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Darbouxian Integrability for Polynomial Vector Fields

on the 2–Dimensional Sphere †

Carlos Gutierrez, Jaume Llibre

ICMC–USP, São Carlos & IMPA, Rio de Janeiro, Brazil
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1. Introduction

In 1878 Darboux [6] showed how can be constructed the first integrals of
planar polynomial vector fields possessing sufficient invariant algebraic curves.
In particular, he proved that if a planar polynomial vector field of degree m
has at least [m(m + 1)/2] + 1 invariant algebraic curves, then it has a first
integral, which has an easy expression in function of the invariant algebraic
curves, see Theorem 2(b). Jouanolou [7] in 1979 (see also [5]) shows that if
the number of invariant algebraic curves of a planar polynomial vector field
of degree m is at least [m(m + 1)/2] + 2, then the vector field has a rational
first integral, and consequently all its solutions are invariant algebraic curves,
see Theorem 2(c). For more details and results on the Darbouxian theory of
integration for planar polynomial vector fields, see [1, 3, 4, 5, 8].

In another context we must mention the good extensions of the Darbouxian
method to dimension larger than 2 for differential polynomial vector fields on
kn being k a differential field of zero characteristic, see for instance [9] and
the references quoted there; or extensions to algebraic Pfaff equations, see [7].

Our main goal is to extend to polynomial vector fields on the 2–dimensional
sphere the Darbouxian theory of integrability for the planar polynomial vec-
tor fields. In this sense this paper can be thought as the natural continuation
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of [5] where we improve the classical results of Darbouxian theory for pla-
nar polynomial vector fields, essentially these improvements are presented in
Theorem 2.

The paper is organized as follows. In section 2 we present a summary
of the main results of the Darbouxian theory of integrability for the planar
polynomial vector fields that we will extend to polynomial vector fields on
the 2–dimensional sphere. In Section 3 we give the definitions of polynomial
vector field on the 2–dimensional sphere and of a first integral for such vector
fields. In Sections 4 and 5 we introduce the notion of invariant algebraic curve
and of exponential factor for a polynomial vector field on the 2–dimensional
sphere, respectively. In Section 6 we describe the expressions of the differen-
tial equations associated to a polynomial vector field on the 2–dimensional
sphere through the stereographic projection. Finally, in Section 7 we present
the Darbouxian theory of integration for polynomial vector fields on the 2–
dimensional sphere, see Theorem 5.

2. The method of Darboux for planar polynomial vector fields

As far as we know, the problem of integrating a polynomial vector field
by using its invariant algebraic curves was started to be considered by Dar-
boux in [6] for the planar vector fields. The version that we present here
improves Darboux’s original exposition essentially because here we also take
into account the exponential factors (see [5] for more details and proofs) and
the independent singular points (see [2]). Before stating the main results
of the Darbouxian theory for planar polynomial vector fields we need some
definitions.

Let

Y = p(x, y)
∂

∂x
+ q(x, y)

∂

∂y
.

be a planar polynomial vector field of degree m, i.e., p and q are poly-
nomials in the variables x and y with coefficients in the real field R, and
m = max{deg p , deg q}.

Let f ∈ R[x, y], where R[x, y] denotes the ring of all polynomials in the
variables x and y with coefficients in R. The algebraic curve f = 0 is an inva-

riant algebraic curve of the polynomial vector field Y if for some polynomial
K ∈ R[x, y] we have

Y f = p
∂f

∂x
+ q

∂f

∂y
= Kf.

The polynomial K is called the cofactor of the invariant algebraic curve f = 0.
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We note that since the polynomial system has degree m, then any cofactor
has at most degree m− 1.

Let h, g ∈ R[x, y] and assume that h and g are relatively prime in the
ring R[x, y]. Then the function exp(g/h) is called an exponential factor of
the polynomial vector field Y if for some polynomial K ∈ R[x, y] of degree at
most m− 1 it satisfies the equality

Y
(

exp(g/h)
)

= K exp(g/h).

As before we say that K is the cofactor of the exponential factor exp(g/h).
It is well–known that if F = exp(g/h) is an exponential factor for the

polynomial vector field Y and h is non–constant, then h = 0 is an invariant
algebraic curve, and g satisfies the equation

Y g = gKh + hKF ,

where Kh and KF are the cofactors of h and F respectively. In fact, in [3]
or [5] it is shown that the existence of a exponential factor exp(g/h) is due
to the fact the invariant algebraic curve as solution of the vector field Y has
multiplicity higher than 1.

The polynomial vector field Y is integrable on an open subset V of R2 if
there exists a nonconstant analytic function H : V → R, called a first integral
of the system on V , which is constant on all solution curves (x(t), y(t)) of the
vector field Y on V ; i.e., H(x(t), y(t)) = constant for all values of t for which
the solution (x(t), y(t)) is defined on V . Clearly H is a first integral of the
vector field Y on V if and only if Y H = 0 on V .

Let V be an open subset of R2 and let R : V → R be an analytic function
which is not identically zero on V . The function R is an integrating factor

of the polynomial vector field Y on V if one of the following three equivalent
conditions holds

∂(Rp)

∂x
= −∂(Rq)

∂y
, div(Rp,Rq) = 0, Y R = −R div(p, q),

on V . As usual the divergence of the vector field Y is defined by

div(Y ) = div(p, q) =
∂p

∂x
+
∂q

∂y
.

The first integral H associated to the integrating factor R is given by

H(x, y) =

∫

R(x, y)p(x, y)dy + h(x),



292 c. gutierrez, j. llibre

satisfying ∂H
∂x

= −Rq. Then

ẋ = Rp =
∂H

∂y
, ẏ = Rq = −∂H

∂x
. (1)

In order that this function H to be well defined the open set V must be simply
connected.

Conversely, given a first integral H of the vector field Y we always can
find an integrating factor R for which (1) holds.

Lemma 1. If the polynomial vector field Y has two integrating factors R1

and R2 on the open subset V of R2, then in the open set V \ {R2 = 0} the
function R1/R2 is a first integral.

Proof. Since Ri is an integrating factor, it satisfies that Y Ri =
−Ri div(p, q) for i = 1, 2. Therefore, the lemma follows immediately from
the next computations:

Y

(

R1

R2

)

=
(Y R1)R2 −R1(Y R2)

R2
2

= 0.

If S(x, y) =
m−1
∑

i+j=0
aijx

iyj is a polynomial of degree m−1 with m(m+1)/2

coefficients in R, then we write S ∈ Rm−1[x, y]. We identify the linear vector
space Rm−1[x, y] with Rm(m+1)/2 through the isomorphism

S → (a00, a10, a01, . . . , am−1,0, am−2,1, . . . , a0,m−1).

We say that r points (xk, yk) ∈ R, k = 1, . . . , r, are independent with
respect to Rm−1[x, y] if the intersection of the r hyperplanes

m−1
∑

i+j=0

xiky
j
kaij = 0, k = 1, . . . , r,

in Rm(m+1)/2 is a linear subspace of dimension [m(m+ 1)/2]− r.
We summarize in the next theorem the main results of the Darbouxian

theory of integrability for planar polynomial vector fields.

Theorem 2. Suppose that the planar polynomial vector field Y of degree

m admits p invariant algebraic curves fi = 0 with cofactorsKi for i = 1, . . . , p,
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q exponential factors exp(gj/hj) with cofactors Lj for j = 1, . . . , q, and r
independent singular points (xk, yk) ∈ R2 such that fi(xk, yk) 6= 0 for i =
1, . . . , p and for k = 1, . . . , r. Of course, every hj is equal to some fi except if
hj is constant. Then the following statements hold.

(a) There exist λi, µj ∈ R not all zero such that
∑p

i=1 λiKi+
∑q

j=1 µjLj = 0,
if and only if the function

|f1|λ1 · · · |fp|λp
(

exp(g1/h1)
)µ1 · · ·

(

exp(gq/hq)
)µq (2)

is a first integral of the vector field Y .

(b) If p+ q + r = [m(m+ 1)/2] + 1, then there exist λi, µj ∈ R not all zero

such that
p
∑

i=1
λiKi +

∑q
j=1 µjLj = 0.

(c) The vector field Y has a rational first integral if and only if p + q +
r ≥ [m(m + 1)/2] + 2. Moreover, all trajectories of Y are contained in

invariant algebraic curves.

3. Polynomial vector fields on S2 and first integrals

A polynomial vector field X in R3 is a vector field of the form

X = P (x, y, z)
∂

∂x
+Q(x, y, z)

∂

∂y
+R(x, y, z)

∂

∂z
,

where P , Q and R are polynomials in the variables x, y and z with real
coefficients. In all this paper m = max{degP, degQ, degR} will denote the
degree of the polynomial vector field X. In what follows X will denote the
above polynomial vector field.

Let S2 be the 2–dimensional sphere {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.
A polynomial vector field X on S2 is a polynomial vector in R3 such that
restricted to the sphere S2 defines a vector field on S2, i.e., it must satisfy the
following equality

xP (x, y, z) + yQ(x, y, z) + zR(x, y, z) = 0,

for all the points (x, y, z) of the sphere S2.
We denote by Rm[x, y, z] the real linear vector space of all polynomials in

the variables x, y, z with real coefficients and of degree at most m. It is easy
to see that the dimension of Rm[x, y, z] is (m+ 2)(m+ 1)m/6.
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By Rm[x, y, z =
√

1− x2 − y2] we denote the real linear vector space of all
the functions obtained from all polynomial of Rm[x, y, z] after substituting z
by
√

1− x2 − y2. Since this vector space can be obtained adding to a polyno-
mial of Rm[x, y] another polynomial of Rm−1[x, y] multiplied by

√

1− x2 − y2,
it follows that a basis for the vector space Rm[x, y, z =

√

1− x2 − y2] can be
obtained adding to the basis {1, x, y, z, . . . , zm} of Rm[x, y] the following in-
dependent vectors

√

1− x2 − y2, x
√

1− x2 − y2, y
√

1− x2 − y2,

z
√

1− x2 − y2, . . . , zm
√

1− x2 − y2.

Therefore, the dimension of the linear vector space Rm[x, y, z =
√

1− x2 − y2]
is

(m+ 2)(m+ 1)

2
+

(m+ 1)m

2
= (m+ 1)2.

Proposition 3. For each point of Rd with

d =
(m+ 3)(m+ 2)(m+ 1)

2
− (m+ 2)2 =

(m+ 2)(m2 + 2m− 1)

2
,

there is a different polynomial vector field X on the sphere S2 of degree m.

Proof. If P , Q and R are polynomials of degree m, then the identity

xP (x, y, z) + yQ(x, y, z) + zR(x, y, z)|
z=
√

1−x2−y2
≡ 0,

defines an element of the linear vector space Rm+1[x, y, z =
√

1− x2 − y2].
So this identity implies (m + 2)2 relations between the coefficients of the
polynomials P , Q and R.

Since each polynomial P , Q and R has (m+3)(m+2)(m+1)/6 coefficients,
and every polynomial vector field X on S2 must satisfy the above identity, the
statement of the proposition follows.

Since for each point of R(m+2)(m+1) there is a planar polynomial vector
field of degree m, from Proposition 3, it follows that for m > 1 there are more
polynomial vector fields on the sphere S2 of degree m than planar polynomial
vector fields of degree m.

Let U be an open subset of R3. A polynomial vector field X on the
sphere S2 is integrable on the open subset U ∩S2 if there exists a nonconstant
analytic function H : U → R3, called a first integral of X on U ∩ S2, which
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is constant on all solution curves (x(t), y(t), z(t)) of the vector field X on
U ∩ S2; i.e., H(x(t), y(t), z(t)) = constant for all values of t for which the
solution (x(t), y(t), z(t)) is defined on U ∩ S2. Clearly H is a first integral of
the polynomial vector field X on U ∩ S2 if and only if XH = 0 on all the
points (x, y, z) of U ∩ S2.

4. Invariant algebraic curves

Let f ∈ R[x, y, z], where as it is usual R[x, y, z] denotes the ring of the
polynomials in the variables x, y and z with real coefficients. The algebraic
surface f = 0 defines an invariant algebraic curve {f = 0} ∩ S2 of the polyno-
mial vector field X on the sphere S2 if

(i) for some polynomial K ∈ R[x, y, z] we have

Xf = P
∂f

∂x
+Q

∂f

∂y
+R

∂f

∂z
= Kf, (3)

on all the points (x, y, z) of the sphere S2;

(ii) the intersection of the two surfaces f = 0 and S2 is transversal; i.e., for
all the points (x, y, z) ∈ {f = 0} ∩ S2 we have that

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
6= 0.

The polynomial K is called the cofactor of the invariant algebraic curve
{f = 0} ∩ S2. We note that since the polynomial vector field has degree
m, then any cofactor has at most degree m− 1.

Since on the points of the algebraic curve {f = 0} ∩ S2 the gradient
(∂f/∂x, ∂f/∂y, ∂f/∂z) of the surface f = 0 is orthogonal to the polyno-
mial vector field X = (P,Q,R) (see (3)), and the vector field X is tangent
to the sphere S2, it follows that the vector field X is tangent to the curve
{f = 0} ∩ S2. Hence, the curve {f = 0} ∩ S2 is formed by trajectories of the
vector field X. This justifies the name of invariant algebraic curve given to the
algebraic curve {f = 0} ∩ S2 satisfying (3) for some polynomial K, invariant
under the flow defined by X.

5. Exponential factors

In this section we introduce the notion of exponential factor due to Chris-
topher [3], see also [5]. We will see that each exponential factor will play the
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same role that an invariant algebraic curve in order to obtain a first integral
of the polynomial vector field X on the sphere S2.

Let h and g polynomials of R[x, y, z] and assume that

h(x, y, z =
√

1− x2 − y2), g(x, y, z =
√

1− x2 − y2)

are relatively prime in the ring R[x, y,
√

1− x2 − y2]. Then the function
exp(g/h) is called an exponential factor of the polynomial vector field X on
S2 if for some polynomial K ∈ R[x, y, z] of degree at most m − 1 it satisfies
the following equality

X
(

exp(g/h)
)

= K exp(g/h), (4)

on all the points (x, y, z) of S2. As before we say that K is the cofactor of the
exponential factor exp(g/h).

As we will see from the point of view of the integrability of polynomial
vector fields on S2 the importance of the exponential factors is double. On
one hand, they verify equation (4), and on the other hand, their cofactors are
polynomials of degree at most m − 1. These two facts will allow that they
play the same role that the invariant algebraic curves in the integrability of a
polynomial vector field X on S2. We note that the exponential factors do not
define invariant curves of the flow of the vector field X on S2.

Proposition 4. If F = exp(g/h) is an exponential factor for the poly-

nomial vector field X on the sphere S2, then {h = 0} ∩ S2 is an invariant

algebraic curve of X, and g satisfies the equation

Xg = gKh + hKF ,

on the points (x, y, z) of the sphere S2, where Kh and KF are the cofactors of

h and F respectively.

Proof. Since F = exp(g/h) is an exponential factor with cofactor KF , we
have

KF exp(g/h) = X
(

exp(g/h)
)

,

on the points of S2; and since

X
(

exp(g/h)
)

= exp(g/h)X(g/h) = exp(g/h)
(Xg)h− g(Xh)

h2
,

we obtain that
(Xg)h− g(Xh) = h2KF ,
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on the points of S2. So, since h and g are relatively prime in the ring
R[x, y,

√

1− x2 − y2], we obtain that h divides Xh on the points (x, y, z =
±
√

1− x2 − y2 of the sphere S2. So {h = 0} ∩ S2 is an invariant algebraic
curve with cofactor Kh = Xh/h for the vector field X on S2. Now substitu-
ting Xh by Khh in the last equality, we have that Xg = gKh + hKF on the
points of S2.

6. Stereographic projection

We identify R2 as the tangent plane to the sphere S2 at the point (0, 0,−1),
and we denote the points of R2 as (u, v) = (u, v,−1). Let π : R2 → S2 \
{(0, 0, 1)} be the diffeomorphism given by

π(u, v) =

(

x =
2u

1 + u2 + v2
, y =

2v

1 + u2 + v2
, z =

u2 + v2 − 1

1 + u2 + v2

)

.

That is, π is the inverse map of the stereographic projection π−1 : S2 \
{(0, 0, 1)} → R2 defined by

π−1(x, y, z) =

(

u =
x

1− z
, v =

y

1− z

)

.

The polynomial differential system on the sphere S2

ẋ = P (x, y, z), ẏ = Q(x, y, z), ż = R(x, y, z),

associated to the vector field X becomes, through the stereographic projection
π−1, the following rational differential system

u̇ =
1 + u2 + v2

2
(P̄ + uR̄), v̇ =

1 + u2 + v2

2
(Q̄+ vR̄), (5)

on the plane R2. Here

F̄ = F

(

2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
u2 + v2 − 1

1 + u2 + v2

)

.

It t denotes the independent variable in the above differential system, then
that system becomes polynomial introducing the new independent variable s
through ds = (1 + u2 + v2)m−1dt.
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7. The method of Darboux for polynomial vector fields on S2

In this section we will extend the results of the Darbouxian theory of
integration for planar polynomial vector fields (i.e. Theorem 2) to polynomial
vector fields on the sphere S2.

We say that r points (xl, yl, zl) ∈ S2, for l = 1, . . . , r, are independent

with respect to the linear vector space Rm−1[x, y, z =
√

1− x2 − y2] if the
intersection of its r hyperplanes

m−1
∑

i+j+k=0

xily
j
l

(

√

1− x2
l − y2

l

)k
xiyj(

√

1− x2 − y2)k = 0, l = 1, . . . , r,

written in the basis of Rm−1[x, y, z =
√

1− x2 − y2] given in Section 3, define
a linear subspace of dimension m2 − r.

Theorem 5. Suppose that the polynomial vector field X on the sphere S2

of degree m admits p invariant algebraic curves {fi = 0} ∩ S2 with cofactors

Ki for i = 1, . . . , p, q exponential factors exp(gj/hj) with cofactors Lj for

j = 1, . . . , q, and r independent singular points (xk, yk, zk) of X in S2 such

that fi(xk, yk, zk) 6= 0 for i = 1, . . . , p and for k = 1, . . . , r. Of course, every

hj is equal to some fi except if hj is constant. Then the following statements

hold.

(a) There exist λi, µj ∈ R not all zero such that
∑p

i=1 λiKi+
∑q

j=1 µjLj = 0

on all the points (x, y, z) of the sphere S2, if and only if the function

|f1|λ1 · · · |fp|λp
(

exp(g1/h1)
)µ1 · · ·

(

exp(gq/hq)
)µq (6)

is a first integral of the vector field X on S2.

(b) If p+ q + r = m2 + 1, then there exist λi, µj ∈ R not all zero such that
∑p

i=1 λiKi +
∑q

j=1 µjLj = 0 on all the points (x, y, z) of the sphere S2.

(c) The vector field X has a rational first integral if and only if p + q +
r ≥ m2 + 2. Moreover, all trajectories of X are contained in invariant

algebraic curves.

Proof. We denote Fj = exp(gj/hj). By hypothesis we have p invariant
algebraic curves {fi = 0}∩ S2 with cofactors Ki, and q exponential factors Fj
with cofactors Lj . That is, the polynomials f ′is satisfy Xfi = Kifi, and the
F ′js satisfy XFj = LjFj , on all the points (x, y, z) of the sphere S2.
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(a) We have that

X
(

fλ1

1 · · · fλp
p Fµ1

1 · · ·F µq
q

)

=
(

fλ1

1 · · · fλp
p Fµ1

1 · · ·F µq
q

)

·
( p
∑

i=1

λi
Xfi
fi

+

q
∑

j=1

µj
XFj
Fj

)

.

Then, from this equality and the equality

p
∑

i=1

λi
Xfi
fi

+

q
∑

j=1

µj
XFj
Fj

=

p
∑

i=1

λiKi +

q
∑

j=1

µjLj = 0.

on all the points (x, y, z) of the sphere S2, statement (a) follows.

(b) Since (xk, yk, zk) is a singular point of the vector field X on the
sphere S2, P (xk, yk, zk) = Q(xk, yk, zk) = R(xk, yk, zk) = 0. Then, since
Xfi = P (∂fi/∂x) +Q(∂fi/∂y) +R(∂fi/∂z) = Kifi on all the points (x, y, z)
of the sphere S2, it follows that Ki(xk, yk, zk)fi(xk, yk, zk) = 0. By assump-
tion fi(xk, yk, zk) 6= 0, therefore Ki(xk, yk, zk) = 0 for i = 1, . . . , p. Again,
since XFj = P (∂Fj/∂x) +Q(∂Fj/∂y) +R(∂Fj/∂z) = LjFj on all the points
(x, y, z) of the sphere S2, it follows that Lj(xk, yk, zk)Fj(xk, yk, zk) = 0. Since
Fj = exp(gj/hj) does not vanish, Lj(xk, yk, zk) = 0 for j = 1, . . . , q. Conse-
quently, since the r singular points are independent, all the vectorsKi(x, y, z =
√

1− x2 − y2) and Lj(x, y, z =
√

1− x2 − y2) belong to a linear vector sub-

space S of Rm−1[x, y, z =
√

1− x2 − y2] of dimension m2 − r. We have p+ q
vectors Ki(x, y, z =

√

1− x2 − y2) and Lj(x, y, z =
√

1− x2 − y2), and since
from the assumptions p+ q > m2− r, we obtain that these p+ q vectors must
be linearly dependent on S. So, there are λi, µj ∈ R not all zero such that

p
∑

i=1

λiKi(x, y, z =
√

1− x2 − y2) +

q
∑

j=1

µjLj(x, y, z =
√

1− x2 − y2) = 0.

Hence statement (b) is proved.

(c) Under the assumptions of statement (c) we can apply statement (b)
to two subsets {M1,M3, . . . ,Mm2+2} and {M2,M3, . . . ,Mm2+2} of m2 + 1
functions defining invariant algebraic curves or exponential factors. Therefore,
we get two linear dependencies between the corresponding cofactors of the
following form

M1+α3M3+ . . .+αm2+2Mm2+2 = 0, M2+β3M3+ . . .+βm2+2Mm2+2 = 0,
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where Ml are the cofactors Ki and Lj , and the αl and βl are real numbers. Of
course, these two equalities must be satisfied only on all the points (x, y, z) of
S2. Then, by statement (a), it follows that the two functions

|G1||G3|α3 · · · |Gm2+2|αm2+2 , |G2||G3|β3 · · · |Gm2+2|βm2+2 ,

are first integrals of the vector field X on S2, where Gl is the polynomial
defining an invariant algebraic curve or the exponential factor having cofactor
Ml for l = 1, . . . ,m2 + 2. Then, taking logarithms to the above two first
integrals, we obtain that

H1 = log |G1|+ α3 log |G3|+ · · ·+ αm2+2 log |Gm2+2|,
H2 = log |G2|+ β3 log |G3|+ · · ·+ βm2+2 log |Gm2+2|,

are first integrals of the vector field X on S2.
Now we consider the expression (5) of the differential system associated to

the vector field X on S2 in the tangent plane R2 to the sphere S2 at the point
(0, 0,−1). Using the notation introduced in Section 6, we denote by H̄1 and
H̄2 the expressions of the first integrals H1 and H2 in the coordinates (u, v)
of the tangent plane R2.

u̇ =
1 + u2 + v2

2
(P̄ + uR̄), v̇ =

1 + u2 + v2

2
(Q̄+ vR̄), (7)

Each first integral H̄i provides an integrating factor Ri for system (7) such
that

1 + u2 + v2

2
(P̄ + uR̄)Ri =

∂H̄i

∂v
,

1 + u2 + v2

2
(Q̄+ vR̄)Ri = −

∂H̄i

∂u
.

Therefore, we obtain that
R1

R2
=

∂H̄1/∂v

∂H̄2/∂v
.

Since the functions Gl are polynomials or exponentials of a quotient of
polynomials and the change of variables through the stereographic projection
is given by rational functions, it follows that the functions ∂H̄i/∂x are rational
for i = 1, 2. So, from the last equality, we get that the quotient between the
two integrating factors R1/R2 is a rational function. From Lemma 1 it follows
that this quotient is a rational first integral of system (5). Again, since the
change of variables through the stereographic projection is given by rational
functions, we get a rational first integral of the polynomial vector field X on
S2. In short, we have proved statement (c).
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