dt
be extended to a field on F, and it is easy to show that the derivative of the

field in the direction % is independent of the extension. We can now define:

DEFINITION 2. A field v over a curve c in a vector bundle E with connec-

tion D is called parallel with respect to the curve if Dacnyv = 0.
dt

This notion generalizes the concept of parallel vector in R™. It can be
proved that for every vector v(p) € 7~ !(p) = E}, there exists one and only
one parallel field v along a given curve ¢ such that w(v) = ¢. The notion
depends on the choice of the curve and it happens that two curves ¢ and ¢
such that ¢(a) = ¢/(a) and ¢(b) = /(b) transport the vectors from c(a) to ¢(b)
in a different way.

We are going to use in what follows a special class of connections. For this
we need to fix a metric on F, i.e. to give a scalar product g at every fiber in
FE and to impose it a smooth variation. Then:

DEFINITION 3. A connection D on E is compatible with the metric g if it
verifies:

d(g(s1,s2)) = g(Ds1,s2) + g(s1, Ds2), Vs1,89 € T'(E). (2.9)

Remark 1. If E = TM, given a metric g, there exists one and only one
torsion free connection compatible with g, i.e. verifying the condition D,w —
Dyv = [v,w], for all v,w € I'(T'M). For other bundles, it can be proved that
there exists always connections compatible with a given metric.

2.2. DEFINITION AND BASIC PROPERTIES OF THE NEWTON’S VECTOR
FIELD. We are going to define a generalization of the Newton’s vector field
(1.6) to the case of vector bundles over manifolds. The key idea for our
construction is:

DEFINITION 4. A connection D: TM x I'(E) — FE is invertible for the
field s at a point p if Ds(p): T,M — E, is an isomorphism of vector spaces.

Obviously, this definition is useful only for the case rank F = rank T M,
because otherwise it can not be satisfied. From now on we suppose that F
is equipped with a connection D. For some proofs it will not be necessary
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for D to be compatible with any metric; when it is necessary we will write it
explicitly. The connection D will be called a connection for the method (resp.
metric for the method)

DEFINITION 5. Given a field s, the regular set Q(s) of s is the set of points
of M such that the connection for the method is invertible for s.

Q(s) ={x € M: Ds(z): T,M — E, is bijective}.

DEFINITION 6. The singular set ¥(s) of s is the complement of €(s), this
is:
Y(s) ={x € M: rank Ds(z) < r}.

It is easy to show that the regular set is open, because it is the inverse
image of an open set by the continuous map det(Ds(z)). Now we are going
to define the Newton’s vector field on the regular set. In the section 3 we will
try to extend this definition to some points of the singular set.

LEMMA 1. If x € M is an equilibrium point of s (i.e. s(x) = 0) we have
that the connection for the method is invertible for s at x if and only if there
exists a chart (U,¢) and a trivialization (U, ®) of E in a neighborhood of x
(by simplicity ¢(x) = 0) such that the vector map f defined as:

~ —1
PR o L g2 UxRr P2 R

has invertible jacobian matrix at (0,...,0).

Proof. Using the local coordinates expresion of a connection (2.8) we know:
Ds(x) = ds(x) + As(z),

where ds is the exterior differential of the components of s (when we trivialize)
and A is a matrix of 1-forms. If we are in an equilibrium point we have that
s(z) = 0, and so we obtain As(s) = 0. Now, we only have to compute ds(x),
but this is the jacobian matrix of the application f at the point. From here
the result follows. |

We have shown a little more, the result is true if it is true in any chart.
Lemma 1 shows that at equilibrium points the invertibility of the connection
is equivalent to the invertibility of the jacobian. Remember that at an equi-
librium point the jacobian of the field is well defined [11], so the precedent
lemma shows that this can be computed by any connection.



NEWTON’S METHODS FROM A GEOMETRIC POINT OF VIEW 101

Now we can compute a vector field in the tangent bundle from a field on
the bundle E:

LEMMA 2. Given s,t € I'(Eqy)) then:
v=(Ds(z))"" - t(z) € T(TQs)).

Proof. Remember that (s) is open, so for each x € §(s) we can find a
chart (U, ¢) and trivialization (U, ®) of E contained on it. In these coordinates
we define a map:

Ds

R U End(Ejy) —— U x GL(R") 2 GL(R"),

which is smooth, because it is the composition of smooth maps. End(E);) is
the vector bundle over U which sets up in each fibre the endomorphism of the
vector space Ej, d is the natural extension of the trivialization mapping ¢
of E to the bundle End(E).

It is well known that the map Inv(A4) = A~! is a smooth morphism in the
manifold GL(R"); therefore the map 3’ = Inv of3 is smooth. Calling ¢ to the
field t written in coordinates, we have that the application | = 3¢ is smooth
as product of smooth applications. So we have that © = [ is smooth and then
v 1s a smooth vector field. §

We have obtained all necessary tools to define the Newton’s vector field
using the connection for the method.

DEFINITION 7. Given s € I'(E), we define the Newton’s vector field asso-
ciated to s as:

N(s)(z) = —(Ds(x))"" - s(x), Vo € Q(s) (2.10)

The definition is an extension of that used for real and complex vector spaces.
We will prove now the most important properties of the vector field N(s).

LEMMA 3. In the regular §)(s), the equilibrium points of s and the equi-
librium points of its associated Newton’s vector field N (s) are the same.

Proof. In Q(f), Ds(z)~': E — TM is an isomorphism of vector bundles.
Therefore we have: s(z) =0« N(s)(x) =0. 1

If we have a metric for the method g compatible with D we can prove:
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PROPOSITION 1. The function V' = ¢(s,s), where g is a metric for the
method, is a Liapunov function for all the equilibrium points of the Newton’s
vector field associated to s.

Proof. We need to prove that for any trajectory z(t) of the Newton’s vector
field (2.10) the following inequality is verified:

d(Voux)

<0
da —

and the equality is obtained if and only if x(¢) = 0. Applying the chain
rule and remembering the condition of compatibility of the metric and the
connection (2.9). In our case we have the following:

dVoz) da(t)
W 1) = av ate)) - 45
= dg(s(a(0) (1) 5 = 20(Ds(a(0) s(a(0)) - G

= —29(Ds(x(t)), s(z(t)) - (Ds(x(1)) ™" - s(z(t)) = —29(s(x(1)), s(x(1)))-

Being g a metric the required condition is verified. So, we conclude that V'
is a Liapunov function for all the equilibrium points of the Newton’s vector
field. 1

With this proposition we can conclude the following important corollary:

COROLLARY 1. Given a field s on F, the equilibrium points of its Newton’s
vector field N(s), computed with a connection compatible with a metric on
FE, are asymptotically stable.

Proof. 1t is a direct consequence of the existence of Liapunov functions.
For a proof of this result see [11]. §

Now, we have proved that all the equilibrium points of s which are in the
regular set, are equilibrium points for N(s) and that the converse is true.
Also these equilibrium points are asymptotically stable, We can drop the
assumption made in the compatibility of the connection and we obtain:

PROPOSITION 2. Given a field s on E, equilibrium points of its Newton’s
associated field are asymptotically stable.



NEWTON’S METHODS FROM A GEOMETRIC POINT OF VIEW 103

Proof. We only have to compute the eigenvalues associated to the jacobian
of the Newton’s vector field at their equilibrium points. It is a standard fact
in dynamical systems theory that if these eigenvalues have strictly negative
real part, then the equilibrium point is asymptotically stable. Remember that
the jacobian is well defined at an equilibrium point. We have to compute:

d(N(s))(z") = d(—(Ds) ™" - 5)(z").

So we will write it in coordinates. Denoting by M(A) the matrix associated
to a linear application A, we obtain:

M(d)(N(s)) (") = —J ((ds + As)"'s) (")
= —J((ds + As)™V)s(z*) — ((ds + As)"Lds)(z¥).

At an equilibrium point s(z*) = 0 and As(z*) = 0, therefore we conclude:

dN(s)(z*) = —id.
]

This property makes the field very useful to compute equilibrium points
of fields.

Remark 2. When we are in the linear case: M = R"” and F = R" x R"
with the trivial connection, s is actually an application f: R® — R™ and
equilibrium points are zeroes of the application. In that case the Newton’s
vector field becomes the classical Newton field (1.6). All the precedent results
apply to this simple case and any numerical approximation of the field gives
us a numerical scheme to compute the zeroes of s.

When we suppose £ = TM, s is a vector field on M and equilibrium
points are important objects often arising in problems from physics.

The following result give us a clear geometric idea of the trajectories of
the Newton’s vector field.

PROPOSITION 3. Given x(t) a trajectory of the Newton’s vector field N (s)
associated to a field s, the field over the curve x(t) defined by s(z(t)) - et is
parallel along the curve.

Proof. Notice that:

o a(t) = 5 - N(s)(a(),
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where z(t) is the flux associated to the Newton’s vector field N(s). Remember
the definition 2 for a field to be parallel, we test the condition in our concrete
case:

D)) (5(z(t)) - €") = (Dn(s) @y s(@(t))e! + s(z(t)) - dn(s) @))€’

= —s(z(t)) - ' + s(x(t)) - d;t) =0.

Remark 3. An important corollary is that a Newton’s vector field com-
patible with any metric g has not periodic trajectories. If there is a periodic
trajectory z(t) then there exists T' > 0 such that z(t + 1) = x(¢). But it is
easy to verify that:

dg(x(t), z(t))

D.20) — 2g(a(t),a(0)
Solving this differential equation we obtain:

g(x(t), z(t)) = g(2(0),2(0)) - e, (2.11)
and so ||z(t + T)|| = ||=(t)]le"T, and this gives a contradiction.

If we are in the case M = R" and E = R" x R"™ we can write the precedent
proposition saying that the semi-rays:

L(f(v)) ={X- f(v): A >0}

are invariants for the image f(x(t)) of the Newton’s vector field. These semi-
rays will be called 1 dimensional Newton leaves.

Observe that the definition of the method depends on the choice of con-
nection. In fact, convergence domains associated to each zero depend greatly
on this connection. Even more, the shape of the singular set is also variable.
The only invariant for the connection is the character of the zeroes: singular
or regular.

2.3. GLOBAL BEHAVIOUR OF NEWTON’S VECTOR FIELD. There is a sim-
ple way of redefining the Newton’s vector field to obtain an extension of the
field to all the manifold M provided that T'M and E are orientable vector bun-
dles. This condition is necessary for a global definition of this desingularised
field. In a local setup it is very easy, it follows from the observation:

1

A—l
det A

Adj"(A),
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where AdjT (A) is the transpose of the adjoint matrix of A. Therefore we can
define the following field:

Na(s) = — AdjT (Js(x)) - s(z) = det(Js(x)) - N(s)(z). (2.12)

The field is defined at every point because the adjoint matrix is always defined.
To adapt this argument for a manifold we only need to define the determinant
in an intrinsic way. To do that notice that a morphism ¢: £ — F' of vector
bundles can be extended to a morphism between the order k exterior vector
bundles as follows:

Afg: A*E — AFF
e1N--Nep — dler) AN+ A o(eg)

Then in the case of Ds which is a morphism between T'M and E we have that
A" Ds is the equivalent to the determinant. If we fix a metric g on E we can
set up a canonical isomorphism called the Hogde star:

w: A¥(E) — AV F(E),

with the unique condition of the orientability of E. In the same way we
can define a star operator for the bundle T'M. Through these isomorphisms
Ds becomes an application from the trivial bundle to the trivial bundle, i.e
A(E) = A°(TM) = M x R, we can so define the det(Ds)(x) as the number
obtained through the canonical identification A°(E*) @ AY(TM) ~ M x R.
Then the desingularised Newton’s vector field makes sense as:

Ny(s) = det(Ds) - N(s), (2.13)

where the determinant is defined through the identifications given by the
Hodge star operator of the metrics ¢ and h. The desingularised Newton’s
vector field is defined over all the manifold M, because remembering the local
expression (2.12) we can extend the definition to the singular set ¥(s). We
can relate Newton’s vector field and its desingularised counterpart:

LEMMA 4. The trajectories of the fields N(s) and Ny(s) coincide in the
regular set, Q(f).

Proof. Taking the trajectories of the desingularised field z(s), if we apply
the change of coordinates on Q(s):

ds 1
dt — det(Ds(z))’
then they become trajectories for the Newton field. §
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Observe that the re-parametrization can transform unbounded time inter-
vals in bounded time intervals. It is caused by the unbounded modulus of the
Newton’s vector field near the singular points. The desingularised field does
not hold the orientation of the trajectories of the Newton’s vector field. To
preserve this orientation we need a positive determinant for the connection,
otherwise the orientation is reversed.

Equilibrium points of the field (2.13) are the equilibrium points of s and
the so called extraneous singularities, which are the points of the singular set
Y(f) verifying:

s(z) #0, Na(s)(xz) =0.

They are in the singular set because to verify the first condition is necessary for
the endomorphism Ds not to be invertible. It is useful to define the essential
singularities as the points in the singular set which are not equilibrium points
for s or extraneous singularities. From now on, we suppose that the field s is
generic enough, i.e. it is a good application in the sense of [3]. So the singular
set is a stratified manifold. The strata are the sets defined by:

y*(s) = {x € M: dimKer Ds(x) = k}. (2.14)

It is easy to verify that codimy; 2¥ = k2. Then ¥ = Ur>1 ¥* is a null measure
set. We can study properties ©* as the following:

DEFINITION 8. A trajectory x: (0,b) — M of the Newton’s vector field
is prolongable through the singular set if there exists another trajectory
y: (¢,d) — M such that:

limz(t) = Ilfim y(t) = 2" € X(s).

t—b

. dx(t) . dy(t)
| = lim Y\
P T e T

It implies that the trajectory admits an extension crossing the singular set.
The important observation is the following:

PropPoOSITION 4. The Newton’s vector field trajectories are never pro-
longable through the singular set when they cross the set through an essential
singularity which lies on $1(s).

Proof. To show this we are going to analize the desingularised field. Given
a trajectory which crosses the singular set at z*, if it is an essential singularity
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then it is not an equilibrium point for the desingularised field. Then by the
existence and uniqueness theorem there exists a unique trajectory x4(t) of
the desingularised field which passes through this point. Also, it is not an
equilibrium point, so we can prolong the trajectory in the point. The Newton’s
vector field has the same trajectories that the desingularised field. So the
unique possible prolongation of x(t) is the second part of the trajectory of
x4(t), which we will call y(t).

Now remember that for a point in 2* € X!(s) we have (see [3]) that
d(det(Ds)) # 0, so the determinant changes its signum when a trajectory
crosses the singular set. Therefore the two trajectories x(t) and y(t) converge
toz*. 1

It is possible to cross the singular set through extraneous singularities or
through high order essential singularities. For generic good applications it has
been proved that extraneous singularities are a sub-manifold of codimension
1 in ¥(s) [13]. So most of the points of the singular set are “walls” for
the Newton’s field. It has motivated the name “wall manifold” used for the
singular set in works as [25].

We now classify the points of the singular set, according to its behaviour
with respect to the trajectories of Newton’s vector field.

DEFINITION 9. A point z* € ¥(s) is a sink for the Newton’s vector field,
if there exists a non-prolongable trajectory z: (a,b) — €(s) verifying:
*

li t)=2x".
lim z(t) = =

DEFINITION 10. A point z* € 3(s) is a source for the Newton’s vector
field, if there exists a trajectory x: (a,b) — €(s) verifying:
*

}im z(t) = z*.

Proposition 4 proves that essential singularities in ¥!(s) can not be sources
and sinks at a time. The precedent definitions give a classification in the
singular set. We will denote So(s) the set of source points in the singular set,
and Si(s) the set of sink points. The set So(s) NSi(s) is not always empty but
it is contained in the extraneous singularities or in the high order singularities
($*(s), k > 1). We can study in an analytic way the behaviour of the essential
singularities:
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PROPOSITION 5. If z* € X(s) verifies:
d(det(Ds(z*)))(Ng(s)(z*)) > 0, (2.15)

then x* is a source for the Newton’s vector field, but if the left hand side of
(2.15) is strictly less than zero, then x* is a sink for the Newton’s vector field.

Proof. To get any of the two inequalities we need d(det(Ds(z*))) # 0,
therefore z* € ¥!(s) and the singular set is locally a manifold. We are going
to prove the first part, the second follows the same argument. Being z* an
essential singularity (Ng(xz*) # 0) there exists a unique trajectory x4(t) of
the desingularised field through x*. Thus there are two trajectories of the
Newton’s vector field starting or ending at z*, by Proposition 4 it can not
happen that one starts at the point and the other ends. Take the trajectory
lying in the open set : det(ds(x)) > 0. So this trajectory preserves the sense
of the desingularised trajectory. We have only to impose that this trajectory
does not go to the singular set but a sufficient condition is:

d(det(Ds))(z")(Na(s)(z")) > 0,
which is condition (2.15). |1

Points of the singular set verifying inequality (2.15) will be called transver-
sal sources. The set of all these points is denoted by SoT(s). Clearly,
SoT(s) C So(s) N L(s). Again using tools of transversality we can assure
the smoothness and to compute the dimension of the complementary of the
transversal sources and sinks. We can impose conditions to obtain global
convergence for the Newton’s vector field using the previous definitions and
results. One simple statement is the following;:

PROPOSITION 6. Let M be a compact manifold with metric g and E a
vector bundle with metric h and compatible connection D and let s: M —
E be a field with isolated equilibrium points. If 3(s) = SoT(s) then all
trajectories of the Newton’s vector field converge to an equilibrium point of s.

Proof. Suppose that it is not true. Then there exists a trajectory x(t)
whose limit is not an equilibrium point. Remember that:

1F @) = 11f (@ (0)]le™". (2.16)

The trajectory is complete, because the only possibility to avoid the com-
pleteness is to end in the singular set. This is impossible by the transversal
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source condition. Now, if the trajectory is complete, using formula (2.16) we
conclude that it has as limit a set of zeroes of s. But obviously it must be one
element set by the isolation hypothesis. 1

Remark 4. We can formulate similar results in R imposing additional
conditions. One way to proceed is suppose that an application f: R" —
R" admits an extension to an application f: S® — R™ and then we can
apply the precedent result. Imposing also that the compactification verifies
that f: S™ — S™ and f(00) = oo, then the result again applies because the
trajectories of the Newton’s vector field obviously do not go to infinity in this
case.

The hypothesis of the proposition 6 are very restrictive and a lot of ap-
plications do not verify them. It simply shows that Newton’s vector field has
limitations imposed by the existence of the singular set. In the following sec-
tion we give an overview of other possibilities to get convergence. In this case
we will generalize the field and we will adopt a probabilistic point of view.

2.4. PROBABILISTIC CONVERGENCE. There are many works computing
the probability of the Newton’s scheme to achieve convergence to a zero. We
are going to give an overview of the proof of the first important result in this
way, obtained by Hirsch and Smale in their article [12]. In this subsection we
resume this work, as always adapting it to the manifold setting.

We will need some hypothesis along the proof. To have a geometric def-
initions of the determinants involved in the proof we need to assure the ori-
entability of M and E. Also we can suppose that s is good in the sense of
[3]. We will define this concept in subsection 3.2, but it is enough for our
purposes that this assures us that X(s) is a stratified manifold and so is a
measure zero set. We need a metric g on E and respectively h on TM. We
impose the compatibility of the connection for the method D with g. We
define the sphere bundle associated to E as:

S(E)={x€ E: g(z,z) =1}.

We are going to study a different field, which preserves the flow of the Newton’s
vector field, but sometimes changes the orientation. We define the generalized
Newton’s vector field as:

G(s)(x) = —sign(det(Ds(z))) - N(s)(x), (2.17)
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this field coincides with the Newton’s vector field when the determinant of
the jacobian is positive and reverses the orientation if it is not the case. G(s)
is defined on €(s) as the Newton’s vector field. But we have that it crosses
the singular set through essential singularities, obviously losing the property
(2.11).

First we define the map:

si: M —2Z(s) — S(FE)

p =

where Z(s) are the equilibrium points of s, obviously there s; is not defined.
We will call Q(s1) and 3(s1) the sets of regular and singular points of s;. We
can derive s; as a section of E using D.

Let x € Q(s1). We denote by B(x) the trajectory through x = 2(0) of the
generalized Newton’s vector field, we consider that a trajectory can continue
crossing the singular set. Finally A(x) will be the connected component of
the set Q(s1) N B(z) verifying z € A(x). A(x) is a smooth curve. This
curve is oriented with the vector field (2.17). One important observation is
G(s)(z) € Ker Dsy(x), because s1(z) is parallel along A(x) as a single corollary
of Proposition 3. We introduce the following useful notation:

s a,b] = {zeM:a<|s(x)]y <b}

s Ha,b) = {reM: a<|s@)|, <b}

sa,b] = {zeM: a< |s(x)]lg < b}
se) = {o e M: (@)l = c}

fzeM:c<|s(z)ly}
= {zeM: |s(z)ly <c}.

w
+ |
Ju
~—~ o~
)
S— N N
I

We have supposed that s is good, now we make also the following assumptions:

1) [[s(zo)lly = ¢ >0,
(G) §2) det(Ds(zp)) >0 (2.18)
3) det(D(s)) >0, on a neighborhood of s~!(c).

Under these assumptions we can prove:

LEMMA 5. A(zo) Ns™1(c) = {wo} and A(xy) is diffeomorphic to R.
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Proof. By the asumption (G1) A(wg) cuts transversally to s~1(c) at .
Now by the assumption (G3) is impossible to get s~1(c) again. Therefore z
disconnects A(xp) and so it cannot be diffeomorphic to a circle. |

A direct corollary is:

COROLLARY 2. ||s(y)|| < ¢ for all y in the semi-positive trajectory A ()
of A(l’o)

We will say that A(x) has a positive limit point y, if there exists a sequence
t; of real numbers, such that:

lim n(t;) =y,

1— 00

where n: R — A(z) is a diffeomorphism. It is easy to see that every positive
limit point is either a critical point of s; or a zero of s. The first because
A(z) € sy (s1(x)) and A(y) is smooth by the implicit function theorem if s
is regular in y, the second because s; is not defined on the zeroes of s. We
are supposing that S(FE) is trivial, if it is not the case we can locally trivialize
this bundle and then to check that the argument is purely local.

LEMMA 6. Assuming condition (G) above, we suppose also 0 < ¢ < ¢ and:

1. s g, ] is compact.

2. s1(wo) is a regular value for (s1),

Then At (z0) Ns'(q) # 0.

s71g,q]

We have to define what we mean by a regular value of s;. For this we
need to set up a trivialization of the sphere bundle over all the manifold. It
will be usually impossible because, in general, S(E) is not a trivial bundle.
But we can make it locally using the Newton’s trajectories to trivialize the
bundle and the manifold. We can obtain a locally finite covering {M;} which
transforms Ejyy, in M; x R™ with a trivial derivation at least in the Newton’s
vector field directions. To define a regular value we need to fix a M;. Then
we take a value v; of Ejy;, = Mj x R". We obtain other values on each M; by
gluing with the transition functions. So we have a collection {v;} of vectors.
It depends on the order followed to make the identifications. We will say that
v; is a regular value if it is a regular value for each M;. It is clear that s;
is constant in A(zg) with this trivialization. So si(xg) is a regular value for
s1 if all their anti-images in M; obtained by the precedent identifications are
regular. Now we start the proof.



112 F. PRESAS

Proof. If A*(z0) is disjoint from s~!(zg), it must be contained in s~(q, c.
By a) AT (z0) has a limit point y € s7%[g,s]. So f(y) = 0 or y € X(g). The
first is impossible, the second too. To see it we have only to notice that
g(zo) ~ g(y), using the trivialization defined before. So by hypothesis y is
regular. We obtain a contradiction. [

A subset W; of Wy has full measure if Wy — W3 has measure zero. The
following result extends Theorem 1.5 in [12]:

THEOREM 1. Let s: M — E and a > 0 satisfying the following hypothe-
sis:

1. s is proper.

2. det(Ds)~1{0} has measure zero.

3. det(Ds)(x) > 0 if [|s(z)|lg > v
Let 0 < € < a. Then there exists a subset W (e) C s;'(a) which is open and

of full measure, such that if xo € W (e), then A(x¢) ~ R and A" (x¢) contains
a point y with ||s(y)|| = e.

Proof. We will say that s is proper if ||s||4 is proper, i.e. the anti-image of
a compact is compact. For each 8 > a we define:

Bad(e, 8) = 51(X(s1) N s~ [e, ]).

In each M; we can see Bad(e, 3) as a compact subset os S"~! through the
precedent trivializations. By Morse-Sard lemma, Bad(e, ) has measure zero
in S"~! because s; is differentiable, also in the union of all M]s because the
index set is countable. Clearly each point in S"~! —Badle, ] is a regular value
for (s1)s-1[,5), and this set is of full measure in Sn-t

Since §2(s) has full measure in M, so has 2(s1) in M — Z(s). We can easily
prove then that s;'(S" ' — Badle, 4]) has full measure in R” — Z(s). Now
define:

Wi(e, ) = s_l(oz,ﬂ) N sfl(S” — Bad(e, 8)) N (det(Ds))_l[O, 00).

W (e, 3) is open and has full measure in s~![e, 5]. Finally define:

W(e) = |J W(en).

B>a

Then W (e) is open and has full measure in s ' (). For every g € W (e) the
hypothesis of Lemma 6 are fulfilled, so we obtain the desired result. |
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Remarking that the proof implies the non existence of limit points in any
57 !e, a] we obtain easily the following result which proves that the trajectories
of the desingularised Newton’s vector field generically converge to a simple
point as we suppose before; this generalizes Theorem 1.6 in [12].

THEOREM 2. Under the hypotheses of Theorem 1 there exists a Baire
subset W of full measure in E*(«) such that if o € W, then AT (z) ~ R and
AT (zg) leads to f~1(0) for all xg € W. In particular, f~1(0) is nonempty.

We have proved that, for proper fields verifying a positivity condition in
the determinant of the jacobian, we have a generalized Newton’s vector field
which generically converges to zero. This result is important and it has been
the base for a lot of computational works implementing these techniques in
concrete schemes, as Hirsch and Smale make directly in the article [12].

Other works have exploited in the last years the geometrical consequences
of Proposition 3. The most interesting results are contained in [9]. There
Immo Dienner defines the concept of Newton leaf for an application f: R" —
R™. A Newton k-leaf is the anti-image of a k dimensional subspace V' € R", i.e.
L(V) = f~%V). By Proposition 3 these leaves are preserved by the Newton’s
vector field, making possible to develop a topological-geometric theory. These
ideas pass to the manifold setting when the bundle E is trivial, i.e. E = M xR*
and the connection used is the standard. In other cases the theory has to take
into account the infinitesimal holonomy induced by the curvature associated
to the connection and the global holonomy induced by the topology of the
manifold and of the vector bundle.

3. THE NEWTON’S VECTOR FIELD AT SINGULARITIES

Through this section we will study the behaviour of the Newton’s vector
field at neighborhoods of singular points of a field. We are going to make a
local study. So we are going to analyze the vector case, i.e. our field will be
identified with an application f: R™ — R"™, the presence of curvature makes
the analysis more technical, but we could repeat all the proofs in this context.
To make easy the exposition we restrict ourselves to the zero curvature case.
The main question which we will try to answer is: what can we expect about
the convergence of the Newton’s vector field when its zeroes lie in the singular
set?

In subsection 3.1 we will take the road through the continuous extension of
the field to the singular set. Tools of singularity theory will help us to obtain



114 F. PRESAS

some results.

In subsection 3.2 we will define new tools to analyze the behaviour of the
field. The key idea will be the changes of coordinates which allow to check
what properties of the field are geometric. Thanks to these, we introduce some
classification results using Boardman’s classification of singularities [4]. The
main results show that some types of singularities never admit a continuous
extension.

In subsection 3.3 we will work with the case obtained when there does
not exist any continuous extension of the field. We present in a geometrical
way some standard results [15, 21|, precising their meaning and adding some
generalizations.

3.1. CONTINUOUS EXTENSIONS OF THE FIELD. Our objective will be to
analyze the conditions for the continuous extension of the Newton’s field to a
singular equilibrium point. We will suppose that our application f: R® — R"
is good, thus X is a stratified manifold. In this set the Newton’s vector field
is not defined, because the endomorphism D f is not bijective and it does
not admit an inverse. Remember that in the particular case we are studying
Df = Jf, it is the jacobian matrix associated to the application f. We will
denote now the Newton’s vector field associated to f as F' = N(f). Then we
can write:

f:R"—>R" F:Q(f) — R".

So we can introduce the following:

DEFINITION 11. F'is defined at xg along the regular set if there exists the
limit along the set Q(f) of the application F.

Remember that an application has limit at z* along a set I' if z* is an
accumulation point of I' and if the following limit is well defined:

lim F(z) =L,
T—x*

zel

(i.e., for all U, neighborhood of L, exists V', neighborhood of x* such that
x € 'NV = F(x) € U.) The set of points where F is defined along Q(f)
is denoted by E,.(F'). The following result precise the possibility of getting a
continuous extension:
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THEOREM 3. The function F defined as:

B F(z), z € Q(f)
F(z) =1 lim_ F(z), =€ E.(F)—Q(f)
xxé?lz(vf)

is continuous in E,(F). Also, it is the biggest set where it is possible to obtain
a continuous extension of the field.

For a proof of this result see [25], [23].
From now on we will study applications ¢ = g/h defined as:

¢.h:R" >R,  g,heC (RYR)
c=g/h:R"\ Z(h) — R, ce C"(R"\ Z(h),R),

where Z(h) is the zero set of h. There is a natural geometric condition to
obtain a continuous extension of the quotient:

DEFINITION 12. ¢ is almost-continuous at x € R" if ¢ is continuous at x
or g(z) =0.

The set of points where ¢ is almost continuous is called the almost con-
tinuity domain E(c). To admit a continuous extension of ¢ at a point z, it
is necessary to be in the interior of E(c). If we suppose that g(x) # 0 and
h(xz) = 0, then it is easy to show that ¢ does not admit any continuous ex-
tension to z. The following result expresses that the condition is sufficient for
the Newton’s vector field in a lot of cases:

THEOREM 4. Let g(x) = — Adj7 (Jf)(x)- f(x) and h(z) = det(J f(x)), be-
ing f good subanalytic application. Then ¢ = g/h can be defined continuously

o

on E(c).

Remember that f: R™ — R" is subanalytic if there exist diffeomorphisms
¢ and ® such that ¢ o f o ® is analytic. First remark that Z(h) = X(f). If
x € X1(f) then f is always locally subanalytic, then we can prove Theorem 4
in this particular case:

PROPOSITION 7. Let z* € X(f)NE(f) then ¢ = g/h admits a continuous
extension at x*.
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Proof. To carry on the calculations will be convenient to write the condi-
tion required to be a member of X!(f) in a different way. An application is
good if the 1-jet associated to f, defined as:

jY(f): R* — R" x End(R")
p — (f(),Jf(),

is transverse to the stratified sub-manifolds ¥ defined in End(R™) by means
of the rank of the application. Precising a little more, in fact, we impose the
transversality of pro o j1(f) with £% = {A € End(R"): rank A = n — k}. To
get this transversality condition we need to avoid:

djlf(x*)(Rn) C Tp?"QOjlf(Qf)(El)?

but it is equivalent to impose d(det(J f))(x*) = 0. Obviously det(J f(x*)) = 0,
and therefore there exists aq(x) eigenvalue of J f(z) such that ap(z*) = 0. In
fact, we write:

d(det(] £))(z") = (e -+ a) (=) = das (z*)an(2") - an (")
+oy(z)doo (™) - an(z*) + -+ ar(z¥) - - - dag (27)

= doy (z%)ag(x™) - - ap(x¥).
Therefore if we want to get d(det(Jf))(z*) # 0 we need to impose:
doy(z*) # 0, aj(z")#0 j=2,...,n.

These conditions are frequently used [15], [23]. Being X!(f) a codimension 1
sub-manifold we can select coordinates (x1,--- ,zy) in a neighborhood V' of
x* verifying:

S HNV ={(z1,20,...,2,): 23 = --- =z, = 0}
Applying Hadamard’s lemma (see [3]) we obtain:
h(zi,...,xn) =x1hi(z1, ... 20) + -+ Tphp (21, . 2 hp(T1, .. Tp).
The idea of the proof of this lemma is to make:

h(zi,...,xn) = h(z1,...,2n) — h(0,22,...,2y)
+h(0,z2,...,2,) — h(0,0,z3,...,2,)
+...
Fh(O,...,0,2,) — (0, ...,0)
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h(0,....0, 2z ...,2n) — h(0,...,0,2i41, ..., %)

i Oh
- 0 Tints ) dE
0 8.131(07 )O) y Li4+1 l‘)
1
h
= gx 0,...,0,8%;, Tit1, ..., xp)xids = zihi(z1,. .., Tn).
0 7

So in our case we can conclude:
hi(l’l,...,l‘n)zo, i:2,...,n.
h(z1,...,xn) = x191(21, ..., Tp).
g(x1, ..., xn) =z fr(21, ..., 2p).

The last equality is deduced from the application of Hadamard’s lemma to g,
which is zero in X!(f) by hypothesis.
Finally let us remember that d(det(Jf))(x*) = dh(z*) # 0, then:

dg(z1,...,xn) =drig1(21, ..., 20) + z1dg1 (21, . . ., Tp).
dg(0,...,0) =¢1(0,...,0) #0.

Thus:

r—x* h(.%) T—T* 36191(56) gl(x*)’

so the proof is complete. |

fim 9 _ g, wA@) A

Proof of Theorem 4. To generalize the proof to points of ¥*(f), with
k > 1, we need to extend the key result that we have proved implicity in the
precedent proposition:

LEMMA 7. Let C,(R™) be the local ring of differentiable functions at x.
The ideal constituted by the functions which are zero when restricted to a
fixed codimension 1 sub-manifold is principal.

In other words: all functions which are zero in the sub-manifold, for a
“good” choice of coordinates, can be written as f = 1 f1. It is, (1) generates
the ideal. So it is principal. Moreover:

LEMMA 8. Let C,(R™) be the local ring of differentiable functions at x.
The ideal constituted by the functions which are zero when restricted to a
fixed codimension 1 stratified analytic sub-manifold is principal.
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For a proof see [16]. With this result Theorem 4 can be proved directly.
First the sub-analycity of f implies that 3(f) is a stratified analytic sub-
manifold. So we are in the conditions of Lemma 8. There will be a function
s such that ¢ = g1 - s and h = hy - s. Thus:

) = Tim F(z) = tim 4 = jyp @00 _ p, S(@)

Now we have only to prove that g;(z*) # 0. The argument is similar to that
of the case k = 1. If it is not true, we will obtain:

(pTQ o ]lf)*(T;Rn) - Tpmojlf(l*)z’

where T).,05, ()2 is the limit of all the tangents to ¥J with j < k in points
going to x*. Now if hy(z*) is zero we obtain that it is impossible to get away
from the singular set in a first derivative approximation, i.e.

Oh(z*)  Os(z*)hi(x*) Ohi(z*) = Os(x¥)
o ov = s(2") ov + ov

hi(z*) =0, Vv € R™.

And it implies the non tranversality of (pra o j'f)«(T¥R™). So if we want to
guarantee this condition, we need to impose hq(z*) # 0. Then, the proof is
ended. |1

From the precedent theorem we can obtain a clear corollary:

COROLLARY 3. If f is a good subanalytic application with has a singular
zero x*, its Newton’s vector field admits a continuous extension to x* if and
only if there exists a neighborhood of the point x* where all the singularities
are straneous or zeroes of f.

Proof. By Theorem 4 a necessary and sufficient condition to obtain a con-
tinuous extension is that F' is contained in F(F') but that is just the condition
imposed in the neighborhood. Because

AP - ()
PO = 4@y

and we need to impose that Adj? (Jf)(z) - f(z) = 0 in X(f), it is possible if
and only if x a strenuous singularity or z is a zero of f. |
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The possibility of a continuous extension is very important for Newton’s
vector field. First, the numerical methods used to integrate the field are well
behaved in this case, because the derivatives are bounded. Second, we obtain
asymptotic stability in the extended field. This is formalized in the following
two results.

LEMMA 9. If we extend N (f) to its domain of continuous extension, then
the isolated zeros of f and N (f) are the same.

Proof. In the regular set the result was proved before. Suppose now that
x* is point where there exists a continuous extension of N(f). Adapting

equation (1.6) we obtain:

—Jf(x) - N(f)(z) = f(z).

Therefore if 2* is a zero for N(f) we have that it is also a zero for f. Now we
go the other implication. Suppose f(z*) = 0 and N f(z*) # 0. Then by the
existence and unicity theorem of ODE’s there exists only one trajectory x(t)
of the Newton’s vector field through z*. Making x(0) = z*:

Fa() = F((0)) - e .

But for ¢ > 0, because z* is an isolated zero, we obtain x(t) = x*. But this
contradicts the affirmation N(f)(z*) #0. 1

Now we study the asymptotic stability:

LEMMA 10. Let x* be a singular isolated zero of f which admits a con-
tinuous extension of the Newton’s vector field, then the function V = || f||? is
strictly Liapunov for the Newton’s vector field in a neighborhood of x*, so z*
is asymptotically stable.

Proof. Being z* isolated, there exists e > 0 such that B(z*,¢€) does not
contain another zero. By Proposition 3 we have:
dV (x(t))
dt

for all the points of B(z*,¢). Thus V is strictly Liapunov and the point is
asymptotically stable. |

= —2V(2(t)) < 0,

We notice that the precedent condition is very strict and so generically
Newton’s vector field does not admit continuous extension to singular zeroes.
In the following section we are going to precise this affirmation.
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3.2. NEWTON’S VECTOR FIELD AND CHANGES OF COORDINATES. The
main limitation of the precedent section is that it does not provide a criterium
in terms of the derivatives of the field to characterize the continuous extension
of the field. In the following lines we study the behaviour of the vector field
in front of changes of coordinates. The idea is to extract the geometrical
information contained in the vector field.

3.2.1. Basic RESULTS. Newton’s vector field can be interpreted intrin-
sically as an operation transforming fields over a manifold in vector fields over
a subset of the manifold. But, there exists other interpretation as a trans-
formation of functions. We will see that this interpretation is not geometric
(depends on the choice of the chart) but it will lighten some aspects of the
vector field.

DEFINITION 13. Given an application f: R" — R"™ and ¢1,¢2: R* —
R™ diffeomorphisms verifying that ¢2(z) = 0 < z = 0, we define the 0-
transformation f¢>12 =¢oo fo gbfl.

Remark 5. This kind of transformation is nothing but the obvious action
of the group Diff (R™), x Diff(R")g, in our case with the additional condition
of conservation of the zero. So they verify:

Pa\Po _ pPo00
(fo1)o; = fojos,

DEFINITION 14. Given f: R™ — R", its Newton’s vector field associated
in coordinates (¢1, ¢2) is defined as N(f;7).

Making an explicit computation of the field we obtain:

df$* (x) = do(f o o1 (x)) - df (61 (2)) - oy (@) (3.21)
(df) (@) = (doy () - (df (67 (2)) " (da(f o 7 ())) "
= dp1(¢7 " (x)) - df (7 (z)) 7" - doby (g2 0 f o dy ' ()

N(f32)(@) = don (7 () - (df (67 ()"

3.22
~doy (20 fody (x) - (¢20 fodi!)(z). (322
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We could consider N(f ¢12) as a field and then we can analyze if the pull-back
of N(f) through the diffeomorphisms ¢ = ¢1 = ¢ is equal to N(f37), ie. :

?

N(£9) = de(N(f)o ")
N(f)(@) = —de(¢~ () - (df (6" (x))) 7"
(dp(fod™(2) - (do fod ) ()
dpN(f)o ™" = —dqb(dfl(x)) (df (o (@) (e ().

Comparing the two expressions we conclude:

LEMMA 11. The Newton’s vector field associated to an application f(;f
coincides with the pull-back of N(f) through ¢ if and only if ¢ is a linear
application.

Other possibility is to consider N(f) and IV ( f(ff) as applications. In this

case we can ask if N( f(ff) is equal to the O-transformation of f through the
diffeomorphisms (¢1, ¢2), i.e

N(f52) = (N(F)e. (3.23)
Again the answer is negative because:
(NG () = $a(—(df (&7 (@) - f(97 ' (2))). (3.24)

And this expression is not, usually, equal to (3.22). However if we study linear
changes of coordinates ¢1(z) = Az and ¢2(z) = Bx then we obtain:

N(f3?) = —A-(Jf(A2) L f(A )
(N(£)5 = =B(Jf(A ') f(A'x).
Thus we can write:

LEMMA 12. For linear changes of coordinates (N(f))% = N(f%) if and
only if A = B.

Finally an useful observation is:

LEMMA 13. If t,: R™ — R"™ is a translation with vector v we have that

(N())ig = N(fi).
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Now we observe that changes of coordinates in the origin preserve the basic
properties of the field:

LEMMA 14. Given f: R"™ — R", its Newton’s vector field in coordinates
(¢,4d) is equal to the pull-back of N(f) through the diffeomorphism ¢~".

Proof. Particularizing expression (3.22) we obtain:

)
N(fiH)(x) = —(dp(x)) " - df (¢~ (x)) - (fo ¢ ") ()

= (d(2))™" - N(f) (67} (@) = (6" (N()(2). I

A pull-back through a diffeomorphism preserves continuity or discontinuity
of vector fields. The conclusion is that, thinking on the extension of the field,
changes of coordinates in the origin preserve the caracteristcs of the vector
field. However for changes of coordinates of type (id, ®) we have:

N(fg) = [*(N(2)),

where @ is interpreted as a field. In this case we can not conclude anything
about the continuous extension of the field after making the change. Because
in the singular points the pull-back is not well defined. For the study of generic
0-transformations we can give the following result:

ProprosITION 8. Given f: R" — R", its Newton’s vector field in coordi-
nates (¢1, ¢2) is equal to the pull-back ofN(fi‘ZQ), interpreted as a vector field,
through the diffeomorphism qSl_l.

Proof. We only have to compare the two expressions. Writting formula
(3.22):

N(f5?) = dér(1 (x)) - df (61" (@) - ddy " (d20f © d1—1(x)) 5.25)

(20 foor)(a).

Also we compute the pull-back of N ( f;?):

N(f2) = (df (z)) "' - dgy ' (d2 0 f o d1—1(z)) - ($2 0 f o o7 )(x)
BT (N(f2) (@) = do (o7 () - df (67 ().
-dey (pa 0 fodr—1(x)) - (¢20 f oy )(x).

The two expressions coincide. [
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3.2.2. CONTINUOUS EXTENSION AND CLASSES /.  We are going to give
some results providing conditions for the existence of continuous extensions
of the Newton’s vector field based on the derivatives of the point. For this we
need the use of the geometric classification of singularities. Now we define the
classes ¥.! associated to an application. From now on we fix f: R* — R" a
smooth application.

DEFINITION 15. A point € R” will be of class ©* if the dimension of
the kernel of Jf(x) is equal to i. The set of points of class X¥ is denoted by

SR,

DEFINITION 16. Let X1(f) be a submanifold in R", with I = {i1,...,i,}.
Then the set X1 (f), with I = {i1,...,ip,dps1} is:

SI(f) =S (FI1()-
These sets are not always well defined, we need that they are manifolds to

be able to use the recursive construction. The main result we will use is:

THEOREM 5. There is a Baire subset in the space of smooth applications
from R™ to R™, with the Whitney topology, for which the classes X! (f) are
well defined and are smooth submanifolds. An application in this subset is
called good.

The dimension of these submanifolds can be computed, see for example
[3].
Remark 6. For 2-dimensional applications the allowed classes of points for

good applications are:

1. XO(f) = Q(f) the set of regular points.
2. BLO(f) the set of fold points.
3. LLL(f) the set of pleat points.

In [24] it is shown that using a convenient change of coordinates any fold
point can be written as the (0,0) for the application:

fz,y) = (2%, y).

Equally a pleat point can be always written as the (0,0) for:

flz,y) = (2° + zy,y).
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This result will help us to study the possibility of continuous extensions of
the Newton’s field in the bidimensional case. The definition of the classes %!
only uses the first k& derivatives of the application at a given point, where k is
a function depending on the multi-index I. So we can know if a point 20 is in
a given class X! (f) for an application f computing only the k-jet of f at the
point z°. This motivates the definition of the ¥/ classes in the spaces of k-jets
JF(R™,R™), this definition is independent of any f for k large enough. Our
objective in the following pages can be expressed in the next two definitions:

DEFINITION 17. A class ¥/ in the space J*(R”,R"), with k large enough
to have a good definition, is homogeneously extensible if for every application
f with a zero 2° in the given class, the Newton’s vector field can be defined
continuously at zV.

DEFINITION 18. A class X/ in the space J*(R",R"™), with k large enough
to have a good definition, is homogeneously non-extensible if for every appli-
cation f with a zero z¥ in the given class, the Newton’s vector field can not
be defined continuously at 2°.

DEFINITION 19. A class ¥/ in the space J*(R",R"), with k large enough
to have a good definition, is non-homogeneously extensible if it is not homo-
geneous extensible neither nonextensible.

The definitions are useful if there exist homogeneous classes of singularities.
An obvious case is the class X = Q which is obviously homogeneously exten-
sible. We will prove some results about the existence of homogeneously non-
extensible classes. First at all we give a simple example of non-homogeneously
extensible class. It is the class 319 in 2 dimensions. We give two examples of
applications, the first with a continuous extension, the second without such
extension.

Continuous extension. We take:

/()= ()

The function is good. The singular set is X(f) = {(z1,22): 2 = 0}. The

Newton’s vector field is:
Cr1\ —X
v (5) = (L)
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The point (0,0) is a zero of class ¥ and admits a continuous extension of
the vector field.

Discontinuous extension. We take:

T\ Ty
()= (atn)

The function is good. Again the singular set is X(f) = {(z1,22): x2 = 0}.
The Newton’s vector field is:

.
N(f) (‘“) | Btm

2332

The point (0,0) is a zero of class £1° but does not admit a continuous exten-
sion of the vector field.

Therefore the class £ is non-homogeneous. Now we will give an example
of non-extensible class. To understand the problem we introduce the following
result:

THEOREM 6. ([17]) For a good application f: R"™ — R™ the following
affirmations are equivalent:

1. 20 e SL(py,

2. There exist local coordinates which allow to write f as:

Y1 =x1,.--,Yn—1 = Tn-1,
o 2 n—1 n+1
Yn = T1Tp + T2Tp, + -+ Tp_1T), ~ + T, .
This kind of singularities are called generalized pleat points.

We are going to prove:

THEOREM 7. Let 20 € R™ be a generalized pleat point for f: R" — R"
then its associated Newton’s vector field never admits a continuous extension
at 0.

Proof. We give a proof for the bidimensional case (pleat points). The
general case uses the same arguments, for a complete proof we refer to [20].
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By Theorem 6 we know that in a neighborhood of 2° we have f = f(ff
where ¢1, ¢ are diffeomorphisms and:

f 1\ QJ‘;’ + 2129
2y T2 '
By Proposition 8 we know that f will admit a continuous extension if and
only if it occurs for the application fZ%Q at qbl_l(aco) = (0,0). We are going to

prove that f;? is never continuous at (0,0), so the proof would be complete.
Particularizing formula (3.22) for this particular case we obtain:

N(f) (@) = (df (@)~ - (dgo(F(2))) " - (¢2 0 ) (=) (3.26)

Expanding the precedent expression and taking into account:

bo (y1> _ <U1(y1,yz)>

Y2 v2 (Y1, 92)
ds <y1> _ <8v1/3y1 v/ 0@/2)
Y2 ng/ayl 81}2/8y2
(doo <y1> )71 = L ) ( Ova/Oy» —5711/392)
Y2 det(dpa(y1, y2)) \—0v2/0y1  Ov1/Oy
(dgsa <y1> )—1 _ (m) _ 1 _ < (Ovg/0y2)v1 — (Ov1/0y2)v2 )
Y2 v2)  det(dpa(y1,y2)) \—(Ov2/Oyr)v1 + (Ovi/Oyr)v2)

We will obtain that:

1/(32% + —x1/(322 +
V(i) == (MO /)
(3.27)
. 1 ( (8?}2/83;2)1)1 — (81)1/6];2)’02 >
det(dg2(y1,y2)) \—(Ov2/0y1)v1 + Ov1/0y1)va
v v v v
1 873”1 — Ty;UQ + xl(Tyivl — Tyivz)
= 3(E2 + 22
det(des(y1, 311+ 2y
et(do2(y1,y2)) —%ﬁm L %Uz

If we want that the expression (3.27) will admit a continuous extension we
will only have to impose this for the first component, because the term which
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divides the second is no null (¢3 is diffecomorphism). So we have only to check
when the following function:

g(z1,72)
h = 3.28
(xh 332) 333% + Z9 ( )
with,
8’02 (9’1)1 81)2 8’01
_ _ L — —= 3.29
g(z1,72) P s ”Tl(ayl v g v2), (3.29)

would admit a continuous extension. If there would exist an application ¢o
getting it, we could change linearly the coordinates with a matrix A, such
that A o ¢o would have the identity as jacobian at (0,0), because d(A - ¢3) =
A -d¢s. By Lemma 12 in these coordinates the Newton’s vector field is again
continuous. Therefore, we can suppose that the functions vi, vy are of the
form:

v1(y1,y2) = y1 + o(|lyl)
va(y1,y2) = y2 + o(||yl])-

Remember that differentiation transforms o(]|y||) expressions in o(1) inequal-
ities. So we can write the expression (3.29) as:

g(z1,z2) =(1+ o(1))(y1 + o([lyl])) — o(1)(y2 + o([lyl) + z10(1)(y1 + o(llyl))
—x1(1+0(1))(y2 + o(llyll)) = y1 +o(L)y1 — o(1)y2 + z10(1)11
— 2192 — 210(1)y2 + o([lyll) = y1 — z1y2 + o({lyl])-

Finally, the expression of g, remembering that f = (y1,%2), can be written as:

gy, 1g) = YL T8 F o(llyll)

322+
, ; (3.30)
_ oy o —za+o(llyll) _ 27+ o([lyl)
3z% + x9 323+ a0

We have only to check that g is always discontinuous at origin. Concretely
we know:

z? +w(y1, y2)

dw(0,0) = (0,0 0,0) =0. 3.31
e w00 =00, w©.0=0 @31

g(x1,22) =

Making the following change of coordinates:

2
21 = 21, 29 = 3x] + x2.
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The inverse change is:
_ _ 2
T = 21, To = 29 — 327.

It is a local diffeomorphisﬁm as a direct application of the inverse function
theorem. Components of f (f = (y1,y2)) as functions in (21, 22) are:

Y= 2129 — 223, Yo = 29 — 323, (3.32)
Again we can rewrite g in the following way:

o o) = i 0)
22
Suppose ¢ is continuous at (0,0), then we can divide by zo the numerator,
because Hadamard’s Lemma assures that every function h with zero set con-
taining the axis e = {(z1,22) € R?: 20 = 0} must be h = 2zh". For this we
need that w adopts the form:

w(zy,29) = — 23 -+ (3.33)

But notice that w(yi,y2) = o(||ly]|), and so this is impossible, because the
smallest degree terms in w will be y? y1y2,%3, and in the three cases by
means of (3.32) we conclude that the smallest degree terms, in the single
variable z1, are of kind z{. Therefore it cannot annul the term 23 and it is
always impossible to obtain a continuous extension. [

3.3. BEHAVIOUR NEAR SINGULAR ZEROES. In the precedent pages we
have given some criteria to determine when the Newton’s field admits a con-
tinuous extension to the singular set. However, in a lot of practical cases this
extension is not possible. In the following paragraphs we are going to study
what can be said in these cases. We will show that it is possible to give alge-
braic conditions that will guarantee that a singular zero is almost as good as
a regular one. In general we obtain conical convergence results as Theorem 8.
We start with an useful definition:

DEFINITION 20. A singular zero z° of f: R” — R" is a generalized sink
if there exists a neighborhood V of 2%, such that for every positive-maximal
trajectory x: (a,b) — R™ of the Newton’s vector field verifying z(a) € Q(f)NV
then:

lim x(t) = 2°.
Pyt =2
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A trajectory is positive-maximal if it does not admit an extension at b.
This definition is the natural generalization of the concept of sink, obviously
the regular zeroes of f are generalized sinks. Now, we give a condition for a
singular zero to be a generalized sink.

PROPOSITION 9. Given an isolated singular generalized sink x° of f: R" —
R™, if there exists a neighborhood V of x° verifying that all the points in
VN (Z(f) — 2%) are transversal sources, then z° is a generalized sink.

Proof. Take g = ||f||*. Then it verifies for every trajectory of the Newton’s
vector field:

g(xz(t)) = g(a(0))e™™".

Being 2 isolated we can find € > 0 such that V., = {z € R": || f(2)| < €} is
contained in V. This V, is a neighborhood of f which makes 20 to verify the
condition of generalized sink, because all the trajectories in V; can be extended
to infinity, otherwise there would be trajectories going to the singular set. Also
Ve is invariant for the Newton’s vector field, so the trajectories have as limit
2V 1

Now we define formally a concept that we have already used in Proposi-
tion 5.

DEFINITION 21. Given f: R™ — R", we define the repulsion function as-
sociated to it as:

R:3(f) =R, R(z) = d(det(df (x))) Na(f)(x)-

This function is zero for points in X*(f) with k greater than 1, because the
differential of the determinant is zero in these points. For points in X!(f) the
value of the repulsion function at a point x shows if the singular set attracts
or repulses the Newton’s vector field at this point. We can extract a simple
corollary of Proposition 9:

COROLLARY 4. Let x* a singular zero of f. If there exists a neighborhood
V of x*, such that:

R(z) >0 forallze VN (X(f)\{z"}),

then x* is generalized sink.
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As a conclusion we can give an analytical criterium to determine the char-
acter of a singular zero:

ProprosiTION 10. Let x* be a singular zero of f: R® — R". Then z*
is a critical point for R the repulsion function associated to f. Under the
hypothesis of the Hessian of R non-degenerate, if the Hessian of R restricted
to X(f) is definite positive then x* is a generalized sink, otherwise x* is not a
generalized sink.

Proof. First one we compute the jacobian of the desingularised Newton’s
vector field:

J(Na(f)(z*) = J(= Adj" (T f) - ) (")
= —J(AQJT (T ) (=) - f(2*) = = AdjT (S f)(a*) - T ()
= —J(AdIT (T £))(x*) -0 — det(Jf)(z*) - id = 0.

It follows that:

d(d(det(J f))(Na(f)))(z")
= d(d(det(J f)))(z*)(Na(f)(z")) + +d(det(J f))(z")d(Na(f)) (")
d(d(det(Jf)))(x") - 0+ d(det(J f))(z") - 0 = 0.

So x* is a critical point for the repulsion function. A sufficient condition to
obtain a local minimum of R is to impose that the Hessian of R must be
positive definite. If it is the case we are in the hypothesis of Proposition 4,
and z* is a generalized sink. If the Hessian is not positive there exist points in
Y (f) with negative value of R arbitrarily near x*. The trajectories of Newton’s
vector field through these points finish on them, so z* is never a generalized
sink. |1

dR(z™)

We will end the discussion enunciating a result for more general situations.
It can be found in [22], it is a natural extension of results as [21], [7], [8].

THEOREM 8. Let x* be a singular zero of a good application f: R" —
R"™, and suppose that x € YX(f). We shall denote X = 3 df(z*), N =
Ker df(z*). Suppose that R™ = X @& N and Py, Px the projections over
these two subspaces. If we impose the following two conditions:

1. f"(#*)NNUX = {0},

2. [|lf"(@*)nv|| = cilnfllv]], n € N, v € R" and ¢; > 0,
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where f”(xz*) is the Hessian of the application f. Then there exist constants
0, p > 0 such that the local cone:
CNAP = {2 e R": ||z — 2*|| < p and || Px(z — 2¥)|| < | Pn(z — 2*)]60},

iﬂ*,p
verifies:

1. CNA2N\ {z*y € Q(f).

'T*)p
. - . . N,X,0
2. x* is the unique zero of f in CIW .

3. Cﬁ:if’e is invariant for the Newton’s vector field. Also the limit of every

trajectory in the cone is the zero x*.

The theorem is quite geometric. In fact it is easy to assure conditions
for a point to not converge to a zero using Proposition 3. In the precedent
case an idea of the proof is based on the following fact. The values of f
restricted to X(f) in a neighborhood of the point are in a codimension 1
submanifold f(X) C R"™. So for small neighborhoods the image is almost a
plane. Therefore if we find a point x such that their image f(z) is not in this
plane then by the Proposition 3 cannot converge to X(f). But such x can be
find along the N subspace. Theorem 8 formalizes this idea.

4. CONCLUSIONS

Along this article we have generalized the classical Newton’s vector field
to the manifold setting. We have showed that most of the results obtained
in R™ can be translated without any problem to a manifold equipped with a
bundle E and a connection on it. In this case we define the Newton’s method
as a transformation with takes a section s of E and gives a vector field N(s)
on T'M. The new vector field keeps the equilibrium points of s but it gets the
asymptotic stability of all of them. The additional hypothesis of existence of
a compatible metric have allowed us to assure global results of convergence.
We have characterized the behaviour of the singular set 3(s) respect to the
Newton’s vector field studying when this set attracts the field. We give precise
analytic conditions as Propositions 10 and 6.

All the precedent discussion give new ideas in two different directions.
First one the vector field defined on manifolds gives a new tool in differential
geometry. Second one the generalization has a feed-back effect allowing to
define generalized methods in R”. Using in R" non-standard connections we
can change largely the convergence domain of the Newton’s vector field.
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Other result adapted to the manifold setting is the probabilistic conver-
gence theorems. These theorems give the probability of arriving to an equilib-
rium point, following the Newton’s vector field starting at a generic point. We
have adapted the most classical result due to Hirsh and Smale [12]. This gives
very strong convergence properties for a large class of proper sections. The
implications of this kind of results in topology and geometry are unexplored
but it could give an engine to prove existence results in differential topology.

Another of the questions studied in this article have been the possibility
of obtaining continuous extensions of the vector field to the singular set. We
have generalized the work [23]. In that article they give a criterium to check
when an equilibrium point in X!(s) admits a continuous extension of the
vector field. Now we have generalized this study for equilibrium points of
good applications, but in %¥(s) with k& > 1.

We have proposed in this article a new way of studying the precedent
problem by means of singularity theory. We have used the Boardman’s clas-
sification of singularities and we have proved that for certain class of singu-
larities the vector field can be never extended continuously (see Theorem 7).
The conclusions are quite negative and in fact there are many cases where
the vector field does not admit extension in. It brings the problem to the
study of the general case of singular zeroes, we have given analytical condi-
tions to assure the good behaviour of this kind of zeroes. In the general case
we only enunciate the most important results, they are really developed for
the discrete Newton-Raphson scheme but can be adapted to this setting. In
the future it could be interesting to develop more the geometric sight of the
method to give independent proofs of results as Theorem 8.
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