i EXTRACTA MATHEMATICAE Vol. 17, Num. 1, 141-150 (2002)

On the p—Drop Theorem, 1 < p < oo

ABDELHAKIM MAADEN

Université Cadi Ayyad, Faculté des Sciences et Techniques,
Département de Mathématiques, B.P. 523, Beni-Mellal, Maroc

(Research paper presented by P.L. Papini)

AMS Subject Class. (2000): 46B20, 46B10, 49J50 Received May 21, 2001

1. INTRODUCTION

Let (X,]|-]|) be a Banach space and B be the closed unit ball of X. By
a drop D (z, B) determined by a point x € X \ B we shall mean the convex
hull of the set {z} U B. If a nonvoid closed set S of a Banach space (X, |-])
having a positive distance from the unit ball B is given, then there exists a
point a € S such that D (a, B) NS = {a}, which is the so-called Danes drop
theorem [1].

In [4] these notions were considered in the context of quasi-Banach spaces.
More precisely: Let X be a p—Banach space, 0 < p < 1. Let A be a non-
empty, closed subset of X; and let B be a closed, bounded and p—convex
subset of X so that d (A, B) > 0. Then, there exists a point a € A such that
Dy (a,B)NA={a}.

In this paper, we shall consider the notion of p—drop for 1 < p < co. Let
C be a closed convex subset of X, and a € X. The set

D,(a,C) :={aa+Py: o,f€0,1] with o + 87 =1,y € C}

is called the p—drop of center a defined by C. For p = co we put Dy, (a,C) =
conv (C'U{a+ C}). We give some properties of p—convex sets (for 1 < p <
o0). We study also the p—drop theorem for 1 < p < oo.

It is clear that a drop D (z, B) is never smooth. A smooth drop theorem
of Danes type for spaces with smooth norms was shown in [7] (see also [3]).
A closed convex set D is called a smooth drop if 0 is in the interior of D and
the Minkowski functional of D, p(z) = inf {A > 0: zA™! € D}, is smooth.

We show that the p—drop is Fréchet-smooth (resp. Gateaux-smooth) when-
ever the dual norm is locally uniformly convex (resp. strictly convex).
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2. PRELIMINARIES

DEFINITION 2.1. Let (X, ||-]|) be a Banach space. Let C be a closed and
convex subset of X and let p > 1. For x € X, the set

Dy(w,C) = {m+(1 Yy yeC, tel, 1]}

is called the p—drop of center x defined by C. For p = 0o, Do (z, C) is the set
conv ({x+C}UC).

PROPOSITION 2.2. Let (X, ||-||) be a Banach space, a € X \ {0} and 1 <
p < 0o. Then we have the following:

p—1

() [lz|| < (Hanp—fl + 1)T for all = € Dy(a, B),
(ii) Dp(a,B) C conv (B U {a+ B}).

Proof. Let € Dy(a, B). By the definition of the p-drop, there exist o €
1
[0,1] and y € B such that x = aa + (1 — aP)? y. Therefore,

1
2]l < elall + (1 = a?)7.

Let g : [0,1] — R be such that g(t) = t|all + (1 — tp)%. Then, ¢'(t) =
1-p

lal]| — #*=1(1 — #?) » , and there is a unique to € [0, 1] such that ¢'(tg) = 0.
Which means that
PN
lall>=" "
to={—"="] -
L+ [laf 7=

Moreover, g attains its maximum at tg. Therefore, we deduce that

p—1

_p_
ol < glto) = [llall7T +1] 7

and the first property is proved.
Let z € Dp(a,B). Then there exist ¢ € [0,1] and y € B such that x =

1

ta+ (1 —tP)ry. Let z = (1 —tp)% y. Then z € B. Moreover, we have z =
tla+2)+ (1 —t)z € conv({a + B} U B). And thus we have the second
property. |
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Let a € X and let

Jall7 Jall 7"

al|p-1 al|p-1 a

b= ——"—gat+t|l-——T——]
(1+ ||a||7-T)> 1+ a7 ) llall

It is clear that b € Dy (a, B). Moreover, we have

D=

p—1 p—1

b= (1+1lal77) " Jal e and o) = (Jlaf?T 4+ 1) 7

The element b is called the vertex of D,(a, B).

It is clear that the drop D(x,B) := {tz+ (1 —t)b: t€[0,1],b€ B} is a
closed subset. The following proposition shows that a p—drop is also a closed
subset.

PRrROPOSITION 2.3. Let (X, ||-||) be a Banach space. Let C' be a convex,
closed, and bounded subset of X, 1 < p < oo and x € X, x # 0. Then
Dy(z,C) is closed.

Proof. In the case p = 0o see Proposition 3-2 of [3]. Assume now 1 < p <
oo. Let (yn) be a sequence in Dy(z,C) such that y, — y. Then there is a
sequence () in [0,1] and a sequence (cp,) in C such that:

1
Yn =tpr + (1 —=tP)r ¢, — .

Without loss of generality, we assume that ¢, — tg.
Case 1. typ = 1. Since C is bounded, then y, — x. Therefore y = = €
D,(z,C).
1
Case 2. ty € [0,1). For n large enough, we can assume that (1 —th)# # 0.
Therefore we can write:

1
thr + (1 —th)re, thx Yy tox

Cn: — _— —

1 1 1 1°
A-t)p (-t (- (-t

Since (¢,) C C and C' is closed, then ¢ := (y — toz)/(1 — tg)% € C. Thus,
1
y=(1—th)rc+tox € Dy(z,C), and the proof for 1 < p < oo is complete. 1

The drop D(z, B) is by definition a convex subset. The following lemma
shows that the p—drop is also a convex subset.
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LEMMA 2.4. Let (X, ||-||) be a Banach space and let a € X and 1 < p < co.
Then D,(a, B) is a convex subset.

Proof. By definition Dy, (a, B) = conv (a U {a + B}), then Dy (a, B) is a
convex subset. Moreover, if p = 1, Dy (a,B) = D (a,B) = conv ({a} U B),
which is a convex subset. Assume now that 1 < p < oo.

If a =0, then Dy(a, B) = B. In this case there is nothing to prove. Then
assume that a # 0.

Let z,y € Dp(a, B) and X € [0, 1]. Hence we can write:

a::ta+(1—tp)%b and y:aa+(1—ap);7c,

for some b,c € B and t,« € [0,1]. Without loss of generality we assume that
a<t.
Remarking that 0 < At + (1 — AN)a < 1. Let B:= At + (1 — \) a.

Case 1. If 0 < A < 1, then t = 1 and o = 1. Consequently, z = a and
y = a. This implies that Az + (1 — A)y = a, which is in D,(a, B).

Case 2. If A =0 or A =1, then it is direct since «, y are in the drop.
Case 3. 3 €[0,1). We can write:

A+ (1= Ny = A[ta+ (1= )5 b] + (1 - \)[aa+ (1 — aP)» (]

—a[M+ (1= Na] + A1 —?)rb+ (1 —N)(1—aP)r e

=

AL — )5 b+ (1= A)(1 — aP)
[1— (M + (1 - Na)]

= [1— (M + (1= Na)]” ¢

Sl

+a[M+ (1—N)al.

Put:

AL — 7)o b+ (1 — A)(1 — aP)s e
(1-p7)

Then we have Az + (1 — )y = Ba + (1 — 8?)Y/?Y. We affirm that Y € B.
Indeed,

Yy =

S

A1 — ) +(1—)\)(1—ap)2%.

Y] < T 1
(1—pr)r (1—pr)
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Let h(\) := A(1 — t7)# + (1 — A)(1 — aP)» — (1 — §P)¥. Therefore:
W) =(1—t)7 - (1-a?)»
S = (4 (1= Na)] 7 (M + (1= NPt — a),

R"N) =[1—- M+ (1- )\)a)p]%(p — DM+ (1= Na)P2(t — )

+(p—D[1 =N+ 1=Na)P] 7 M+ (1 —Na)?P Dt —a)

Since we have assumed that ¢ > «, then h”(X) > 0, for all A € [0,1]. Which
implies that the function h is convex in [0, 1], and we have h(0) = h(1) = 0.
Thus h(X) <0 for all A € [0,1]. This implies that ||Y|| < 1. Then Dy(a, B) is
a convex subset. |

The following lemma shows that the p—drop D)(a, B) can give a nice equi-
valent norm.

LeEMMA 2.5. Let (X,||-||) be a Banach space. Let 0 # a € X and p > 1.
Then D := Dy(a, B) U Dy(—a, B) is a convex subset.

Proof. Let x,y € D and « € [0,1]. By Lemma 2.4, it suffices to show the
case € Dp(a, B) and y € Dy(—a, B). By the definition of p—drop, there exist
t,A €[0,1] and b, c € B such that:

x:ta%—(l—tp)%b and y:—)\a—f—(l—/\p)%c.

Let a € [0,1]. Consider ax + (1 —«a)y and we like to prove that it is in
D,(a,B), or in Dy(—a, B).

am—i—(l—a)y:a[ta—i-(l—tp)%b} +(1—-«a) [(1—)\7’)%0—)@
—alat - A(1—a)+a(l—P)rb+(1—a)(l—A\)rec.

For ¢, A fixed in [0, 1], we consider the function f defined in [0, 1] by f(«a) :=
at—\ (1 — «). Therefore f'(a) = t+ X > 0. Then, the function f is increasing
and we have,

< A= J0) < flo) < f) =t <1,
for all v in [0, 1]. Put B := at — A(1 — «), then 8 € [—1,1].

Case 1. 8 = 1. In this case, it is easy to show that « = 1 and ¢t = 1. Then,
ar+ (1 —a)y=a€ Dy(a,B) C D.
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Case 2. 3 = —1. In this case, necessarily « = 0 and A = 1. Then,
ar + (1 —a)y=—a € Dy(—a,B) C D.

Case 3. € [0,1). In this case we can write:

a(l—1tP)
(1—p7)

b+(1—a)(1—v)%c

aa:—i—(l—a)y:ﬁa—k(l—ﬁp)% T
(1 pr)s

W= Y=

Put . .
Vo a(l—tP)pb+(1—a)(l—AP)rc
(1—pr)»
The same techniques used in the proof of Lemma 2.4, show that ||V < 1.
Then, az + (1 — a)y € Dy(a, B).
Case 4. 3 € (—1,0]. This is equivalent to —f € [0,1) and we have:

1 — tP)p — —\P)p
ot (1-a)y = ~a(-p)+(1 - (-pp)r | LLZOV8  Lmal Qo ey
(1= (=p)p)» (1= (=p)P)»
Let ) .
a(l—tP)rb+(1—a)(l—-N)rc
Y = - .
(1= (=p)")r

By the same techniques we prove that [|Yi| < 1. Then az + (1 — a)y €
D,(—a, B).

Conclusion, D is a convex subset. |

3. p—DROP THEOREM

Recall that the norm ||-|| has the Kadec¢-Klee property if for all ||z| =

||zn || = 1 such that the sequence (z,,) converges weakly to z, then the sequence
(||zs, — z||) converges to 0.
Recall that the norm ||-|| is said to be strictly convex (s.c. for short), if,

for all ||z]| = ||y|| = 1 such that ||z + y|| = 2, we have z = y.

THEOREM 3.1. Let (X, ||-||) be a reflexive Banach space. Assume that the
norm is strictly convex and has the Kadec¢-Klee property. Let S be a closed
subset at positive distance to B. Let 1 < p < co. Then, there exist a,a’ € X,
0 > 0, such that:

(i) D (a, B) NS is a singleton.
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(i) B C Bla,1+ 6] and D, (a’, B[a,1+ 6]) NS is a singleton.

Proof. Let ¢ := dist(S, B) > 0. By hypothesis the space X is reflexive and
the norm is strictly convex and has the Kadec¢-Klee property. By Lau theorem
[5], [6], there is a G5 dense subset I' of X \ S such that for all x € I, there is
an unique s € S such that ||z — s|| = dist(z, S). Therefore we choose a in 9B,
where 0 < § < £/2, such that there exists zg in 95, satisfying that ||a — zg|| =
dist(a, S). We have:

||a—2’0||Zdist(a75)21+e—6>1+%>1,

Then there exists o' in the segment [a, zg] such that |a’ — z|| = 1. Con-
sequently:

{20} C conv (Bd/,1]UB) NS C B(a, |la—20l[) NS = {20},

then we have (i).
Let x € B. Then, ||z — a| < |lz|| + |la|| < 1 + 6. Which means that
B C Bla,1+0]. Let z in Dy [d/, Bla, K]] with K =1+ ¢. Then,

z=td +(1—t")rb forsome te[0,1 and be Bla,K].
Therefore,
z—a=t(d—a)+at)(b—a)+alalt)+t-1),
with a(t) = (1 — tp)% . Hence,
|z = all < tlla’ — all + a(®)K + |la|| [a(t) + £ = 1] =: h(2).
The maximum of h(t) is attained at

_P_
la" — all + HCLH} r
9y

-1
to=[1+D]?, where D := [
K+ o]

and we have,

, 1 1 1
h(to) = o’ = all + DK + |la]l (1+ D» — (14 D)» )]

(1+ D)
An easy calculation shows that,

h(to) <@’ —al + 1.
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We know that dist(S,B) = ||’ — a|| + 1. Then, we have the p-drop
D, (d/,Bla,1+¢]) defined by Bla,1+ 6] and of vertex zy is contained in
Ba,dist (a, S)]. Then

Dy (d/,Bla,1+6]) NS ={z}.
The proof of our theorem is complete. [

Recall that, the norm ||-|| is said to be locally uniformly convex (l.u.c. in
short), if for all ||z|| = ||z,|| = 1, such that ||[x+x,|| — 2, we have ||x—x,| — 0.

LEMMA 3.2. Let (X, |-]|) be a Banach space. Let a € X and p > 1.
Assume that the dual norm |||« is locally uniformly convex (resp. strictly
convex). Then, the norm |-||y whose unit ball is D := conv(Dp(a, B)U
D,(—a, B)), is an equivalent norm in X such that its dual norm is also locally
uniformly convex (resp. strictly convex).

Proof. Assume that the norm ||-|| is such that its dual norm is locally
uniformly convex. Let

D := conv(Dp(a, B) U Dp(—a, B)).

By Lemma 2.5 and Proposition 2.3, D is convex, symmetric, closed and con-
taining the unit ball. Hence, D is a ball for an equivalent norm ||-||;. Let D°
be the polar of D,

D°:={z* € X : 2*(z) <1 for all z € D}.

Let ||-|[¥ the Minkowski functional associated to DY. We claim that
1
2" 117 = [ll=™ 1% + |2 ()] 7,

where ¢ is such that 1/p+1/q = 1. For this, let * in DY. By definition, z*(z) <
1 for all 7 in D. This implies that 2* (£ta+(1—?)1/Pb) < 1forallt € [0,1] and
b € B. Since z* is linear, tz*(+a) + (1 — t?)/P z*(b) <1 for all ¢t € [0, 1] and
b € B. We deduce that t|z*(a)|+ (1 — t7)'/? ||z*||. < 1 for all ¢ in [0, 1]. Letting
F(t) == t|a* (a)|+ (1 — t*)P ||z*||.. A simple verification shows that sup{f(t) :
t€[0,1]} = (lz*||7 + |2*(a)|7)*. Thus we have (||z*||7 + |2*(a)|?)*? < 1 for
all z* € DO.
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)9 < 1 Let z € D.

Conversely, let z* € X* such that (||z*||?7 + |2*(a)]
] and b € B such that

(
Assume = € Dp(a, B). Therefore, there exist t € [0,
x=ta+ (1— tp)l/p b. Then, we have:

)
1

z*(z) = 2" (ta+ (1 — tp)% b) = tz*(a) + (1 - tp)%x*(b)
< tla*(a)| + (1 — )7 [l* ]| = f(2)
< sup{ /() : t € [0,1]} = (||| + |2* (a)|%)

Thus, z* is in DP.

We have proved that DY = {z* € X*: (||z*||? + |:U*(a)|q)1/q <1}

We affirm that ||z*[|F = (||z*||? + |z* (a)\q)l/q is locally uniformly convex in
X*. Indeed, let * € X* and (z},) C X* be such that ||[z*|] = ||« || = 1 and
lz* + 2l — 2. Put s := ([2*[|s, |2*(a)]) € R? and sy := (|2} ]I+ |27 (a)]) €
R2. We know that the norm ||-||, defined by ||(z, )|, = (|z|94]y|?)"/? is locally
uniformly convex in R? for 1 < ¢ < oo. Moreover, ||z*||5 = ||z} ||t = 1, which is

the same as to say that ||s||; = ||sn||q = 1. First we prove that ||z}, ||« — [|z*||..
We have:

Q=

<1

Q=

lz* + 237 = [l2" + 2312 + | (" + 27,) (a)]]
1
< [l + 2 ll)? + (27 ()] + |27 (a) ) ] «

= lls +snllq < llsllq + l[snlly = 2-

So we deduce that ||s + sp||q — 2. Since ||-||4 is locally uniformly convex in
R?,||s — snll; — 0. Then, we conclude that |z%|. — |lz*|« and |z}(a)| —
|*(a)].
Finally, we prove that ||z* + z} ||« — 2||z*||.. We have:

1

lz* + 23T = [l2" + a1 + | (@" + 27,)(a)|7] #
< [l + 2y ll)? + (2 ()] + |27 (a))7]

L *

= [@ll2"[1)? + @la" (@) )] * = 2l|l2"1] =2,

Q=

and we know that [l + 2 1/2 < (a1t + lz3ll{l/2 — 2", and fla* +
zill/2 = 1 = (2" + |a*(@)|) "9 Since ||z} + a*[l« < flay [l + ¥ —
2||z*|l« and |z*(a) + 2} (a)] < |2*(a)| + |2} (a)] — 2]z*(a)|. We deduce that
|lz* 4+ 2% |« — 2||z*||«. By hypothesis, |||« is locally uniformly convex, then,
[ =23 ]l« — 0.
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In the case where the norm ||-|| is such that its dual norm is strictly convex,
the same proof shows that ||-||; is an equivalent norm in X such that its dual
norm is strictly convex.

Therefore, the proof of our lemma is complete. |

It is well known that if the norm ||-|| is such that its dual norm is locally
uniformly convex (resp. strictly convex) in X*, then the norm ||| is Fréchet-
differentiable (resp. Gateaux-differentiable) in X \ {0}, (see [2]).

Recall that a convex subset C' (0 is in the interior of C) is said to be
Fréchet-smooth (resp. Gateaux-smooth) if the Minkowski functional of C' is
Fréchet-differentiable (resp. Gateaux-differentiable) in X \ {0}.

In [7], it was shown that: Let (X, ||-||) be a Banach space such that its dual
norm is Lu.c. (resp. s.c.). Let S be a closed subset at positive distance from
the unit ball. Then there exist a Fréchet-smooth (resp. Gateaux-smooth)
drop D such that DN S is a singleton.

Combining Theorem 3.1 and Lemma 3.2, one can give this version of the
smooth drop theorem.

COROLLARY 3.3. Let (X, ||-||) be a reflexive Banach space where the norm
is strictly convex and have the Kadec¢-Klee property. Assume that the dual
norm is locally uniformly convex (resp. strictly convex) in X*. Let S be
a closed subset at positive distance from the unit ball. Then there exists a
Fréchet-smooth (resp. Gateaux-smooth) drop D such that DN.S is a singleton.
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