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1. INTRODUCTION

Let 0D be the unit circle and dt the Haar measure on dD; in [6], the
author studied the norm convergence of the Taylor series in the Hardy space
HP(9D) and, by using ad-hoc computations, showed that this happens if and
only if 1 < p < oco. The purpose of this note is to point out the role of the
Boyd indices in this process, once observed that the Boyd indices of LP(9D)
are non-trivial, if and only if 1 < p < co. We define Hardy spaces Hg(9D)
associated with an arbitrary rearrangement invariant space E(9D) over the
measure space (0D, dt) and prove that the Taylor series converges in Hg(0D),
if and only if E(0D) has absolutely continuous norm and non-trivial Boyd
indices (Theorem 1). We obtain analogous results for analytic Besov spaces
on the disk (Theorem 2).

The interest of rearrangement invariant space (r.i.s.) originates from
Calderon interpolation theorem for linear operators: if T' is a linear opera-
tor that is bounded both on L' and on L™, then T is bounded on E, too.
On the other hand, Boyd interpolation theorem gives a sufficient condition
for the boundedness of quasilinear operators of joint weak type (p, p; ¢, q):
if T is such an operator, then it is bounded on any r.i.s. £ whose Boyd in-
dices ap and ag verify the condition % <ap<ag< %. There exists many
interesting examples of r.i.s.; among them, we only mention LP, the Lorenz
space LP? and the Orlicz spaces L¥. For notations, unexplained definitions
and other relevant proprieties of r.i.s. and interpolation theory, the reader is
refered to [2].
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2. NORM CONVERGENCE OF TAYLOR SERIES

~ 271— .
Let f € E(OD) and f(n) = 5 [ f(t)e"™dt be its n'" Fourier coeffi-
0

cient. We define Hg(dD) = {f € E(0D) : f(n) = 0 Y n < 0}, the Hardy
space on the disk associated with E(0D); this definition extend the clas-
sic one, that is obtained if we take E(0D) = LP(9D). We also note that,
since an(f) = f(n), n € Z, are bounded functionals on E(9D) and since
Hg(0D) = (,«o Ker{a,}, He(0D) is a Banach space. If we define the Hardy
space for the disk Hg(D) = {f € H(D) : supg<,<1 | frllE@D); 00}, where
fr(z) = f(rz), then one can see that the Poisson extension maps Hg(9D)
boundedely and onto Hg(D), as it happens in the classic case.

In this paper, we want to study the convergence of the Taylor series in
Hardy spaces. It is quite clear that this happens whenever the trigonomet-
ric polynomials are dense and when the operators T, given by Tn(f) =
Zév f(n)e™t f € E(0D), N > 0, are uniformly bounded on Hg(dD).

LEMMA 1. Let E(0D) be a r.i.s. The following condition are equivalent:

(1) E(OD) has absolutely continuous norm (i.e. for all f € E(0D) and
for any sequence of measurable subsets E, — ( a.e., it follows

| fxE. | Eop)y — 0);

(2) the trigonometric polynomials are dense in E(0D).

Proof. First assume that E(0D) has absolutely continuous norm. Let
f € E(OD) and fix € > 0; since E(9D) has absolute continous norm, the
bounded simple functions are dense in E(9D), by [2], Theorem I 3.11, so there
exists a simple function s, finite everywhere, such that [|f — s||g@ap) < €/3;
fix 6 > 0; by Lusin’s theorem, there exists a continuous function g on 9D,
that differs by s on a set A of measure less then § and such that ||g|lcc <
[8][oo; hence [|s — gllg@ap) < 2lIslleollxallE@p). Since E(OD) has absolutely
continuous norm, we may choose § such that |[xallg@p) < §e for any
measurable set A C 9D of measure |A| < 6, getting [|s — g||g@ap) < €/3. By
Weierstrass approximation theorem, there exists a trigonometric polynomial
on 9D such that ||g—Plloc < €/3, hence ||g—P||g@op) < €/3, since L>(9D) —
E(9D), continuously and the inclusion can be always be assumed to be of
norm one (see [2], Theorem II 6.6); putting all this toghether, we finally get

|f = Pllgop) <e
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In order to prove the converse, we simply note that, if the trigonometric
polynomials are dense in E(9D), then clearly E(0D) is separable (trigonomet-
ric polynomials with rational coefficients form a dense set), hence its norm is
absolutely continuous, by [2], Theorem II 5.5. 1

THEOREM 1. (See [3]) Let E(OD) be a r.i.s. with absolutely continuous
norm. The following condition are equivalent:

(1) the Taylor series of any function f € Hg(0D) converges to f in the
norm of E(0D);

(2) the Fourier series of any f € E(0D) converges to f in the norm
of E(OD);

(3) E(OD) has non trivial Boyd indices.

Proof. (1) = (2) Let f € E(0D), ¢ > 0; by Lemma 1, there exist a
trigonometric polynomial P such that ||f — P|/g@p) < € then, for all N >
deg P, we have

If — Snfllepy < If — Pllgep) + ISNP — Snfllg@D) »

where Sy (f) = 2Ny f(n)e™ f e E(OD); so it would suffice to show that
the operators Sy are uniformly bounded on E(JD). Since, by hypothesis,
limy oo Inf = f, for all f € Hg(9D), then, according to the uniform bound-
edness principle, there exists a constant C' > 0, such that ||Tn f||g@p) <
C|flle@py, for all f € Hg(0D) and N > 1. Now let @ be a trigonometric
polynomial and let K = deg Q; then SyQ = e~ K Tyn (e'K1Q), for all N > K,
hence [|SnQ| pop) < [Ton (€'Q) | pop) < Clle™ Q|| p@op)- This proves that
[SNQlle@p) < CllQllE@op) and this, together with the density of the trigono-
metric polynomials in F(9D) (Lemma 1), end the proof.
(2) = (1) is obvious, while (2) < (3) is implicit in [3]. 1

In [6], the author studied the problem of norm convergence of Taylor series
in HP(0D), 1 < p < o0, and solved it by using ad-hoc computations; our
approach is completely different of his and since for such p, the space LP(9D)
has absolutely continuous norm and non-trivial Boyd indices we reobtain his
results as a corollary:

COROLLARY 1. (See [6], Corollary 3) The Taylor series of a function f €
HP(9D) converges to f in the norm of HP(0D), if and only if 1 < p < oc.
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3. BESOV SPACES

Let d\(z) = % be the Md&bius invariant measure on D, E(d)\) a
r.i.s. over the measure space (D,d\) and n > 2; the analytic Besov spaces
associated with E(d)), consist in those analytic functions on D such that the
function z — (1— | z [2)"f™(2) € E(d)\) (see e.g. [4]); when F(d)) has
non-trivial Boyd indices, Bg are Mobius invarriant, in the sense of [1] (see
[5]). In particular, the polynomials are dense in Bg, by [1], Proposition 2.

THEOREM 2. Let E(d\) be a r.i.s. over (D,d)), with non-trivial Boyd
indices; then Taylor series of each function in By converge to f (in the norm

Proof. By [6], Corollary 5, there exists a constant C' > 0 such that for all
N >1and forall 1 <p < oo, Ty : B, — B, is bounded and ||| < C for
all N > 1; the hypothesis on E(d)\) and Boyd’s theorem for Besov spaces (see
[4], Theorem 5) ensure the uniform boundedness of Ty on Bg; as observed
earlier, this fact, toghether with the density of polynomials in Bg, end the
proof. |

4. EXAMPLES AND COMMENTS

The conditions given in Theorem 1 and in Theorem 2 are expressed in
terms of Boyd indices and absolutely continuity of the norm; so it is natural
to ask if one of this two proprieties implies the other. The answer to this
question is positive for important classes of r.i.s.: the Lorenz space LP? (1 <
p < 00, 1 < ¢ < o0) has absolutely continuous norm if and only if has non
trivial Boyd indices; a similar phenomenon ocures with the Orlicz space L,
whose norm is absolutely continuous if and only if its superior Boyd indice is
non-trivial.

Nevertheless, there exists relevant examples of r.i.s. that proves that the
two proprieties are not related. The following example, that we shall present
here, is due to Sharpley (see [2], pag. 285). Let F r.i.s., let 1 < ¢ < oo and

0o 1/q
Aq<E>={feM<aD,dt> = ([ @esor ) <oo},

where f**(t) = f(f f*(s)ds is the maximal function, f* the decreasing rear-
rangement of f and ¢p the fundamental function of E (if ¢ = oo, then we
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take sup instead of integral); then, if £ has non trivial fundamental indices,
then the space Ay(E) is a r.i.s. whose Boyd and fundamental indices coincide
with the fundamental indices of E; further, A;(E) has absolutely continuous
norm if and only if 1 < ¢ < co. So choosing ¢ = oo and E such that gg < oo,
we obtain a r.i.s. A (E) which has non trivial Boyd indices and has absolutely
continuous norm, while if we take ¢ < co and E with trivial fundamental in-
dices, then we obtain a r.i.s. Ayg) whose Boyd indices are trivial, but which
has absolutely continuous norm. So the two proprieties are not related.
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