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We recall that a nonassociative algebra V over K (= R or C) is said to be
an H?-algebra when V is also a Hilbert space over K (the inner product of
which is denoted by ( | )) and is endowed with an algebra involution ? which
is linear in the real case and conjugate-linear in the complex case, and satisfies

(xy|z) = (x|zy?) = (y|x?z)

for all x, y, z ∈ V. H?-algebras were introduced by W. Ambrose [2] in a
complex associative setting in a slightly different way. The real associative
case was studied by I. Kaplansky [39] (see also [5, 10, 18]). Today the structure
theory of several particular classes of nonassociativeH?-algebras is well-known
[47, 48, 3, 4, 35, 49, 43, 36, 37, 25, 32, 26, 29, 7, 11, 12, 34, 8, 22, 30, 42, 33].
There is also a complete determination of a wide class of ternaryH?-structures
[40, 41, 18, 12, 20, 17, 16, 23, 24, 58], as well as a germinal theory for both
binary and ternary arbitrary H?-structures (see [32, 34, 31, 38, 6, 9, 14, 15,
56, 50, 13, 54, 53, 45] and [19, 21, 57, 51, 52, 58], respectively). The reader is
referred to Section E of [44] for a complete survey on H?-theory.

Let V be an H?-algebra. Then the left annihilator

LannV = {x ∈ V : xV = 0}

coincides with the right annihilator

RannV = {x ∈ V : V x = 0}
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[32, Proposition 2]. We denote it by AnnV. There is a decomposition of V as
an orthogonal direct sum

V = LinV 2 ⊕AnnV , (1)

where LinV 2 is the closed linear span of the set {xy : x, y ∈ V } (see [32,
Proposition 2] and [34, Theorem 1]). Moreover LinV 2, under a suitable invol-
ution and the restriction of the inner product and the algebraic operations of
V , is an H?-algebra with zero annihilator in itself [25, 32, 34]. On the other
hand, if V has zero annihilator, then V splits as an orthogonal direct sum

V =
⊕

α∈A

Iα , (2)

where {Iα} is the family of all the minimal closed ideals of V, being furthermore
every Iα a topologically simple H?-algebra with the structure inherited from
V [32, 34, 38]. We recall that an H?-algebra W is called topologically simple

if it has nonzero product and its unique closed two-sided ideals are 0 and W.

The decompositions given by (1) and (2) reduce the study of every class of
nonassociative H?-algebras defined by identities to the determination of those
H?-algebras in the class that are topologically simple. This note is devoted
to the description of H?-algebras satisfying some of the Moufang identities.
We recall that an alternative algebra is a nonassociative algebra satisfying the
alternative identities given by

x2y = x(xy), (yx)x = yx2.

It is well known that every alternative algebra satisfies the following identities

y((xz)x) = ((yx)z)x (3)

(xy)(zx) = (x(yz))x (4)

(x(yx))z = x(y(xz)) (5)

(see [55, 46]). These identities are called right, middle, and left Moufang

identity, respectively.
In this note we prove that H?-algebras satisfying some of the Moufang

identities are in fact alternative. A similar result on alternativeness of middle
Moufang algebras has been recently obtained in [27] and [28] for division and
composition middle Moufang algebras. Applying among other results a deep
theorem of M. Slater [55, Theorem 9, p. 194], alternative H?-algebras can be
completely described [44, p. 148] (see also [43]). It follows that the result in
this note concludes the structure theory of Moufang H?-algebras.



moufang H?-algebras 241

1. The results

Let A be a nonassociative algebra over a field F and g : A × A −→ F a
symmetric bilinear form. We recall that g is said to be associative if

g(xy, z) = g(x, yz)

for all x, y, z ∈ A.

Lemma 1.1. Let A be a nonassociative algebra over a field F such that

there exists a nondegenerate associative symmetric bilinear form on A. Then

the following assertions are equivalent:

(i) A satisfies the right Moufang identity.

(ii) A satisfies the middle Moufang identity.

(iii) For all x, z, u ∈ A the equality ((xz)x)u = x(z(xu)) holds.

Proof. Let g : A × A −→ F be a nondegenerate associative symmetric
bilinear form, and let x, y, z, u be in A. Then we have

g
(

y
(

(xz)x
)

−
(

(yx)z
)

x, u
)

= g
(

(xz)x, uy
)

− g
(

z, (xu)(yx)
)

= g
(

z,
(

x(uy)
)

x− (xu)(yx)
)

.
(6)

On the other hand,

g
(

z,
(

x(uy)
)

x− (xu)(yx)
)

= g
(

xz, x(uy)
)

− g
(

z(xu), yx
)

= g
(

(

(xz)x
)

u− x
(

z(xu)
)

, y
)

.
(7)

Since g is nondegenerate, (6) and (7) yield the equivalence of Assertions (i),
(ii), and (iii).

Theorem 1.2. Let V be an H?-algebra. Then the following assertions

are equivalent:

(i) V satisfies the right Moufang identity.

(ii) V satisfies the middle Moufang identity.

(iii) For all x, z, u ∈ V the equality ((xz)x)u = x(z(xu)) holds.

(iv) V satisfies the left Moufang identity.

(v) V is an alternative algebra.
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Proof. Let g : V × V −→ K be the symmetric bilinear form defined by
g(x, y) = (x|y?)+ (y|x?) for all x, y ∈ V. A routine calculation shows that g is
associative and nondegenerate. Now Lemma 1.1 yields the equivalence of (i),
(ii), and (iii).

Assume that the equivalent Conditions (i) and (iii) are fulfilled. By (i),
for x, y, z, t ∈ V we have

((xy)x− x(yx) | zt) =
(

z?
(

(xy)x
)

| t
)

−
(

z?
(

x(yx)
)

| t
)

=
(

(

(z?x)y
)

x | t
)

−
(

z? | t
(

x(yx)
)?
)

=
(

z? |
(

(tx?)y?
)

x?
)

−
(

z? |
(

(tx?)y?
)

x?
)

= 0 .

Without loss of generality we can assume that AnnV = {0}. Then, since
the linear span of {zt : z, t ∈ V } is dense in V (see (1)), and ( · | · ) is non-
degenerate, we obtain that (xy)x = x(yx) for all x, y ∈ V. In this way we
have proved that V is a flexible algebra. By (iii), V is left Moufang.

Now assume that Condition (iv) is fulfilled. Since the opposite algebras
of left Moufang H?-algebras are right Moufang H?-algebras, and these last
algebras are flexible, we obtain that V is also flexible. Then, applying again
that V is left Moufang, we realize that Assertion (iii) holds for V.

Finally, we assume that V satisfies the equivalent Assertions (i)-(iv), and
show that V is alternative. In view of (1), (2), and [9, Theorem 1], we can
assume that V is topologically simple and complex. We already know that
V is flexible, and that, consequently, for x in V the equality x2x = xx2

holds. On the other hand, by Assertion (ii), we have x2x2 = (xx2)x for every
x ∈ V . Since there exists a nondegenerate associative symmetric bilinear form
on V , it follows from [1] (see also [25, p. 39]) that V is a noncommutative
Jordan H?-algebra. Then, by [32, Theorems 2 and 4] and [2], either V is
anticommutative or there exists an approximate unit for V . Assume that V
is anticommutative. Then, by Assertion (i), we have R3x = 0 for every x in V ,
where Rx stands for the operator of right multiplication by x on V . Therefore,
if x is in V and satisfies x? = εx for ε ∈ {+,−}, then for every y in V we have
0 = (R4x(y)|y) = ‖R2x(y)‖

2, and hence 0 = (R2x(y)|y) = ε‖Rx(y)‖
2, so that

x ∈ AnnV = {0}. Since V = Sym(V, ?)⊕ Sk(V, ?), where Sym(V, ?) (respect-
ively, Sk(V, ?)) means the real vector subspace of all self-adjoint (respectively,
skew-adjoint) elements of V , we deduce V = 0, which contradicts that V
is topologically simple. Now assume that V has an approximate unit (say
{eλ}λ∈Λ). Then, making z = eλ in (3) and y = eλ in (5), and taking limits in
λ, the alternativeness of V follows.
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As we said in the introduction, alternativeH?-algebras are well-understood.
Indeed, the topologically simple alternative nonassociative H?-algebras are:

the algebra of complex octonions, in the complex case; and the same algebra

regarded as a real algebra, together with the two real octonions algebras, in

the real case (see [44, p. 148]). On the other hand every topologically simple

associative H?-algebra is isomorphic to the H?-algebra HS(H) of all Hilbert-
Schmidt operators on a suitable Hilbert space H, which is complex in the

complex case, and either real, complex, or quaternionic in the real case (see
[2] and [39]).
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[15] Cabrera, M., Rodŕıguez, A., Nonassociative ultraprime normed algeb-
ras, Quart. J. Math. Oxford, 43 (1992), 1 – 7.

[16] Castellón, A., Cuenca, J.A., Compatibility in Jordan H?-triple systems,
Bolletino U.M.I., 4 (B) (1990), 433 – 447.

[17] Castellón, A., Cuenca, J.A., Alternative H?-triple systems, Comm.
Algebra, 11 (20) (1992), 3191 – 3260.

[18] Castellón, A., Cuenca, J.A., Associative H?-triple systems, in “Nonas-
sociative Algebraic Models”, S. González and H. Ch. Myung (editors), Nova
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