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1. Introduction

In a recent paper [1, 2], a new mathematical setting for the formulation
of Classical Mechanics, automatically embodying the gauge invariance of the
theory under arbitrary transformations L → L + df

dt of the Lagrangian has
been proposed. The construction relies on the introduction of a principal fiber
bundle π : P → Vn+1 over the configuration space–time Vn+1, with structural
group (<, +), referred to as the bundle of affine scalars. The analysis developed
in [1] was mainly centered on the gauge–theoretical aspects of the subject.

In this paper, we shall examine the basic themes of Hamiltonian Mechanics
in the newer context. The discussion will illustrate the simplicity and efficiency
of the approach, as compared with the more traditional ones [3], . . .,[11].

For convenience of the reader, the construction of the Hamiltonian bundles
is briefly reviewed in §2. The resulting geometrical scheme is applied in §3 to
the study of the following topics:

• symplectic structure of the Hamiltonian bundle H(Vn+1); associated
Poisson structure of the phase space Π(Vn+1); Hamiltonian dynamics,
as the study of sections h : Π(Vn+1) → H(Vn+1);

• canonical transformations, as a subgroup of the group of symplectic
transformations over H(Vn+1);

• Hamilton–Jacobi theory; in particular, geometrical interpretation of the
Hamilton–Jacobi equation in the bundle H(Vn+1).

†Research partly supported by the National Group for Mathematical Physics (GNFM–
INDAM).
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2. The Hamiltonian bundles

Following [1], to any mechanical system B with n degrees of freedom we
associate a double fibration P

π−→ Vn+1
t−→ <, in which

• Vn+1 is the configuration space-time of the dynamical system in study,
with the fibration Vn+1

t−→ < representing absolute time;

• P
π−→ Vn+1 is a principal fiber bundle, with structural group (<, +),

called the bundle of affine scalars over Vn+1.

The action of (<, +) on P results into a 1-parameter group of diffeomor-
phisms ψξ : P → P , expressed through the additive notation

(ν, ξ) ∈ P ×< → ψξ(ν) := ν + ξ ∈ P. (2.1)

In what follows, we shall refer Vn+1 to local coordinates t, qi, and P to
fibered coordinates t, qi, u (i = 1, . . . , n), u denoting any trivialization of
P → Vn+1. The first jet space j1(P,Vn+1) associated with the fibration P →
Vn+1 will be referred to jet-coordinates t, qi, u, p0, pi, with transformation laws

t̄ = t + c, q̄ i = q̄ i(t, q1, . . . , qn), ū = u + f(t, q1, . . . , qn), (2.2a)

p̄0 = p0 +
∂f

∂t
+

(
pk +

∂f

∂qk

)
∂qk

∂t
, p̄i =

(
pk +

∂f

∂qk

)
∂qk

∂q̄ i
. (2.2b)

Eqs. (2.2a, b) ensure the invariance of the contact 1-form

Θ = du− p0dt− pidqi, (2.3)

known as the canonical 1-form of j1(P,Vn+1).
The manifold j1(P,Vn+1) is naturally embedded into the cotangent space

T ∗(P ) according to the identification

η =
[
du− p0(η)dt− pi(η)dqi

]
π(η)

∀ η ∈ j1(P,Vn+1). (2.4)

In view of the latter, one can easily establish two distinguished actions of
the group (<, +) on j1(P,Vn+1), respectively denoted by ψξ∗ : j1(P,Vn+1) →
j1(P,Vn+1) and ϕξ : j1(P,Vn+1) → j1(P,Vn+1), and described by the equa-
tions

ψξ∗(η) := (ψ−ξ)
∗
∗ (η) =

[
du− p0(η)dt− pi(η)dqi

]
π(η)+ξ

(2.5a)

ϕξ(η) := η − ξ(dt)π(η) =
[
du− (p0(η) + ξ) dt− pi(η)dqi

]
π(η)

(2.5b)
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for all η ∈ j1(P,Vn+1), ξ ∈ <. The first of these, written symbolically as

ψξ∗ : (t, qi, u, p0, pi) −→ (t, qi, u + ξ, p0, pi)

is the pull-back of the (inverse of) the action (2.1). Let H(Vn+1) denote the
quotient of j1(P,Vn+1) by this action. The following properties are entirely
straightforward [1]:

• H(Vn+1) is an affine bundle over Vn+1, with coordinates t, qi, p0, pi, mo-
delled on the cotangent bundle T ∗(Vn+1);

• the quotient map makes j1(P,Vn+1) → H(Vn+1) into a principal fibre
bundle, with structural group (<, +) and fundamental vector field ∂

∂u ;

• the canonical 1-form (2.3) endows j1(P,Vn+1) → H(Vn+1) with a distin-
guished connection, henceforth referred to as the canonical connection.

The second action of (<, +) on j1(P,Vn+1), described by eq. (2.5b), and
summarized into the symbolic relation

ϕξ : (t, qi, u, p0, pi) −→ (t, qi, u, p0 + ξ, pi)

comes from the invariant character of the 1-form dt. The quotient of
j1(P,Vn+1) by this action will be denoted by Hc(Vn+1). Once again, one
has the properties:

• Hc(Vn+1) is a fibre bundle over Vn+1, with coordinates t, qi, u, pi;

• the action (2.5b) makes j1(P,Vn+1) → Hc(Vn+1) into a principal fibre
bundle, with structural group (<, +) and fundamental vector field ∂

∂p0
.

The concluding step in the definition of the Hamiltonian bundles relies on
the observation that the group actions (2.5a, b) commute. Either of them
may therefore be used to induce an action on the space of orbits associated
with the other. As proved in [1], this makes both H(Vn+1) and Hc(Vn+1) into
principal fiber bundles over a common “double quotient” space, henceforth
denoted by Π(Vn+1) and identified with the phase space of the system. The
situation is illustrated by the commutative diagram

j1(P,Vn+1) −−−−→ Hc(Vn+1)y
y

H(Vn+1) −−−−→ Π(Vn+1)

(2.6)
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in which all arrows denote principal fibrations, with structural groups iso-
morphic to (<, +), and group actions arising in a straightforward way from
eqs. (2.5a, b). The principal bundles H(Vn+1) → Π(Vn+1) and Hc(Vn+1) →
H(Vn+1) are called respectively the Hamiltonian and the co-Hamiltonian
bundle over Π(Vn+1).

The geometrical environment based on the diagram (2.6) provides the ne-
cessary tool for a gauge–invariant formulation of Hamiltonian Mechanics. To
this end, referring to [1] for the necessary clarifications, we recall that, through
the Legendre transformation, every regular Lagrangian system determines a
section h : Π(Vn+1) → H(Vn+1) of the Hamiltonian bundle, expressed in
coordinates as

p0 + H(t, q1, . . . , qn, p1, . . . , pn) = 0. (2.7)

The function H(t, qi, pi) involved in the representation (2.7) is known as the
Hamiltonian of the system.

Taking the diagram (2.6) into account, it is easily seen that every section
h : Π(Vn+1) → H(Vn+1) may be lifted to a section ĥ : Hc(Vn+1) → j1(P,Vn+1),
described locally by the same equation (2.7). This gives rise to a principal
bundle homomorphism, summarized into the commutative diagram

Hc(Vn+1)
ĥ−−−−→ j1(P,Vn+1)y

y
Π(Vn+1)

h−−−−→ H(Vn+1)

(2.8)

By means of eq. (2.8), the canonical connection of j1(P,Vn+1) → H(Vn+1) may
be pulled back to a connection over Hc(Vn+1) → Π(Vn+1), with connection
1-form

ĥ∗(Θ) = du + H(t, qi, pi)dt− pidqi.

The difference du− ĥ∗(Θ) is then (the pull-back of) a 1-form ϑh over Π(Vn+1),
expressed in coordinates as

ϑh = −Hdt + pidqi (2.9)

and called the Poincaré-Cartan 1-form associated with the section h.
Referring once again to [1] for clarifications and comments, we finally re-

call that, through the Legendre transformation, the dynamical flow of the
system is expressed in the form of a vector field Z over Π(Vn+1), known as
the Hamiltonian flow, completely determined by the conditions

〈Z, dt〉 = 1, Z dϑh = 0. (2.10)
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In local coordinates, a straightforward comparison with eq. (2.9) yields the
representation

Z =
∂

∂t
+

∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
(2.11)

mathematically equivalent to Hamilton’s equations of motion

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
.

3. Hamiltonian mechanics

3.1. Poisson brackets Pursuing the plan indicated in the Introduc-
tion, we shall now illustrate a few basic themes of Classical Hamiltonian Me-
chanics within the geometrical environment developed in §2. A major role
in the discussion will be played by the canonical connection of the bundle
j1(P,Vn+1) → H(Vn+1), described by the contact 1-form

Θ = du− p0dt− pidqi. (3.1)

The curvature 2-form of Θ, defined, up to a sign, by

Ω := −dΘ = dp0 ∧ dt + dpi ∧ dqi , (3.2)

makes the base manifold H(Vn+1) into a (2n+2)-dimensional symplectic ma-
nifold, thereby endowing it with a canonical Poisson structure. In fiber coor-
dinates, the latter results in the Poisson brackets

{f, g} =
∂f

∂t

∂g

∂p0
+

∂f

∂qi

∂g

∂pi
− ∂f

∂p0

∂g

∂t
− ∂f

∂pi

∂g

∂qi
. (3.3)

The link between eq. (3.3) and the ordinary language of Hamiltonian Mecha-
nics rests on two basic observations:
(i) through an obvious pull–back procedure, the ring of differentiable functions
over the phase space Π(Vn+1) may be identified with the sub-ring

F0 =
{

f : f ∈ F (H(Vn+1)) ,
∂f

∂p0
= 0

}
(3.4)

of the ring of differentiable functions over H(Vn+1). A comparison with
eq. (3.3) provides the relation

f ∈ F0 ⇐⇒ {t, f} = 0 (3.5)
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whence, taking the Jacobi identity into account

f, g ∈ F0 ⇒ {t, {f, g}} = {f, {t, g}} − {g, {t, f}} ≡ 0 ⇒ {f, g} ∈ F0. (3.6)

In other words, the sub-ring F0 inherits the Poisson bracket operation present
in F (H(Vn+1)), thus inducing a Poisson structure over Π(Vn+1). Of course,
due to the identification (3.4), for each pair f, g ∈ F (Π(Vn+1)), eq. (3.3)
simplifies into

{f, g} =
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (3.7)

(ii) a similar argument shows that a function σ ∈ F (H(Vn+1)) is a (local)
trivialization of the bundle H(Vn+1) → Π(Vn+1) if and only if it satisfies the
Poisson-bracket relation

{t, σ} = 1. (3.8)

From this, and from the Jacobi identity, it is easily seen that, for any such
function, the condition f ∈ F0 implies also {f, σ} ∈ F0. In particular, if we
let σh = p0 + H denote the trivialization associated with a given Hamiltonian
section h : Π(Vn+1) → H(Vn+1), by comparison with eq. (3.3) we get the
relation

{f, σh} =
∂f

∂t
+ {f, H} =

∂f

∂t
+

∂H

∂pi

∂f

∂qi
− ∂H

∂qi

∂f

∂pi
. (3.9)

On account of eq. (2.11) the right-hand side of eq. (3.9) expresses the time
derivative of f in the course of the evolution determined by the Hamiltonian
flow Z. Accordingly, the relation

df

dt
= {f, σh} (3.10)

embodies the full content of Hamilton’s equations in the newer context. Equi-
valently, we may say that the Hamiltonian flow Z on Π(Vn+1) is h-related to
the unique vector field Ẑ on H(Vn+1) defined by the condition

Ẑ Ω = −dσh .

3.2. Canonical transformations In the analysis developed so far,
all spaces have been referred to a distinguished class of local coordinates,
generically called jet coordinates, entirely determined by the assignment of
a local chart on Vn+1 and of a trivialization u of P . We shall now remove
this restriction, by introducing a suitable analogue of the concept of canonical
transformation.
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Once again the analysis is centered around the 2-form (3.2). A coordinate
system ξ0, . . . , ξn, ζ0, . . . , ζn in H(Vn+1) is called symplectic if and only if it
gives rise to a representation of the form

Ω = dζ0 ∧ dξ0 + dζ i ∧ dξi (3.11)

A symplectic coordinate system of the special type t, ξ1, . . . , ξn, ζ0, . . . , ζn em-
bodying the time variable t as one of the coordinate functions – precisely, as
the coordinate function conjugate to ζ0– will be called special symplectic.

Recalling eqs. (3.5), (3.8), it is an easy matter to verify that, under the
latter assumption, the functions t, ξi, ζ i belong to the ring F0, while ζ0 is a
(local) trivialization of the bundle H(Vn+1) → Π(Vn+1). Therefore:
a) every special symplectic coordinate system in H(Vn+1) induces a corres-
ponding coordinate system in Π(Vn+1);
b) in special symplectic coordinates, every trivialization σ of H(Vn+1) admits
a local representation of the form

σ = ζ0 + f (3.12)

with f = f(t, ξ1, . . . , ξn, ζ1, . . . , ζn) ∈ F0.

A coordinate system t, ξ1, . . . , ξn, ζ1, . . . , ζn in Π(Vn+1) will be called
canonical if and only if it arises from a special symplectic coordinate system
in H(Vn+1) in the way indicated above. A straightforward argument shows
that a necessary and sufficient condition for this to happen is the validity of
the Poisson bracket relations

{ξi, ξj} = {ζ i, ζj} = 0; {ξi, ζj} = δi
j , i, j = 1, . . . , n. (3.13)

Indeed, under the assumption (3.13), by pulling everything back to H(Vn+1),
and denoting by ω → Xω the “process of raising the indices” defined by the
requirement ω = Xω Ω, it is easily seen that the (exact) 2-form Ω−dζk∧dξk

satisfies the identities

Xdξi

(
Ω− dζk ∧ dξk

)
= dξi − {dξi, dζk}dξk + {dξi, dξk}dζk = 0,

Xdζ i

(
Ω− dζk ∧ dξk

)
= dξi − {dζi, dζk}dξk + {dζi, dξk}dζk = 0,

Xdt

(
Ω− dζk ∧ dξk

)
= dt,
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i.e. it has algebraic rank 2, and belongs to the ideal generated by dt. By
Darboux theorem, this implies the existence of a local representation of the
form

Ω− dζk ∧ dξk = dζ0 ∧ dt ,

proving the required result.
An important consequence of the previous characterization is that, in ca-

nonical coordinates, every Hamiltonian flow Z admits the representation

Z =
∂

∂t
+

∂K

∂ζ i

∂

∂ξi
− ∂K

∂ξi

∂

∂ζ i
(3.14)

in terms of a suitable “Hamiltonian” K(t, ξ1, . . . , ξn, ζ1, . . . , ζn). The conclu-
sion follows at once by completing t, ξi, ζ i to a special symplectic coordinate
system t, ξi, ζ0, ζ i in H(Vn+1), and observing that, in view of eq. (3.12), given
any Hamiltonian section h : Π(Vn+1) → H(Vn+1), the associated trivialization
σh may be expressed locally as

σh = ζ0 + K(t, ξi, ζ i). (3.15)

On account of eq. (3.10), the equations of evolution have therefore the form

df

dt
= {f, σh} = {f, ζ0 + K} =

∂f

∂t
+

∂f

∂ξi

∂K

∂ζ i
− ∂f

∂ζi

∂K

∂ξi

mathematically equivalent to the representation (3.14).

The interplay between special symplectic and canonical coordinates is par-
ticularly worthwhile in the study of canonical transformations, since it allows
to “lift” the algorithm from Π(Vn+1) to H(Vn+1), relating it to the (simpler)
theory of symplectic transformations. In this connection, the central result
– to be found in any textbook– is that, up to elementary “transpositions”

ξ̄λ → ζ̄λ , ζ̄λ → −ξ̄λ , λ = i1, . . . , ir ⊂ {0, . . . , n}, (3.16)

the most general transformation between symplectic coordinates may be ex-
pressed in terms of a “generating function” F̂ (ξ0, . . . , ξn, ζ̄0, . . . , ζ̄n), subject
to the regularity requirement det |∂2F̂ /∂ξα∂ζ̄β| 6= 0, in the implicit form

ζα =
∂F̂

∂ξα
, ξ̄α =

∂F̂

∂ζ̄α
, α = 0, . . . , n. (3.17)
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In particular, if the transformation (3.17) is meant to relate two special sym-
plectic coordinate systems, the identification ξ0 = t, ξ̄0 = t̄ = t + c implies
the restriction

F̂ = (t + c)ζ̄0 + F (t, ξ1, . . . , ξn, ζ̄1, . . . , ζ̄n), (3.18)

while the regularity condition goes over into det |∂2F/∂ξi∂ζ̄j | 6= 0. The resul-
ting transformation then splits into the system

ζ i =
∂F

∂ξi
, ξ̄i =

∂F

∂ζ̄ i
, (3.19a)

ζ0 =
∂F̂

∂t
= ζ̄0 +

∂F

∂t
. (3.19b)

Returning to Π(Vn+1), eqs. (3.19a) express – up to elementary transpositions–
the most general transformation between canonical coordinates, while eq.
(3.19b), together with eq. (3.15), provides the transformation law for the
Hamiltonian

H = σh − ζ̄0 = σh − ζ0 +
∂F

∂t
= H +

∂F

∂t
. (3.20)

3.3. Hamilton–Jacobi theory As a concluding remark, we discuss
the interplay between Hamiltonian bundles and Hamilton–Jacobi theory. The
argument is entirely classical: in what follows, we shall illustrate how it fits
within the geometrical scheme developed so far. To this end, given any section
h : Π(Vn+1) → H(Vn+1), we consider once again the associated trivialization
σh : H(Vn+1) → <, expressed locally as σh = p0 + H. A straightforward
argument then shows that the closed 2-form

Ω̂ := Ω− dσh ∧ dt = dpi ∧ dqi − dH ∧ dt (3.21)

has class 2n 1. By Darboux’ theorem we may therefore express Ω̂ in terms of
2n independent “first integrals” ξi, ζ i, i = 1, . . . , n in the canonical form

Ω̂ = dζ i ∧ dξi.

1The characteristic distribution

D :=
n

X : X ∈ T (H(Vn+1)) , X Ω̂ = 0
o

is in fact locally generated by the pair of vector fields ∂
∂p0

, ∂
∂t

+ ∂H
∂pi

∂
∂qi − ∂H

∂qi
∂

∂pi
.
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A comparison with eq. (3.21) provides the representation

Ω = dσh ∧ dt + dζ i ∧ dξi, (3.22)

indicating that the 2n+2 variables t, ξi, σh, ζ i form a special symplectic coor-
dinate system on H(Vn+1), or, equivalently, that the 2n + 1 variables t, ξi, ζ i

form a canonical coordinate system on Π(Vn+1).
Given any local chart in Vn+1 , we now make use of the fact that, up to

elementary transpositions (3.16), it is always possible to arrange that (the pull-
back of) the coordinate functions t, q1, . . . , qn, completed with σh, ζ1, . . . , ζn,
form a local coordinate system in H(Vn+1). The transformation between the
coordinates t, qi, p0, pi and t, ξi, σh, ζ i is then expressed in terms of a generating
function S(t, qi, ζ i) in the implicit form (see eqs. (3.19))

pi =
∂S

∂qi
, ξi =

∂S

∂ζ i
, p0 = σh +

∂S

∂t
. (3.23)

A comparison with the representation σh = p0 + H shows that S satisfies the
partial differential equation

0 =
∂S

∂t
+ H

(
t, q1, . . . , qn,

∂S

∂q1
, . . . ,

∂S

∂qn

)
, (3.24)

known as the Hamilton-Jacobi equation. More precisely, due to the regularity
requirement det |∂2S/∂qi∂ζj | 6= 0 – embodied into the notion of generating
function– the function S is easily recognized to provide a complete integral
for eq. (3.24). Conversely, given any complete integral S(t, qi, ζ i) of eq. (3.24),
expressed in terms of the variables t, qi and of n “essential” parameters ζ i,
eqs. (3.23) define implicitly 2n + 1 functions ζ i(t, q, p), σh(t, q, p), ξi(t, q, p)
satisfying the relation

Ω = d

(
σh +

∂S

∂t

)
∧ dt + d

(
∂S

∂qi

)
∧ dqi

= dσh ∧ dt + d

(
dS − ∂S

∂ζ i
dζ i

)
= dσh ∧ dt + dζ i ∧ dξi

with
σh(t, qi, pi) = p0 − ∂S

∂t
= p0 + H(t, qi, pi)

thus yielding back the representation (3.22).
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From a dynamical viewpoint, the relevance of the previous construction
stems from the fact that eq. (3.22) implies the Poisson-bracket relations

{ξi, σh} = {ζ i, σh} = 0.

From these, recalling the representation (3.10) of the evolution equations, we
conclude that the 2n functions ξi(t, q, p), ζ i(t, q, p) are constant along the
integral curves of the Hamiltonian flow Z determined by the section h. In
this respect, the first pair of eqs. (3.23), solved for pi, q

i as functions of t, ξi, ζ i

provide the general integral of the Hamilton equations.
Still another way of looking at the Hamilton-Jacobi equation is obtai-

ned by focusing on the image space h(Π(Vn+1)), viewed as a submanifold of
H(Vn+1). Of course, no matter how we choose to represent it, the knowledge
of h(Π(Vn+1)) is mathematically equivalent to the assignment of the section
h, and therefore carries a complete information on the dynamical equations.
In this respect, the content of eqs. (3.23), (3.24) may be summarized into the
following

Proposition 3.1. Finding a complete integral of the Hamilton-Jacobi
equation is mathematically equivalent to determining a (local) parametric
representation of the submanifold h(Π(Vn+1)) ⊂ H(Vn+1) of the special form

pi =
∂S

∂qi
(t, q1, . . . , qn, ζ1, . . . , ζn), p0 =

∂S

∂t
(t, q1, . . . , qn, ζ1, . . . , ζn) (3.25)

Proof. The proof is entirely straightforward. By consistency with the “car-
tesian” representation σh = p0+H(t, qi, pi) = 0, the validity of eqs. (3.25) is in
fact equivalent to the simultaneous validity of the Hamilton-Jacobi equation
(3.24) and of the regularity condition det |∂2S/∂qi∂ζj | 6= 0, expressing the
functional independence of the variables t, qi, pi on h(Π(Vn+1)).
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