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1. INTRODUCTION

The least mean-squared error linear estimation problem of signals in
systems with uncertain observations has been widely studied, since many
practical situations (for example, in Communication Theory) are modelled
by this kind of systems. The systems with uncertain observations are
characterized by the fact that the observation equation contains, besides
additive noise, a multiplicative noise component, defined by a sequence of
Bernoulli random variables, which determines the presence of the signal in
the observations.

Under the hypothesis that the state-space model is known, Nahi [6] and,
subsequently, Monzingo [5] obtained the solution of this problem assuming
independence of the variables that characterize the uncertainty and, also, that
the additive noises of the signal and the observation are uncorrelated. Later
on, these results were generalized by Hermoso and Linares ([1], [2]) to the case
in which the additive noises are correlated.

In the papers mentioned above, the algorithms are obtained by starting
from the general expression of the estimators as a linear function of the
observations. In contrast, the technique based on innovations, consisting of
converting the observation process into the innovation process, and expressing
the estimators as a linear function of the innovations, allows to make a simpler
derivation of the estimation algorithms. This technique is justified by two
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main ideas: on the one hand, the set of observations and the set of innovations
can be determined one from the other by a causal and causally invertible
operation and, on the other hand, the Wiener-Hopf equation is easier to solve
since the innovation process is white, that is, their variables are independent.

The innovation approach has been used by several authors. For example,
Kailath ([3], [4]) obtains the Kalman-Bucy filtering and smoothing algorithms
in both continuous and discrete-time systems by using this approach. Later
on, Nakamori ([7], [8], [9]) deals with the estimation problem in continuous-
time systems without requiring the whole knowledge of the state-space model,
but only the covariance information.

In this paper the least mean-squared error linear filtering and fixed-
point smoothing problems in systems with uncertain observations are treated,
assuming that the state-space model is not available. It is supposed that
the variables describing the uncertainty are independent and the covariance
matrix of the signal is known and presents a factorization in a semidegenerate
kernel form. By applying an innovation approach, recursive algorithms for
the filtering and fixed-point smoothing estimates are obtained; also, formulas
for the error covariance matrices of the proposed estimators are presented.

2. PROBLEM FORMULATION

Let z(k) and y(k) be n x 1 vectors which describe the signal we wish to
estimate and the observation of this signal at time k, respectively. Let us
suppose, on the one hand, that the observation is perturbed by an additive
noise v(k) and, on the other hand, that in each instant of time the observation
may not contain the signal (in such a case, it will consist only of noise). So,
the observation equation is described by

(1) y(k) = u(k)z(k) + v(k)

where u(k) is a Bernoulli random variable.

In order to analyze the estimation problem of the signal z(k), we assume
the following hypotheses on the signal and the noise processes involved in
equation (1):

(I) The signal process {z(k); k > 0} has zero mean and its autocovariance
function is expressed in a semidegenerate kernel form, that is,
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where A and B are n x M’ matrix functions.

(IT) The noise process {v(k); k > 0} is a zero-mean white sequence with
autocovariance function E[v(k)vT(s)] = R(k)dx(k — s), being d the
Kronecker delta function and R a known n x n matrix function.

(III) The multiplicative noise {u(k); k& > 0} is a sequence of independent
Bernoulli random variables with P [u(k) = 1] = p(k).

(IV) The processes {z(k); k > 0}, {u(k); k > 0} and {v(k); k > 0} are
mutually independent.

Our aim is to obtain the least mean-squared error linear estimator, z(k, L),
of the signal z(k) based on the observations {y(1),...,y(L)}.

At each instant of time k, the innovation is defined by v(k) = y(k) —
y(k,k — 1), being y(k,k — 1) the least mean-squared error linear estimator
of the observation y(k) based on {y(1),...,y(k —1)} and y(1,0) = 0. It can
be observed that v(k) represents the new information to estimate the signal
which is provided by the observation y(k).

Since the set of innovations {v(k); k < L} and the set of observations
{y(k); k < L} can be determined one from the other by a causal and causally
invertible linear transformation (Kailath [3]), we can replace one set by the
other with no loss of information.

Consequently, z(k,L) is the least mean-squared error linear estimator
of the signal z(k) given the innovations {v(1),...,v(L)}. Thus, this linear
estimator can be expressed as

L

2(k, L) = gk, i, L)v(i)

i=1

being g(k,i,L), i =1,..., L, the impulse response function which verifies the
Wiener-Hopf equation

L
Elz(k)vT(s)] = Zg(k,i,L)E[y(i)z/T(s)], s < L.

=1

Taking now into account that the innovation {v(k); k > 1} is a white process,
and denoting I1(s) = E[v(s)vT(s)], the above equation can be rewritten as

g(k,s, L) = E[z(k)yT(s)]H_l(s).
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As it can be observed the impulse response function g(k, i, L) does not depend
on L. So, the linear estimator can be write as

L
(3) 2(k, L) =Y _g(k,i)v(i).
=1

(4) g(k, i) = Blz(k)v" ()17 (i)

In order to determine z(k, L), first of all, in Section 3, we will obtain
the innovation process and its covariance matrix. Afterwards, in Section 4,
we will derive a recursive algorithm for the filter Z(k, k) and the fixed-point
smoother z(k, L), L > k. Finally, in Section 5, we will study the covariance
matrices of the filtering and fixed-point smoothing errors establishing recursive
expressions to calculate them.

3. INNOVATION PROCESS

As we have indicated in the above section, the innovation v(k), defined
by v(k) = y(k) — y(k, k — 1), represents the new information contained in the
observation y(k) that cannot be obtained from the previous observations. In
the following theorem we establish the expression to calculate the innovation
from a recursive formula.

THEOREM 1. Let us consider the observation equation described in (1),
satisfying (I)-(IV).

(i) The innovation process is a zero-mean white sequence which verifies

(5) v(k) = y(k) —p(k)A(K)O(k —1), k=>1

where the vector O(k) can be calculated from the recursive relation
(6) O(k) = O(k — 1) + A()II Y (k)v(k), O0)=0

being

(7) A(k) = p(k) [BT (k) — r(k — 1) AT (k)]

where the matrix function r verifies

(8) r(k) =r(k—1)+ AKRI Y E)AT(K), 7(0)=0.
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(ii) The covariance matrix of the innovation, I1(k), is given by
(9)  T(k) = R(k) + p(k)A(k) [B" (k) — p(k)r(k — 1) AT (k)] .

Remark. Let us note that the non-singularity of TI(k) is not guaranteed
in general. If II(k) were singular, the Moore-Penrose pseudo-inverse could be
used.

Proof. (i) Innovation process.
By using the hypotheses (I)-(IV) and the Orthogonal Projection Lemma
(O.P.L.) (Kailath, [3]), it is immediately obtained that

(10) :T/\(ka k — 1) = p(k)/z\(kv k— 1)a k>1
being Z(k, k — 1) the linear one-stage predictor of the signal. Consequently,
(1) v(k) = y(k) — p(R)3(e K — 1), B> 1.

From (3) and (4), z(k, k — 1) is given by

k—1

(12) 2k k—1) = S(k, ) (i)w(i), 2(1,0)=0
=1

where

(13) S(k,i) = Elz(k)vT (1))

So, we only need to calculate S(k,q) for i <k — 1.
By using expression (11) for the innovation v(i), S(k,7) can be expressed

S(k,i) = Elz(k)y" (i)] — p(i) Blz(k)z" (i,i — 1)].

From the hypotheses on the model, the first expectation on the right-hand
side term is

E[z(k)y" (i)] = p(i)A(k)BT (i), i <k—1

and, taking into account expressions (12) and (13), the second expectation is
given by

i—1
Elz(k)zT (i,i—1)] = ZS(k:,j)H’l(j)ST(i,j), i<k-—1.
j=1
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Consequently, we have that

i—1

S(k,i) = p(i) | AR)BT () = S Sk, )T (G)ST(1,5) |, i< k- 1.
j=1

Then, by introducing a function, A, satisfying
i—1

(14) A(i) = pli) | BT (1) = Y_AGIT ()8 (i.4)
j=1

the expression of S(k,7) can be transformed into

(15) S(k,i) = A(K)A(D), i<Fk—1.
By defining
k
(16) O(k) =Y AGIT(i)v(i)
i=1

we conclude, from (12) and (15), that the one-stage predictor of the signal
can be expressed as

(17) 2k k —1) = A(K)O(k — 1)

and expression (5) for the innovation is immediately obtained from (11).
The recursive relation (6) for the vectors O(k) is easily deduced from (16).
Next, we will derive expression (7) for A(k). By substituting ¢ for & in

(14) and taking into account (15), it is clear that

k-1
A(k) = p(k) [ BT (k) = Y A@GI (AT () AT (k)
i=1
and, if we define r(k) as
k
(18) r(k) = E[O(R)OT (k)] = AT ()AT (i)
i=1

expression (7) is immediately obtained.
Finally, from (18), the relation (8) for the matrices r(k) is clear.
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(ii) Imnovation covariance matriz.
From the O.P.L., it is easily obtained that the innovation covariance matrix
is given by
(k) = E [y(k)y" (k)] = B [k, k = D)g" (k. k = 1)].

From the hypotheses on the model, the first expectation on the right-hand
side term is

E [y(k)y" (k)] = R(k) + p(k) A(k) B (k)
and, by using expression (10), the second expectation is
E gk, k — 1)y  (k,k —1)] = p*(k)E [2(k,k — 1)2T (b, k — 1)] .
Hence, we conclude that
(19)  TI(k) = R(k) + p(k)A(k)BT (k) — p*(k)E [2(k, k — 1)2" (k,k — 1)] .
Finally, from (19), using (17) and (18), expression (9) is easily deduced. I

4. RECURSIVE ALGORITHM FOR THE FILTER AND FIXED-POINT SMOOTHER

The solution to the fixed-point smoothing problem together with the
recursive formulas to obtain the filtering estimate of the signal (which provides
the initial condition of the recursive equation for the fixed-point smoothing
estimate) are established in the following theorem.

THEOREM 2. If we consider the observation equation (1), under the
hypotheses (I)-(IV), the fixed-point smoothing estimates of the signal z(k)
are given by

(20) Z(k,L) =2k, L —1)+g(k,L)v(L), L>k
where the smoothing gain, g(k, L), is expressed as
(21) g(k, L) = p(L) [B(k) — E(k, L — 1)] AT(L)IT" (L)

and the matrices E(k, L) are recursively calculated from

E(k,L)=E(k,L — 1)+ g(k,L)AT(L), L>k
E(k, k) = A(k)r(k).

The algorithm is completed with the relations for v(L), II(L) and A(L) given
in Theorem 1.

The filter, Z(k, k), which provides the initial condition for (20), is given by
2(k, k) = A(k)O(k), where O(k) has been obtained in Theorem 1.

(22)



126 R. CABALLERO, A. HERMOSO, J. JIMENEZ, J. LINARES

Proof. Expression (20) for the fixed-point smoothing estimates is
immediately obtained from (3).
Since, from (4) and (13), the smoothing gain, g(k, L), is expressed as

(23) g(k, L) = S(k, L)IT"H(L)
we must calculate a recursive relation for S(k, L). So, by using (10) and (12)

for k = L, and taking into account that E[z(k)y” (L)] = p(L)B(k)AT (L), for
L > k, we have that

S(k, L) = p(L)

L—-1
B(k)AT(L) = > S(k,)IT " (i)S™ (L, i)] .
=1

Moreover, from (15), for ¢ < L — 1, we have that S(L,i) = A(L)A(7) and,
consequently,

L—1
S(k,L) = p(L) | B(k) — 3_S(k, )T (i) AT (i) | AT(L).
=1

Then, if we denote
(24) E(k,L) =Y S(k,)II' (1) AT (i)

it is clear that
S(k, L) = p(L) [B(k) — E(k,L —1)] AT(L)

and substituting this expression in (23), expression (21) for the smoothing
gain is obtained.

To complete the fixed-point smoothing algorithm, it is necessary to find
a recursive relation for the matrices E(k, L). This relation, given in (22), is
immediately derived from (23) and (24). Again from (24) and taking into
account that, for i < k, S(k,i) = A(k)A(7), its initial condition is obtained,
by using (18).

Let us now deduce the relation for the filter. By using (3), the filtering
estimate is given by

2(k, k) = 2(k, k — 1) + g(k, k)v(k).
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From (4) for i = k, we obtain g(k, k) = E [2(k)vT (k)] II"(k). Moreover, by
using (11) and the O.P.L., it is clear that

E [2(k)v" (k)] = E [2(k)y" (k)] — p(k)E [2(k, k — 1)2" (k, k — 1)] .

Finally, taking into account the hypotheses on the model, E [z(k)y” (k)] =
p(k)A(k)BT (k) and, from (17) and (18), E [Z(k,k—1)zT(k,k—1)]
= A(k)r(k — 1)AT(k). Thus, by using (7), the filter gain is given by
g(k, k) = A(k)A(K)IT~ (k) and, as a consequence of (6) and (17), equation for
the filter is deduced. |}

5. ERROR COVARIANCE MATRICES

The performance of the filtering and fixed-point smoothing estimates can
be measured by the filtering and smoothing error z(k, L) = z(k) —z(k, L) and,
more specifically, by the covariance matrices of these errors,

P(k,L) = E [z(k,L)Z(k, L)"] .

In the following theorem we present a recursive formula to obtain P(k, L),
a measure of the estimation accuracy for the filter and fixed-point smoother
proposed in Theorem 2.

THEOREM 3. The smoothing and filtering error covariance matrices are
respectively obtained from

P(k,L) = P(k,L — 1) — g(k, L)II(L)g"(k,L), L >k

(25) P(k,k) = A(k) [BT (k) — r(k)AT (k)]

where r(k) and II(L) have been recursively calculated in Theorem 1 and
g(k, L), in Theorem 2.

Proof. From the O.P.L. and expression (2), the matrices P(k, L) can be
written as

(26) P(k,L) = A(k)BY (k) — F(k, L)

where F(k, L) = E [2(k, L)z (k, L)] denotes the estimator covariance matrix.
Then, we must calculate the matrices F'(k, L) associated with the smoothing
estimate and the filter.
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On the one hand, by using (20) and taking into account that v(L) and
Z(k, L — 1) are uncorrelated, we obtain

(27) F(k,L) = F(k,L — 1)+ g(k, )I(L)g" (k,L), L >k

and, from (27) and (26), expression (25) for the smoothing error covariance
matrices is deduced.
On the other hand, since the filter is given by z(k, k) = A(k)O(k), we have
that
F(k, k) = A(k)r(k)AT (k)

and, substituting this expression in (26) for L = k, the filtering error
covariance matrix established in (25) is easily obtained. 1
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