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1. Introduction

In this paper we consider the transition operator P associated with a gen-
eral irreducible Markov chain {Zn}n∈N defined on a probability space (X,Ω,P)
with a state space X which is finite or countable. It is well known that one
of the consequences of the time-independence property of Markov chains is
that P[Zn+1 = y|Zn = x] is independent of n, hence, the transition oper-
ator P is uniquely determined (according to equation (2)) by the coefficients
{p(x, y)}x,y∈X (called 1-step transition probabilities) defined by

p(x, y) := P[Z1 = y|Z0 = x].(1)

This map gives rise to an amount of interesting concepts (such as har-
monic and superharmonic functions, stationary measures and so on) which
allow us to get information about the behaviour of the Markov chains. Take
for instance the characterization of recurrent random walk in terms of non-
negative superharmonic functions (see Theorem 1.16 of [9]) or in terms of
excessive measures (see [9] Theorem 1.18). Other applications may be found
in the study of the asymptotic behaviour of the n-step transition probabilities
p(n)(x, y) (see for instance [4]).

An interesting topic is the discrete harmonic analysis on graphs (see [2]
and [6]) and the corresponding Dirichlet problem (see [9], Chapter 4).

More recently we started to study mean value properties for finite variation
measures on graphs (see [10]) with respect to suitable families of harmonic
functions; in that paper it is shown how these properties are related to the
range of the preadjoint of the discrete Laplace operator (see Section 3). These
are some of the reasons which justify the present paper. We refer to [1] and
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[9] for background and terminology in functional analysis and random walk
theory.

We begin (Section 2) dealing with “generalized” transition operators (with
more general kernels p(x, y)) defined by equation (2): we give a complete
characterization of continuous transition maps (Theorem 2.1) and of compact
transition maps with non-negative kernel (Theorem 2.2). We show that com-
pactness implies recurrence (Proposition 2.3), while the converse it is not true
(Example 2.4).

In Section 3 we consider the stochastic kernel defined by equation (1) and
we deal with the corresponding (stochastic) transition operator which is a
continuous map from l∞(X) into itself. We construct the preadjoint of the
discrete analog of the Laplace operator and we turn our attention to its null
space and its range. In particular we give a necessary and sufficient condition
for this operator to be an injective map (Theorem 3.2); this result generalizes
Theorem 1.18 of [9] to the case of finite variation signed measures. We finally
make some remarks about the topological properties of its range.

We fix now the basic notation: let Φ represent the real field R or the
complex field C and p : X ×X → Φ be a function. We consider the domain
D and the linear operator P depending on p as follows

(P ) :=
{

f : X → Φ :
∑

y∈X |p(x, y)||f(y)| < +∞, ∀x ∈ X
}

,

(Pf)(x) :=
∑

y∈X p(x, y)f(y), ∀f ∈ D(P ), ∀x ∈ X.
(2)

The properties of the linear map P are strictly related to the functional
space where it is restricted: for instance if the coefficients p satisfy equation (1)
(which is equivalent to p(x, y) ≥ 0 for all x, y ∈ X and

∑

y∈X p(x, y) = 1 for
every x ∈ X) then the transition operator P is called stochastic; in this case
it is easy to show that P is a bounded linear map from L∞(X,µ) into itself
(for any real or complex measure µ on X) and ‖P‖∞ = 1; furthermore given
any excessive, positive measure ν on X (see Section 3), any stochastic map P
is bounded, and ‖P‖r ≤ 1, from Lr(X, ν) into itself (r ∈ [1,+∞)).

If P is generated by a reversible random walk (see [8], Paragraph 2.A)
and if ν is a reversibility measure then P is a linear, bounded, selfadjoint
operator from L2(X, ν) into itself, satisfying ‖P‖2 = ρ(P ), where ρ(P ) is the
spectral radius of the random walk (X,P ) (see [9] Chapter 1, Paragraph B).
An operator K defined as in eq. (2) with kernel k(x, y) (instead of p(x, y)) is
selfadjoint from L2(X, ν) into itself if and only if ν(x)k(x, y) = ν(y)k(y, x) for
all x, y ∈ X.
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We call P locally finite if and only if for every x ∈ X we have that deg(x) :=
card{y ∈ X : p(x, y) 6= 0} < +∞. Moreover we use the notation (X,P )
to denote the random walk associated with a stochastic operator P and we
say that (X,P ) is recurrent, (resp. positive recurrent) according to the usual
stochastic definitions (see [9], Paragraph 1.B). A stochastic transition operator
P will be called irreducible if and only if for any x, y ∈ X there exists n ∈ N
such that P n

x,y > 0, where P n
x,y denotes the entry of the infinite matrix of P n

corresponding to the pair (x, y) (compare with Assumption 1.5 of [9]).

2. Compactness of the transition operator

In this section we give a necessary and sufficient condition for the general
linear map P (defined by eq. (2)) to be a bounded map from l∞(X) into itself.
Moreover we characterize all the maps with non-negative kernels which are
compact; in the case of stochastic, irreducible maps, this condition is related
to the recurrence property. The interest in the space l∞(X) will be justified
in the next section. We start with conditions equivalent to boundeness.

Theorem 2.1. Let P be the transition operator defined by eq. (2) (where
p(x, y) are real (complex) numbers for any x, y ∈ X); the following assertions
are equivalent:

(i) P is a continuous linear operator from l∞(X) into itself;

(ii) supx∈X
∑

y∈X |p(x, y)| <∞.

(iii) D(P ) ⊇ l∞(X) and P (l∞(X)) ⊆ l∞(X).

If one of the previous condition holds, then ‖P‖ = supx∈X
∑

y∈X |p(x, y)|.

Proof. Let us discuss the complex case. If X is finite then the theorem is
trivial; hence let X be countable.

(ii) =⇒ (i). It is easy to check that D(P ) ⊇ l∞(X), P (l∞(X)) ⊆ l∞(X)
and that ‖Pf‖∞ ≤ ‖f‖∞

∑

y∈X |p(x, y)| for any f ∈ l∞(X). Moreover if we
define, for any x ∈ X,

fx(y) :=

{

p(x,y)
|p(x,y)| if p(x, y) 6= 0,

1 if p(x, y) = 0,

then ‖fx‖∞ = 1 for every x ∈ X and whence
∑

y∈X |p(x, y)| ≤ ‖P‖.
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(iii) =⇒ (ii). Let us note that l∞(X) ⊆ D(P ) implies that for every
f ∈ l∞(X) and for every x ∈ X we have

∑

y∈X |p(x, y)||f(y)| < +∞ which

is equivalent to the condition {p(x, y)}y∈X ∈ l1(X) for every x ∈ X. Let
λx ∈ l∞(X)∗ defined by λx(f) :=

∑

y∈X p(x, y)f(y), then ‖λx‖l∞(X)∗ =
∑

y∈X |p(x, y)|. Now the condition P (l∞(X)) ⊆ l∞(X) implies supx∈X |λx(f)|
< +∞, for every f ∈ l∞(X), then, using the principle of Uniform Boundeness,
we have supx∈X ‖λx‖l∞(X)∗ < +∞ which is equivalent to (ii).

(i) =⇒ (iii). It is trivial.

We now turn our attention to the compactness property for a transition
operator with non negative kernel.

Theorem 2.2. Let X be a countable set and choose an enumeration
{xi}i∈N for X. Let P be a transition operator on X with non negative ele-
ments, satisfying the condition supx∈X

∑

y∈X p(x, y) < +∞. Then P is a
bounded, linear operator from l∞(X) into itself; moreover P is compact if
and only if

lim
n→∞

sup
x∈X

∑

i>n

p(x, xi) = 0.(3)

The last condition is independent of the chosen enumeration.

Proof. Theorem 2.1 implies the boundedness of P . If P is compact, then,
for every bounded sequence {fi}i∈N in l∞(X), {Pfi}i∈N is relatively compact,
hence there exists a subsequence {nj}j∈N such that {Pfnj

}j∈N is a Cauchy
sequence. Let fn(xi) equal to 1 if i > n and 0 otherwise, then (Pfn)(·) =
∑

i>n p(·, xi) and if m > n, since p(x, y) ≥ 0 for every x, y ∈ X, we have that
‖Pfn − Pfm‖∞ = supx∈X

∑m
i=n+1 p(x, xi). Using Cauchy property, for every

ε > 0 there exists jε such that supx∈X
∑∞

i=njε+1 p(x, xi) < ε, which implies

limn→∞ supx∈X
∑

i>n p(x, xi) = 0.
Vice versa if we consider the finite range (compact) projections on l∞(X)

defined by

Vi(f)(xn) :=

{

f(xn) if n ≤ i

0 if n > i,

for all i ∈ N, then (PVif)(x) =
∑

i≤n p(x, xi)f(xi). Being the limit, in the
norm topology, of the sequence of finite dimentional range operators {PVi}i∈N,
P is compact.

The condition 3 does not depend on the choice of the enumeration, since
compactness is defined “a priori”.
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According to the previous theorem, P is compact if and only if for any
ε > 0 there exists a finite subset Aε ⊂ X such that supx∈X

∑

y∈Ac
ε
p(x, y) < ε;

this means that a necessary condition for the compactness property is that
limy→∞ p(x, y) = 0 holds uniformly with respect to x ∈ X (where the limit is
taken in the one point compactification of X with the discrete topology).

As a consequence, if P is locally finite and stochastic, then it is not com-
pact. In fact in this case, for every n ∈ N,

∑

i≤n deg(xi) < +∞; this means
that there exists m > n such that for any i ≤ n, p(xm, xi) = 0, hence
∑

i>n p(xm, xi) = 1 and eq. (3) cannot be satisfied. Moreover one can show
that if P is compact and irreducible then it is a recurrent transition operator
(i.e. associated with a recurrent random walk (X,P )).

Proposition 2.3. Let P be a stochastic, irreducible, compact transition
operator from l∞(X) into itself; then the associated random walk (X,P ) is
recurrent.

Proof. Let X := {xi : i ∈ N}, A := {x0, x1, . . . , xn} and Zn the Markov
chain associated with P ; if P is compact then, by Theorem 2.2, for any x ∈ X

P[Zm 6∈ A|Z0 = x] =
∑

y∈X
i>n

P[Zm−1 = y|Z0 = x]p(y, xi) =

=
∑

y∈X

P[Zm−1 = y|Z0 = x]
∑

i>n

p(y, xi) ≤

≤
∑

y∈X

P[Zm−1 = y|Z0 = x] sup
w∈X

∑

i>n

p(w, xi) = sup
w∈X

∑

i>n

p(w, xi)
n→∞
−→ 0

If B := {∃k ∈ N : Zn 6∈ A, ∀n ≥ k} ≡ ∪k∈N ∩n≥k {Zn 6∈ A} it is clear that

P(B) ≤
∑

k∈N

P(∩n≥k{Zn 6∈ A}),

but ∩n≥k{Zn 6∈ A} ⊆ {Zm 6∈ A} for every m ≥ k which implies P(∩n≥k{Zn 6∈
A}) = 0 and P(B) = 0. Thus by [9] Theorem 1.17(b), P is recurrent.

The necessary condition highlighted in the previous proposition is not suf-
ficient as remarked by the following example.
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Example 2.4. Let us consider any sequence of real numbers {pi}i∈N such
that p0 = 1 and pi ∈ (0, 1] for every i ≥ 1. Let us take X = N and

p(x, y) :=











px if x ∈ N and y = x+ 1

1− px if y = 0 and x 6= 0

0 otherwise.

By Theorem 2.2 P is compact if and only if limn→∞ pn = 0; moreover, us-
ing Theorem 1.18 of [9], it is not difficult to show that (X,P ) is recurrent
(resp. positive recurrent) if and only if limn→∞

∏n
i=0 pi = 0 (resp.

∑∞
n=0

∏n
i=0

pi < +∞). This proves that (X,P ) positive recurrent (and hence (X,P )
recurrent) does not imply the compactness of the transition operator P .

3. The null space of the pre-adjoint of the Laplace operator

and finite variation stationary measures.

In this section we consider a stochastic, irreducible transition operator P .
The discrete analog of the Laplace operator is (P − 1l∞) : l∞(X) → l∞(X)
where 1l∞ is the identity operator on l∞(X). The preadjoint map (P − 1l∞)∗
is given by (Q− 1l1) : l

1(X)→ l1(X) where

(Qν)(y) :=
∑

x∈X

p(x, y)ν(x), ∀y ∈ X,

and 1l1 is the identity map on l1(X). From now on, given any map A, we
denote by Rg(A) its range. A bounded function is said to be harmonic if it is
an element of the null space of the discrete laplacian (we denote the set of all
bounded harmonic functions by H∞(X,P )).

In [10] it was shown that a finite variation measure ν on X (which is
identifiable with an element of l1(X)) has the weak mean value property with
respect to o ∈ X (that is,

∑

x∈X f(x)ν(x) = f(o)
∑

x∈X ν(x), for every f ∈

H∞(X,P )) if and only if (ν − δo
∑

x∈X ν(x)) ∈ Rg(Q− 1l1) (where δo is the
Dirac measure with support in {o}). From this point of view, it is important
to know when Q − 1l1 is injective and when it has a closed range. In this
section we give a complete answer to the first question and we make some
remarks related to the second one.

To this aim, we characterize in particular all the stationary measures with
finite variation. We recall that a signed measure is called stationary (resp.
excessive) if

(Qν)(y) = ν(y), ∀y ∈ X (resp. (Qν)(y) ≤ ν(y), ∀y ∈ X)
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provided that (Qν)(y) exists for every y ∈ X. We note that a finite variation
measure ν is stationary if and only if ν ∈ ker(Q− 1l1).

Lemma 3.1. Let ν be a signed stationary measure on X, then −|ν| is
a negative excessive measure which is stationary if and only if ν = |ν| or
ν = −|ν|.

Proof. It is well known that if f is a complex integrable function on a
measure space (Y, µ) then

∣

∣

∫

Y
f dν

∣

∣ ≤
∫

Y
|f | dν and the equality holds if and

only if there exists α ∈ [0, 2π) such that f = |f | exp(iα) µ-a.e. If we consider
the measure space X with the counting measure and fy(x) := ν(x)p(x, y) then
by hypothesis fy ∈ L1(X) for every y ∈ X and

|ν|(y) = |ν(y)| =

∣

∣

∣

∣

∣

∑

x∈X

ν(x)p(x, y)

∣

∣

∣

∣

∣

≤
∑

x∈X

|ν|(x)p(x, y) = (Q|ν|)(y)

and the equality holds if and only if ν(x)p(x, y) = |ν|(x)p(x, y) exp(iα) (where
α ∈ {o, π}, since fy is a real function) which leads to the conclusion.

The following theorem characterizes all the stationary measures (i.e. the
null space of Q − I1): it generalizes Theorem 1.18 of [9] to the case of finite
variation signed measures. We define the period of an irreducible random walk
according to [8], Section 5.A.

Theorem 3.2. Let (X,P ) be an irreducible random walk, then there ex-
ists a finite variation, stationary measure ν 6≡ 0 if and only if (X,P ) is positive
recurrent. In this case there exists α ∈ R \ {0} such that ν = αµ where µ
satisfies

µ(y) = lim sup
n→∞

p(nd+j−i)(x, y)/d

(the right hand side is seen to be independent of x and d is the period of the
random walk).

Proof. If we suppose that there exists a stationary measure ν with finite
variation and C0, C1, . . . , Cd−1, Cd ≡ C0 is the partition ofX given by the peri-
odicity classes, then, by Lemma 3.1, −|ν| is an excessive measure; Theorems
2,3 and 4 of Paragraph I.3 of [3] and Tonelli-Fubini’s Theorem imply

|ν|(Ci+1) =
∑

y∈Ci+1

|ν(y)| ≤
∑

y∈Ci+1

∑

x∈Ci

|ν(x)|p(x, y) =
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=
∑

x∈Ci

∑

y∈Ci+1

|ν(x)|p(x, y) = |ν|(Ci)

then |ν|(C0) ≤ |ν|(C1) ≤ · · · ≤ |ν|(Cd−1) ≤ |ν|(Cd) ≡ |ν|(C0), hence |ν|(Ci) =
|ν|(X)/d for every i = 0, 1, . . . , d− 1.

Using the “Renewal Theorem” by Erdös-Feller-Pollard (see [5]) and Le-
besgue bounded convergence Theorem,

|ν|(y) ≤
∑

x∈Ci

|ν|(x)p(nd)(x, y)
n→∞
−→ d · µ(y)

∑

x∈Ci

|ν|(x);(4)

since ν 6≡ 0 then there exists i and y ∈ Ci such that |ν|(y) > 0, thus eq. (4)
implies that µ(y) > 0, hence (X,P ) is positive recurrent.

On the other hand, if (X,P ) is positive recurrent, Theorem 1 of Paragraph
I.7 of [3] implies that µ is a stationary, probability measure.

If ν is another stationary, finite variation measure on X (ν 6≡ 0) then
by equation (4), |ν|(y) ≤ |ν|(X)µ(y); if we suppose, by contradiction, that
there exist y ∈ X such that |ν|(y) < |ν|(X)µ(y), then we have that 1 =
∑

y∈X |ν|(y)/|ν|(X) <
∑

y∈X µ(y) = 1; hence |ν|(·)/|ν|(X) ≡ µ(·). If we
define ν(y) := ν(y)/|ν|(X) then |ν| ≡ µ and (2µ − ν)/(2µ(X) − ν(X)) is
a stationary, probability measure. By Theorem 1 of Paragraph I.7 of [3]
(2µ − ν)/(2µ(X) − ν(X)) ≡ µ which is equivalent to ν = ν(X)µ, that is,
ν = ν(X)µ.

As a consequence of this theorem we obtain that the bounded, linear map
Q− 1l1 is injective if and only if (X,P ) is not positive recurrent.

We make now some remarks related to the second question: when Rg(Q−
1l1) is closed?

By Schauder’s Theorem (see [1] Theorem VI.4), since P = Q∗, we have
that the operator Q from l1(X) into itself, is compact if and only if eq. (3)
holds. Now it is well known (see [7], Theorem 4.23) that if Q is compact
operator from a Banach space into itself then Q−1l has closed range. Hence if
equation (3) holds we have that a finite variation measure ν onX has the weak
mean value property with respect to o ∈ X if and only if (ν−δo

∑

x∈X ν(x)) ∈
Rg(Q − 1l1) (according to [10], Section 3 and Theorem 6.3, this is the trivial
case Rg(Q− 1l1) = {ν ∈ l1(X) : ν(X) = 0}).

This is obviously only a partial answer to our question; a way to reach a
complete and satisfactory answer, which we don’t undertake here is given by
the following remarks.

We recall that if (Z, ‖ ·‖Z), (Y, ‖ ·‖Y ) are Banach spaces, D is a linear sub-
space of Z and A : D → Y is a linear map such that supx∈D:‖x‖Z=1 ‖Ax‖Y =:
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β, then there exists a unique bounded, linear map A : D → Y which extends
A; moreover A is bounded by the same constant β and infx∈D:‖x‖Z=1 ‖Ax‖Y =

infx∈D:‖x‖Z=1 ‖Ax‖Y . Therefore, if A : D → Y is a linear and injective map,
then

sup
y∈Rg(A):‖y‖Y =1

‖A−1y‖Z = 1/ inf
x∈D:‖x‖Z=1

‖Ax‖Y

(where, by definition, 1/0 := +∞).
Now using the Open Mapping Theorem it is simple to show that if A :

D → Y is a linear, bounded, injective map then

Rg(A) = Rg(A)⇐⇒ inf
x∈D:‖x‖Z=1

‖Ax‖Y > 0.

In our case, if the Markov chain is not positive recurrent, then Rg(Q−1l1)
is closed if and only if infν∈l1(X):‖ν‖1=1 ‖Qν − ν‖1 > 0.
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