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1. Introduction

Let (X, ‖·‖) be a Banach space and B be the closed unit ball of X. By
a drop D (x,B) determined by a point x ∈ X \ B we shall mean the convex
hull of the set {x} ∪ B. If a nonvoid closed set S of a Banach space (X, ‖·‖)
having a positive distance from the unit ball B is given, then there exists a
point a ∈ S such that D (a,B) ∩ S = {a} , which is the so-called Daneš drop
theorem [1].

In [4] these notions were considered in the context of quasi-Banach spaces.
More precisely: Let X be a p–Banach space, 0 < p < 1. Let A be a non-
empty, closed subset of X; and let B be a closed, bounded and p–convex
subset of X so that d (A,B) > 0. Then, there exists a point a ∈ A such that
Dp (a,B) ∩A = {a} .

In this paper, we shall consider the notion of p–drop for 1 ≤ p ≤ ∞. Let
C be a closed convex subset of X, and a ∈ X. The set

Dp(a,C) := {αa+ βy : α, β ∈ [0, 1] with αp + βp = 1, y ∈ C}

is called the p–drop of center a defined by C. For p =∞ we put D∞ (a,C) =
conv (C ∪ {a+ C}) . We give some properties of p–convex sets (for 1 ≤ p ≤
∞). We study also the p–drop theorem for 1 ≤ p ≤ ∞.

It is clear that a drop D (x,B) is never smooth. A smooth drop theorem
of Daneš type for spaces with smooth norms was shown in [7] (see also [3]).
A closed convex set D is called a smooth drop if 0 is in the interior of D and
the Minkowski functional of D, ρ(x) = inf

{

λ > 0 : xλ−1 ∈ D
}

, is smooth.
We show that the p–drop is Fréchet-smooth (resp. Gâteaux-smooth) when-

ever the dual norm is locally uniformly convex (resp. strictly convex).
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2. Preliminaries

Definition 2.1. Let (X, ‖·‖) be a Banach space. Let C be a closed and
convex subset of X and let p ≥ 1. For x ∈ X, the set

Dp(x,C) :=
{

tx+ (1− tp)
1

p y : y ∈ C, t ∈ [0, 1]
}

is called the p–drop of center x defined by C. For p =∞, D∞(x,C) is the set
conv ({x+ C} ∪ C).

Proposition 2.2. Let (X, ‖·‖) be a Banach space, a ∈ X \ {0} and 1 <
p <∞. Then we have the following:

(i) ‖x‖ ≤
(

‖a‖
p

p−1 + 1
)

p−1

p
for all x ∈ Dp(a,B),

(ii) Dp(a,B) ⊂ conv (B ∪ {a+B}).

Proof. Let x ∈ Dp(a,B). By the definition of the p–drop, there exist α ∈

[0, 1] and y ∈ B such that x = αa+ (1− αp)
1

p y. Therefore,

‖x‖ ≤ α‖a‖+ (1− αp)
1

p .

Let g : [0, 1] → R be such that g(t) = t‖a‖ + (1 − tp)
1

p . Then, g′(t) =

‖a‖ − tp−1(1 − tp)
1−p

p , and there is a unique t0 ∈ [0, 1] such that g′(t0) = 0.
Which means that

t0 =

(

‖a‖
p

p−1

1 + ‖a‖
p

p−1

)
1

p

.

Moreover, g attains its maximum at t0. Therefore, we deduce that

‖x‖ ≤ g(t0) =
[

‖a‖
p

p−1 + 1
]

p−1

p

and the first property is proved.

Let x ∈ Dp(a,B). Then there exist t ∈ [0, 1] and y ∈ B such that x =

ta + (1− tp)
1

p y. Let z = (1− tp)
1

p y. Then z ∈ B. Moreover, we have x =
t(a + z) + (1 − t)z ∈ conv ({a + B} ∪ B). And thus we have the second
property.
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Let a ∈ X and let

b =
‖a‖

1

p−1

(1 + ‖a‖
p

p−1 )
1

p

a+

(

1−
‖a‖

p
p−1

1 + ‖a‖
p

p−1

)
1

p a

‖a‖
.

It is clear that b ∈ Dp(a,B). Moreover, we have

b =
(

1 + ‖a‖
p

p−1

)
p−1

p
‖a‖−1a and ‖b‖ =

(

‖a‖
p

p−1 + 1
)

p−1

p
.

The element b is called the vertex of Dp(a,B).

It is clear that the drop D(x,B) := {tx+ (1− t)b : t ∈ [0, 1], b ∈ B} is a
closed subset. The following proposition shows that a p–drop is also a closed
subset.

Proposition 2.3. Let (X, ‖·‖) be a Banach space. Let C be a convex,
closed, and bounded subset of X, 1 ≤ p ≤ ∞ and x ∈ X, x 6= 0. Then
Dp(x,C) is closed.

Proof. In the case p =∞ see Proposition 3-2 of [3]. Assume now 1 ≤ p <
∞. Let (yn) be a sequence in Dp(x,C) such that yn → y. Then there is a
sequence (tn) in [0, 1] and a sequence (cn) in C such that:

yn = tnx+ (1− tpn)
1

p cn −→ y.

Without loss of generality, we assume that tn → t0.

Case 1. t0 = 1. Since C is bounded, then yn → x. Therefore y = x ∈
Dp(x,C).

Case 2. t0 ∈ [0, 1). For n large enough, we can assume that (1− tpn)
1

p 6= 0.
Therefore we can write:

cn =
tnx+ (1− tpn)

1

p cn

(1− tpn)
1

p

−
tnx

(1− tpn)
1

p

−→
y

(1− tp0)
1

p

−
t0x

(1− tp0)
1

p

.

Since (cn) ⊂ C and C is closed, then c := (y − t0x)/(1 − tp0)
1

p ∈ C. Thus,

y = (1− tp0)
1

p c+ t0x ∈ Dp(x,C), and the proof for 1 ≤ p <∞ is complete.

The drop D(x,B) is by definition a convex subset. The following lemma
shows that the p–drop is also a convex subset.
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Lemma 2.4. Let (X, ‖·‖) be a Banach space and let a ∈ X and 1 ≤ p ≤ ∞.
Then Dp(a,B) is a convex subset.

Proof. By definition D∞ (a,B) = conv (a ∪ {a+B}) , then D∞ (a,B) is a
convex subset. Moreover, if p = 1, D1 (a,B) = D (a,B) = conv ({a} ∪B) ,
which is a convex subset. Assume now that 1 < p <∞.

If a = 0, then Dp(a,B) = B. In this case there is nothing to prove. Then
assume that a 6= 0.

Let x, y ∈ Dp(a,B) and λ ∈ [0, 1]. Hence we can write:

x = ta+ (1− tp)
1

p b and y = αa+ (1− αp)
1

p c,

for some b, c ∈ B and t, α ∈ [0, 1]. Without loss of generality we assume that
α ≤ t.

Remarking that 0 ≤ λt+ (1− λ)α ≤ 1. Let β := λt+ (1− λ)α.

Case 1. If 0 < λ < 1, then t = 1 and α = 1. Consequently, x = a and
y = a. This implies that λx+ (1− λ)y = a, which is in Dp(a,B).

Case 2. If λ = 0 or λ = 1, then it is direct since x, y are in the drop.

Case 3. β ∈ [0, 1). We can write:

λx+ (1− λ)y = λ
[

ta+ (1− tp)
1

p b
]

+ (1− λ)
[

αa+ (1− αp)
1

p c
]

= a
[

λt+ (1− λ)α
]

+ λ(1− tp)
1

p b+ (1− λ)(1− αp)
1

p c

=
[

1− (λt+ (1− λ)α)p
]

1

p
λ(1− tp)

1

p b+ (1− λ)(1− αp)
1

p c
[

1− (λt+ (1− λ)α)p
]

1

p

+ a
[

λt+ (1− λ)α
]

.

Put:

Y =
λ(1− tp)

1

p b+ (1− λ)(1− αp)
1

p c

(1− βp)
1

p

.

Then we have λx + (1 − λ)y = βa + (1 − βp)1/p Y. We affirm that Y ∈ B.
Indeed,

‖Y ‖ ≤
λ (1− tp)

1

p

(1− βp)
1

p

+
(1− λ) (1− αp)

1

p

(1− βp)
1

p

.
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Let h(λ) := λ(1− tp)
1

p + (1− λ)(1− αp)
1

p − (1− βp)
1

p . Therefore:

h′(λ) = (1− tp)
1

p − (1− αp)
1

p

+ [1− (λt+ (1− λ)α)p]
1−p

p (λt+ (1− λ)α)p−1(t− α),

h′′(λ) = [1− (λt+ (1− λ)α)p]
1−p

p (p− 1)(λt+ (1− λ)α)p−2(t− α)

+ (p− 1)[1− (λt+ (1− λ)α)p]
1−2p

p (λt+ (1− λ)α)2(p−1)(t− α)2.

Since we have assumed that t ≥ α, then h′′(λ) ≥ 0, for all λ ∈ [0, 1]. Which
implies that the function h is convex in [0, 1], and we have h(0) = h(1) = 0.
Thus h(λ) ≤ 0 for all λ ∈ [0, 1]. This implies that ‖Y ‖ ≤ 1. Then Dp(a,B) is
a convex subset.

The following lemma shows that the p–drop Dp(a,B) can give a nice equi-
valent norm.

Lemma 2.5. Let (X, ‖·‖) be a Banach space. Let 0 6= a ∈ X and p > 1.
Then D := Dp(a,B) ∪Dp(−a,B) is a convex subset.

Proof. Let x, y ∈ D and α ∈ [0, 1]. By Lemma 2.4, it suffices to show the
case x ∈ Dp(a,B) and y ∈ Dp(−a,B). By the definition of p–drop, there exist
t, λ ∈ [0, 1] and b, c ∈ B such that:

x = ta+ (1− tp)
1

p b and y = −λa+ (1− λp)
1

p c.

Let α ∈ [0, 1]. Consider αx + (1− α) y and we like to prove that it is in
Dp(a,B), or in Dp(−a,B).

αx+ (1− α) y = α
[

ta+ (1− tp)
1

p b
]

+ (1− α)
[

(1− λp)
1

p c− λa
]

= a [αt− λ (1− α)] + α (1− tp)
1

p b+ (1− α) (1− λp)
1

p c.

For t, λ fixed in [0, 1], we consider the function f defined in [0, 1] by f(α) :=
αt−λ (1− α) . Therefore f ′(α) = t+λ ≥ 0. Then, the function f is increasing
and we have,

−1 ≤ −λ = f(0) ≤ f(α) ≤ f(1) = t ≤ 1,

for all α in [0, 1]. Put β := αt− λ(1− α), then β ∈ [−1, 1].

Case 1. β = 1. In this case, it is easy to show that α = 1 and t = 1. Then,
αx+ (1− α)y = a ∈ Dp(a,B) ⊂ D.
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Case 2. β = −1. In this case, necessarily α = 0 and λ = 1. Then,
αx+ (1− α)y = −a ∈ Dp(−a,B) ⊂ D.

Case 3. β ∈ [0, 1). In this case we can write:

αx+ (1− α)y = βa+ (1− βp)
1

p

[

α (1− tp)
1

p b

(1− βp)
1

p

+
(1− α) (1− λp)

1

p c

(1− βp)
1

p

]

.

Put

Y :=
α (1− tp)

1

p b+ (1− α) (1− λp)
1

p c

(1− βp)
1

p

.

The same techniques used in the proof of Lemma 2.4, show that ‖Y ‖ ≤ 1.
Then, αx+ (1− α)y ∈ Dp(a,B).

Case 4. β ∈ (−1, 0]. This is equivalent to −β ∈ [0, 1) and we have:

αx+(1−α)y = −a(−β)+(1− (−β)p)
1

p

[

α (1− tp)
1

p b

(1− (−β)p)
1

p

+
(1− α) (1− λp)

1

p c

(1− (−β)p)
1

p

]

.

Let

Y1 :=
α (1− tp)

1

p b+ (1− α) (1− λp)
1

p c

(1− (−β)p)
1

p

.

By the same techniques we prove that ‖Y1‖ ≤ 1. Then αx + (1 − α)y ∈
Dp(−a,B).

Conclusion, D is a convex subset.

3. p–drop theorem

Recall that the norm ‖·‖ has the Kadeč-Klee property if for all ‖x‖ =
‖xn‖ = 1 such that the sequence (xn) converges weakly to x, then the sequence
(‖xn − x‖) converges to 0.

Recall that the norm ‖·‖ is said to be strictly convex (s.c. for short), if,
for all ‖x‖ = ‖y‖ = 1 such that ‖x+ y‖ = 2, we have x = y.

Theorem 3.1. Let (X, ‖·‖) be a reflexive Banach space. Assume that the
norm is strictly convex and has the Kadeč-Klee property. Let S be a closed
subset at positive distance to B. Let 1 < p <∞. Then, there exist a, a′ ∈ X,
δ > 0, such that:

(i) D∞ (a,B) ∩ S is a singleton.
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(ii) B ⊂ B [a, 1 + δ] and Dp (a
′, B [a, 1 + δ]) ∩ S is a singleton.

Proof. Let ε := dist(S,B) > 0. By hypothesis the space X is reflexive and
the norm is strictly convex and has the Kadeč-Klee property. By Lau theorem
[5], [6], there is a Gδ dense subset Γ of X \ S such that for all x ∈ Γ, there is
an unique s ∈ S such that ‖x−s‖ = dist(x, S). Therefore we choose a in ∂δB,
where 0 < δ < ε/2, such that there exists z0 in ∂S, satisfying that ‖a− z0‖ =
dist(a, S). We have:

‖a− z0‖ = dist(a, S) ≥ 1 + ε− δ > 1 +
ε

2
> 1.

Then there exists a′ in the segment [a, z0] such that ‖a′ − z0‖ = 1. Con-
sequently:

{z0} ⊂ conv
(

B[a′, 1] ∪B
)

∩ S ⊂ B (a, ‖a− z0‖) ∩ S = {z0},

then we have (i).
Let x ∈ B. Then, ‖x − a‖ ≤ ‖x‖ + ‖a‖ ≤ 1 + δ. Which means that

B ⊂ B [a, 1 + δ] . Let x in Dp [a
′, B [a,K]] with K = 1 + δ. Then,

x = ta′ + (1− tp)
1

p b for some t ∈ [0, 1] and b ∈ B [a,K] .

Therefore,

x− a = t
(

a′ − a
)

+ α(t)(b− a) + a (α(t) + t− 1) ,

with α(t) = (1− tp)
1

p . Hence,

‖x− a‖ ≤ t‖a′ − a‖+ α(t)K + ‖a‖ [α(t) + t− 1] =: h (t) .

The maximum of h(t) is attained at

t0 = [1 +D]
−1

p , where D :=

[

‖a′ − a‖+ ‖a‖

K + ‖a‖

]
p

1−p

,

and we have,

h (t0) =
1

(1 +D)
1

p

[

‖a′ − a‖+D
1

pK + ‖a‖
(

1 +D
1

p − (1 +D)
1

p

)]

.

An easy calculation shows that,

h (t0) ≤ ‖a
′ − a‖+ 1.
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We know that dist(S,B) = ‖a′ − a‖ + 1. Then, we have the p–drop
Dp (a

′, B [a, 1 + δ]) defined by B [a, 1 + δ] and of vertex z0 is contained in
B [a, dist (a, S)] . Then

Dp

(

a′, B [a, 1 + δ]
)

∩ S = {z0} .

The proof of our theorem is complete.

Recall that, the norm ‖·‖ is said to be locally uniformly convex (l.u.c. in
short), if for all ‖x‖ = ‖xn‖ = 1, such that ‖x+xn‖ → 2, we have ‖x−xn‖ → 0.

Lemma 3.2. Let (X, ‖·‖) be a Banach space. Let a ∈ X and p > 1.
Assume that the dual norm ‖·‖∗ is locally uniformly convex (resp. strictly
convex). Then, the norm ‖·‖1 whose unit ball is D := conv(Dp(a,B)∪
Dp(−a,B)), is an equivalent norm in X such that its dual norm is also locally
uniformly convex (resp. strictly convex).

Proof. Assume that the norm ‖·‖ is such that its dual norm is locally
uniformly convex. Let

D := conv(Dp(a,B) ∪Dp(−a,B)).

By Lemma 2.5 and Proposition 2.3, D is convex, symmetric, closed and con-
taining the unit ball. Hence, D is a ball for an equivalent norm ‖·‖1. Let D

0

be the polar of D,

D0 := {x∗ ∈ X : x∗(x) ≤ 1 for all x ∈ D}.

Let ‖·‖∗1 the Minkowski functional associated to D0. We claim that

‖x∗‖∗1 =
[

‖x∗‖q∗ + |x
∗(a)|q

]
1

q ,

where q is such that 1/p+1/q = 1. For this, let x∗ inD0. By definition, x∗(x) ≤
1 for all x inD. This implies that x∗

(

±ta+(1−tp)1/p b
)

≤ 1 for all t ∈ [0, 1] and

b ∈ B. Since x∗ is linear, tx∗(±a) + (1− tp)1/p x∗(b) ≤ 1 for all t ∈ [0, 1] and

b ∈ B. We deduce that t|x∗(a)|+(1− tp)1/p ‖x∗‖∗ ≤ 1 for all t in [0, 1]. Letting

f(t) := t|x∗(a)|+(1− tp)1/p ‖x∗‖∗. A simple verification shows that sup{f(t) :

t ∈ [0, 1]} = (‖x∗‖q + |x∗(a)|q)1/q . Thus we have (‖x∗‖q + |x∗(a)|q)1/q ≤ 1 for
all x∗ ∈ D0.
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Conversely, let x∗ ∈ X∗ such that (‖x∗‖q + |x∗(a)|q)1/q ≤ 1. Let x ∈ D.
Assume x ∈ Dp(a,B). Therefore, there exist t ∈ [0, 1] and b ∈ B such that

x = ta+ (1− tp)1/p b. Then, we have:

x∗(x) = x∗
(

ta+ (1− tp)
1

p b
)

= tx∗(a) + (1− tp)
1

px∗(b)

≤ t|x∗(a)|+ (1− tp)
1

p ‖x∗‖∗ = f(t)

≤ sup{f(t) : t ∈ [0, 1]} =
(

‖x∗‖q∗ + |x
∗(a)|q

)
1

q ≤ 1.

Thus, x∗ is in D0.

We have proved that D0 =
{

x∗ ∈ X∗ :
(

‖x∗‖q + |x∗(a)|q
)1/q

≤ 1
}

.

We affirm that ‖x∗‖∗1 = (‖x∗‖q∗ + |x
∗(a)|q)

1/q
is locally uniformly convex in

X∗. Indeed, let x∗ ∈ X∗ and (x∗n) ⊂ X∗ be such that ‖x∗‖∗1 = ‖x∗n‖
∗
1 = 1 and

‖x∗ + x∗n‖
∗
1 → 2. Put s := (‖x∗‖∗, |x

∗(a)|) ∈ R2 and sn := (‖x∗n‖∗, |x
∗
n(a)|) ∈

R2.We know that the norm ‖·‖q defined by ‖(x, y)‖q = (|x|q+|y|q)1/q is locally
uniformly convex in R2 for 1 < q <∞. Moreover, ‖x∗‖∗1 = ‖x∗n‖

∗
1 = 1, which is

the same as to say that ‖s‖q = ‖sn‖q = 1. First we prove that ‖x∗n‖∗ → ‖x∗‖∗.
We have:

‖x∗ + x∗n‖
∗
1 =

[

‖x∗ + x∗n‖
q
∗ + | (x

∗ + x∗n) (a)|
q
]

1

q

≤
[

(‖x∗‖∗ + ‖x
∗
n‖∗)

q + (|x∗(a)|+ |x∗n(a)|)
q ]

1

q

= ‖s+ sn‖q ≤ ‖s‖q + ‖sn‖q = 2.

So we deduce that ‖s + sn‖q → 2. Since ‖·‖q is locally uniformly convex in
R2, ‖s − sn‖q → 0. Then, we conclude that ‖x∗n‖∗ → ‖x∗‖∗ and |x∗n(a)| →
|x∗(a)|.

Finally, we prove that ‖x∗ + x∗n‖∗ → 2‖x∗‖∗. We have:

‖x∗ + x∗n‖
∗
1 =

[

‖x∗ + x∗n‖
q
∗ + |(x

∗ + x∗n)(a)|
q
]

1

q

≤
[

(‖x∗‖∗ + ‖x
∗
n‖∗)

q + (|x∗(a)|+ |x∗n(a)|)
q
]

1

q

→
[

(2‖x∗‖∗)
q + (2|x∗(a)|∗)

q
]

1

q = 2‖x∗‖∗1 = 2,

and we know that ‖x∗ + x∗n‖
∗
1/2 ≤ [‖x∗‖∗1 + ‖x∗n‖

∗
1]/2 → ‖x∗‖∗1, and ‖x

∗ +
x∗n‖/2 → 1 = (‖x∗‖q∗ + |x∗(a)|q)1/q. Since ‖x∗n + x∗‖∗ ≤ ‖x∗n‖∗ + ‖x∗‖∗ →
2‖x∗‖∗ and |x∗(a) + x∗n(a)| ≤ |x∗(a)| + |x∗n(a)| → 2|x∗(a)|. We deduce that
‖x∗ + x∗n‖∗ → 2‖x∗‖∗. By hypothesis, ‖·‖∗ is locally uniformly convex, then,
‖x∗ − x∗n‖∗ → 0.
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In the case where the norm ‖·‖ is such that its dual norm is strictly convex,
the same proof shows that ‖·‖1 is an equivalent norm in X such that its dual
norm is strictly convex.

Therefore, the proof of our lemma is complete.

It is well known that if the norm ‖·‖ is such that its dual norm is locally
uniformly convex (resp. strictly convex) in X∗, then the norm ‖·‖ is Fréchet-
differentiable (resp. Gâteaux-differentiable) in X \ {0} , (see [2]).

Recall that a convex subset C (0 is in the interior of C) is said to be
Fréchet-smooth (resp. Gâteaux-smooth) if the Minkowski functional of C is
Fréchet-differentiable (resp. Gâteaux-differentiable) in X \ {0}.

In [7], it was shown that: Let (X, ‖·‖) be a Banach space such that its dual
norm is l.u.c. (resp. s.c.). Let S be a closed subset at positive distance from
the unit ball. Then there exist a Fréchet-smooth (resp. Gâteaux-smooth)
drop D such that D ∩ S is a singleton.

Combining Theorem 3.1 and Lemma 3.2, one can give this version of the
smooth drop theorem.

Corollary 3.3. Let (X, ‖·‖) be a reflexive Banach space where the norm
is strictly convex and have the Kadeč-Klee property. Assume that the dual
norm is locally uniformly convex (resp. strictly convex) in X∗. Let S be
a closed subset at positive distance from the unit ball. Then there exists a
Fréchet-smooth (resp. Gâteaux-smooth) dropD such thatD∩S is a singleton.
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