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We recall that a nonassociative algebra V' over K (= R or C) is said to be
an H*-algebra when V' is also a Hilbert space over K (the inner product of
which is denoted by (| )) and is endowed with an algebra involution x which
is linear in the real case and conjugate-linear in the complex case, and satisfies

(zylz) = (z]29") = (y[z™2)

for all z, y, 2 € V. H*-algebras were introduced by W. Ambrose [2] in a
complex associative setting in a slightly different way. The real associative
case was studied by I. Kaplansky [39] (see also [5, 10, 18]). Today the structure
theory of several particular classes of nonassociative H*-algebras is well-known
[47, 48, 3, 4, 35, 49, 43, 36, 37, 25, 32, 26, 29, 7, 11, 12, 34, 8, 22, 30, 42, 33].
There is also a complete determination of a wide class of ternary H *-structures
[40, 41, 18, 12, 20, 17, 16, 23, 24, 58], as well as a germinal theory for both
binary and ternary arbitrary H*-structures (see [32, 34, 31, 38, 6, 9, 14, 15,
56, 50, 13, 54, 53, 45] and [19, 21, 57, 51, 52, 58], respectively). The reader is
referred to Section E of [44] for a complete survey on H*-theory.
Let V be an H*-algebra. Then the left annihilator

LannV ={z e V: 2V =0}
coincides with the right annihilator

RannV ={zx e V: V2 =0}
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[32, Proposition 2]. We denote it by Ann V. There is a decomposition of V' as
an orthogonal direct sum

V=LinV2® AmV, (1)

where Lin V2 is the closed linear span of the set {zy : z,y € V} (see [32,
Proposition 2] and [34, Theorem 1]). Moreover Lin V2, under a suitable invol-
ution and the restriction of the inner product and the algebraic operations of
V, is an H*-algebra with zero annihilator in itself [25, 32, 34]. On the other
hand, if V' has zero annihilator, then V splits as an orthogonal direct sum

V=PI, (2)

acA

where {I,} is the family of all the minimal closed ideals of V| being furthermore
every I, a topologically simple H*-algebra with the structure inherited from
V' [32, 34, 38]. We recall that an H*-algebra W is called topologically simple
if it has nonzero product and its unique closed two-sided ideals are 0 and W.

The decompositions given by (1) and (2) reduce the study of every class of
nonassociative H*-algebras defined by identities to the determination of those
H*-algebras in the class that are topologically simple. This note is devoted
to the description of H*-algebras satisfying some of the Moufang identities.
We recall that an alternative algebra is a nonassociative algebra satisfying the
alternative identities given by

2’y =a(ey),  (yr)z =y’

It is well known that every alternative algebra satisfies the following identities

y((z2)z) = ((yz)z)z 3)
(zy)(zz) = (x(yz))x (4)
(z(yr))z = 2(y(22)) ()

(see [55, 46]). These identities are called right, middle, and left Moufang
identity, respectively.

In this note we prove that H*-algebras satisfying some of the Moufang
identities are in fact alternative. A similar result on alternativeness of middle
Moufang algebras has been recently obtained in [27] and [28] for division and
composition middle Moufang algebras. Applying among other results a deep
theorem of M. Slater [55, Theorem 9, p. 194], alternative H*-algebras can be
completely described [44, p. 148] (see also [43]). It follows that the result in
this note concludes the structure theory of Moufang H*-algebras.
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1. THE RESULTS

Let A be a nonassociative algebra over a field FFand g: Ax A — F a
symmetric bilinear form. We recall that g is said to be associative if

9(zy,z) = g(x,yz)

for all z, y, z € A.

LEMMA 1.1. Let A be a nonassociative algebra over a field F' such that
there exists a nondegenerate associative symmetric bilinear form on A. Then
the following assertions are equivalent:

(i) A satisfies the right Moufang identity.
(ii) A satisfies the middle Moufang identity.
(iii) For all z, z, u € A the equality ((zz)r)u = z(z(xu)) holds.

Proof. Let g : A x A — F be a nondegenerate associative symmetric
bilinear form, and let z, ¥, z, u be in A. Then we have

9(u((@2)2) = ((y2)2),0) = g((22) uy) = 9z, () (4))

9(= (a(uy)z = (@u)(yo)) - v

On the other hand,
9(2 (@(uy))z — (2u)(y2)) = (w2, 2(wy)) - g(=(zu). yo)
= g(((:nz):n)u - x(z(mu)),y) )

Since ¢ is nondegenerate, (6) and (7) yield the equivalence of Assertions (i),

(ii), and (iii). N

(7)

THEOREM 1.2. Let V be an H*-algebra. Then the following assertions
are equivalent:

(i) V satisfies the right Moufang identity.
(ii) V satisfies the middle Moufang identity.
(iii) For all z, z, w € V the equality ((xz)x)u = x(2(zu)) holds.
(iv) V satisfies the left Moufang identity.
(v) V is an alternative algebra.
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Proof. Let g : V x V — K be the symmetric bilinear form defined by
g(z,y) = (x|y*) + (y|z*) for all z, y € V. A routine calculation shows that g is
associative and nondegenerate. Now Lemma 1.1 yields the equivalence of (i),
(ii), and (iii).

Assume that the equivalent Conditions (i) and (iii) are fulfilled. By (i),
for x, y, z, t € V we have

(@y)z = wlya) | 2t) = (=" ((@y)) |t) = (* (w(ya) |1)
- (((z*m)y)z:|t) — (z*|t($(yx))*)
= (z*\ ((tx*)y*)a:*) — (z*\ ((tm*)y*)x*) =0.

Without loss of generality we can assume that AnnV = {0}. Then, since
the linear span of {zt : z,¢t € V} is dense in V (see (1)), and (-|-) is non-
degenerate, we obtain that (zy)xr = z(yx) for all z, y € V. In this way we
have proved that V' is a flexible algebra. By (iii), V' is left Moufang.

Now assume that Condition (iv) is fulfilled. Since the opposite algebras
of left Moufang H*-algebras are right Moufang H*-algebras, and these last
algebras are flexible, we obtain that V is also flexible. Then, applying again
that V is left Moufang, we realize that Assertion (iii) holds for V.

Finally, we assume that V satisfies the equivalent Assertions (i)-(iv), and
show that V is alternative. In view of (1), (2), and [9, Theorem 1], we can
assume that V is topologically simple and complex. We already know that
V is flexible, and that, consequently, for = in V the equality z?z = za?
holds. On the other hand, by Assertion (ii), we have 2222 = (z2?)x for every
x € V. Since there exists a nondegenerate associative symmetric bilinear form
on V, it follows from [1] (see also [25, p. 39]) that V is a noncommutative
Jordan H*-algebra. Then, by [32, Theorems 2 and 4] and [2], either V is
anticommutative or there exists an approximate unit for V. Assume that V'
is anticommutative. Then, by Assertion (i), we have RS = 0 for every x in V,
where R, stands for the operator of right multiplication by z on V. Therefore,
if  is in V and satisfies 2* = ez for € € {+, —}, then for every y in V' we have
0 = (Rz(y)ly) = [[R2(y)[I? and hence 0 = (R3(y)|y) = [|Rx(y)|]?, so that
x € Ann'V = {0}. Since V' = Sym(V, *) @ Sk(V, ), where Sym(V, ) (respect-
ively, Sk(V, %)) means the real vector subspace of all self-adjoint (respectively,
skew-adjoint) elements of V, we deduce V' = 0, which contradicts that V
is topologically simple. Now assume that V' has an approximate unit (say
{eataen). Then, making z = ey in (3) and y = ey in (5), and taking limits in
A, the alternativeness of V follows. |
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As we said in the introduction, alternative H*-algebras are well-understood.
Indeed, the topologically simple alternative nonassociative H*-algebras are:
the algebra of complex octonions, in the complex case; and the same algebra
regarded as a real algebra, together with the two real octonions algebras, in
the real case (see [44, p. 148]). On the other hand every topologically simple
associative H*-algebra is isomorphic to the H*-algebra HS(H) of all Hilbert-
Schmidt operators on a suitable Hilbert space H, which is complex in the
complex case, and either real, complex, or quaternionic in the real case (see
[2] and [39]).
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