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1. Introduction

One-dimensional cross-section measures are one-dimensional section and
projection measures of convex bodies in Ed, d ≥ 2. More precisely, this notion
is used to describe, in a unified way, the width function and the maximal
chord-length function of a convex body K ⊂ Ed (see the monograph [1, §30
and §33], where also the notions of outer one-quermass and inner one-quermass
are used). References regarding these cross-section measures are collected in
[6] and [3, Chapter 3]. Both these concepts are closely related to further
important tools and notions from convexity, such as Minkowski addition, dif-
ference bodies, central symmetrals, affine diameters, antipodality, circum- and
inradius, cf. the references above as well as [4, §19.3], [8, Chapters 3 and 7]
and the survey [7]. In particular, the minima and maxima of the width func-
tion and the maximal chord-length function coincide and are usually called
thickness (minimal width) and diameter, respectively. Also, these notions are
closely related to bodies of constant width and reduced bodies, see [2] and [5].

We will consider the analogues of both these functions for convex bodies in
Minkowski space, and therefore provide some analytical and geometrical des-
criptions of their corresponding extensions (a basic reference to the geometry
of Minkowski spaces is [9]). Collecting various approaches to these functions
from the literature, we give a unified way to represent them in different terms,
and prove some theorems about Minkowskian diameter, thickness, in- and
circumradius. Since we also discuss the cases when the convex bodies under
consideration have only finitely many extreme points (i.e., are polytopes), our
results are partially discrete in nature.
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2. Basic notations and background material

As usual, Ed denotes the d-dimensional Euclidean space with origin o,
while 〈 . , . 〉 and | . | denote the scalar product and the norm in Ed, respectively.
The unit ball

{
x ∈ Ed : |x| ≤ 1

}
in Ed is denoted by BE . We shall always use

the letter K for an arbitrary convex body in Ed, i.e., a compact, convex set
with nonempty interior. The notations extK and expK denote the set of all
extreme and exposed points of a convex body K, respectively. Furthermore
we write bdK for the boundary of K. If X is a set from Ed, then clX is its
closure. Given points x, y in Ed, [x, y] denotes the line segment with endpoints
x and y. For this and further notions from convexity we refer to [1], [8] and
[10].

A real finite-dimensional Banach space of dimension d ≥ 2 is said to be
a d-dimensional Minkowski space. It is well-known that each convex body
B ⊂ Ed centered at the origin defines the Minkowski space Md(B) with the
norm ‖ . ‖B, in which the unit ball

{
x ∈ Ed : ‖x‖B ≤ 1

}
coincides with B.

Trivially, the converse is also true, i.e., every Minkowski space is isometric to
Md(B) with appropriately chosen d and B. A basic reference for the geometry
in Minkowski spaces is [9].

For a convex body K containing the origin in its interior, the body

K∗ :=
{

y ∈ Ed : 〈y, x〉 ≤ 1 for every x ∈ K
}

is called the (dual or) polar body of K. Notice that the space Md(B∗) is dual
to Md(B), as it is usually written also in functional analysis.

The difference body DK of K is introduced by DK := {x− y : x, y ∈ K} .
The body DK is convex since it is the Minkowski sum of the convex bodies
K and −K := {−x : x ∈ K} .

For a convex body K and a variable u ranging over Ed \{o} we introduce
the following well-known functions:

hK(u) := max {〈x, u〉 : x ∈ K} (support function),
wK(u) := hK(u) + hK(−u) (width function),
rK(u) := max {α : αu ∈ K} (u ∈ Ed \{o}) (radius function),

lK(u) := max {α : α > 0, αu ∈ DK} (maximal chord-length function).

The functions hK(u) and wK(u) are homogeneous of order one, while rK(u)
and lK(u) are homogeneous of order −1. Furthermore, it turns out that these
functions are continuous (see, for instance, [3, pp.16,18]). Hence, whenever
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we consider the supremum or the infimum over a compact set of algebraic
expressions constructed by the functions defined above, we can always replace
them by maximum and minimum, respectively.

The relations wK(u) = hDK(u) and lK(u) = rDK(u) follow directly from
the definitions.

We notice that for a convex body B symmetric with respect to the origin
we obtain hB(u) = ‖u‖B∗ just applying the definition of the support function
and the fact that ‖ . ‖B∗ is the norm of the space dual to Md(B).

In the sequel we need several trivial characterizations of inclusion. Namely,
if B1 and B2 are convex bodies in Ed centered at the origin, then the condition
B1 ⊂ B2 is equivalent to B∗

2 ⊂ B∗
1 . Furthermore, the latter two conditions are

equivalent to any of the two inequalities rB1(u) ≤ rB2(u) and hB1(u) ≤ hB2(u)
supposed to be fulfilled for an arbitrary direction u.

Further on, we introduce the notion of cross-section measures in Min-
kowski spaces, starting with the respective generalization of the width func-
tion. Following Chakerian and Groemer [2, p.52] we define the Minkow-
skian width wK,B(u) of a convex body K in Minkowski space Md(B) by
wK,B(u) := wK(u)/ hB(u). The corresponding generalization of the maximal
chord-length function goes analogously. Namely, we consider a Minkowski
space Md(B), a measured body K and a direction u. Then the length of
the longest (in Minkowskian sense) chord of K of direction u is said to be
the value of the Minkowskian maximal chord-length function at direction u
(notation: lK,B(u)). Taking into account the geometrical meanings of lK(u)
and rB(u) (for u lying on the Euclidean unit sphere) we can easily derive the
representation lK,B(u) = lK(u)/ rB(u).

A chord [x, y] of a convex body K is said to be an affine diameter of K
if there exist different parallel supporting hyperplanes of K, say H1 and H2,
such that x belongs to H1 and y to H2. It is well-known that the following
three conditions are equivalent: (i) the chord [x, y] of K is an affine diameter;
(ii) the point (x− y) lies in bdDK; (iii) ‖x− y‖B = lK,B(u).

3. Representations of diameter and thickness in
Minkowski spaces

A convex body K1 in Ed is said to be inscribed in a convex body K2 if
K1 is contained in K2 and any larger homothetical copy αK1 + p of K1, with
α > 1 and p ∈ Ed, is not contained in K2. Exactly in this case we shall also
say that K2 is circumscribed to K1. If K1 is symmetric with respect to some
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point, i.e., a ball αB, α > 0, of some Minkowski space Md(B), we say that
K1 = αB is an inball of K2 in this space, and the radius rB(K2) := α of K1

is called the inradius of K2. The notions circumball and circumradius rB(K2)
are introduced analogously.

The following lemma gives several equivalent definitions for inscribed bo-
dies in case when both K1 and K2 are centered at the same point.

Lemma 1. Let B1 and B2 be convex bodies symmetric with respect to
the origin and let B1 be contained in B2. Then the following conditions are
equivalent.

(i) The body B1 is inscribed in B2.

(ii) For every α > 1, αB1 is not contained in B2.

(iii) For some direction u0 ∈ Ed \{o} we have rB1(u0) = rB2(u0).

(iv) For some direction u0 ∈ Ed \{o} we have hB1(u0) = hB2(u0).

(v) The body B∗
2 is inscribed in B∗

1 .

(vi) There exists an x ∈ B1 with ‖x‖B2 = 1.

(vii) There exists an x ∈ cl expB1 with x ∈ bd B2.

Proof. The implication from (i) to (ii) is obvious. Let us prove the converse
implication by contradiction. We suppose that there exists a body βB1 + p
with β > 1 and some p ∈ Ed \{o} which is contained in B2. Then, by symmetry
of B1 and B2, also βB1− p is contained in B2. Therefore βB1 ⊂ conv{(βB1 +
p) ∪ (βB1 − p)} ⊂ B2, a contradiction. The equivalence of (ii) and (iii)-(vii)
is, in each case, more or less trivial.

We notice that Condition (ii) of Lemma 1 implies the uniqueness of both
the inball and the circumball which have the same center of symmetry as the
body.

As in Euclidean spaces, the diameter diamB(K) of a convex body K
in Minkowski space Md(B) is defined to be the largest distance occurring
between points of K, i.e.: diamB(K) := max {‖x− y‖B : x, y ∈ K} . We de-
note the maximum and the minimum of the function wK,B(u) by wB(K) and
wB(K), respectively, and call these values the maximal and the minimal width
of K in Md(B), respectively. For the maximum and the minimum of the func-
tion lK,B(u) we introduce the notations lB(K) and lB(K), respectively.

Theorems 2 and 3, presented below, provide various geometrical and ana-
lytical representations of Minkowskian diameter and thickness, respectively.
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Theorem 2. For a convex K body in a Minkowski space Md(B) the
Minkowskian diameter of K is equal to

(i) the maximal width of K in Md(B),

(ii) the maximum of the maximal chord-length function of K in Md(B),

(iii) the Minkowskian circumradius of DK,

(iv) the Minkowskian length of the longest affine diameter of K,

(v) the analytical expression max {〈x, u〉 : x ∈ DK, u ∈ B∗} .

Proof. In view of Lemma 1 we obtain that DK is inscribed in the bodies
wB(K) · B, lB(K) · B, and rB(DK) · B. Consequently wB(K) = lB(K) =
rB(DK). Further on, diamB(K) = max {‖x‖B : x ∈ DK} = rB(DK). It is
left to obtain (iv) and (v). Part (iv) is obvious. To prove (v) we derive
diamB(K) = max {‖x‖B : x ∈ DK} = max {hB∗(x) : x ∈ DK} and apply
simply the definition of the support function.

Theorem 3. For a convex body K in a Minkowski space Md(B) the
following values are equal:

(i) the minimal width of K in Md(B),

(ii) the minimum of the Minkowskian maximal chord-length function,

(iii) the Minkowskian inradius of DK,

(iv) the Minkowskian length of the shortest affine diameter of K,

(v) the analytical expression (max {〈x, u〉 : u ∈ (DK)∗, x ∈ B})−1 .

Proof. The equality of the values described in (i)-(ii) can be proved just
in the same way as we did it for the values in (i)-(ii) of Theorem 2. In order
to prove (iv) we use Lemma 1 which implies that the shortest affine diame-
ter has length γ := min {‖x‖B : x ∈ bd DK} . But then γB is inscribed in
DK, which yields that γ is equal to the inradius of DK. At last we prove
the equality of the inradius of DK and the value in (v). Since rB(DK) · B
is inscribed in DK, we get that B is inscribed in 1

rB(DK) ·DK. This implies
that max {‖x‖DK : x ∈ B} = 1

rB(DK) . Notice that in the latter equality we
use the norm of the Minkowski space constructed by the body itself, namely
‖ . ‖DK . Let us replace this norm by the corresponding support function, yiel-
ding 1

rB(DK) = max
{
h(DK)∗(x) : x ∈ B

}
. Taking the power −1 of the latter

equality and applying the definition of the support function, we derive that
rB(DK) is equal to the value in (v), and the proof is finished.
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In view of Theorem 3 we introduce the thickness ∆B(K) of a convex body
K in Md(B) to be any of the equal values described by Parts (i)-(v) of this
theorem.

Parts (i)-(iv) of Theorems 2 and 3, applied to the Euclidean space, present
well-known relations from the theory of Euclidean cross-section measures (see,
for instance, [10, Section 7.6]). However, in the literature on Minkowski spaces
these relations and their proofs have never been given in a unified way. It is
one of the aims of our paper to fill this gap. It should be noticed that the
representations of diameter and thickness given in Parts (v) of the theorems
above are new.

Whenever we consider a scalar product of a convex combination (1−λ)x1+
λx2, where x1, x2 ∈ Ed and λ ∈ [0, 1], and a point y from Ed, we can estimate
this from above as follows: 〈(1− λ)x1 + λx2, y〉 ≤ max{〈x1, y〉 , 〈x2, y〉}. Thus,
in the expressions given in Parts (v) of the last two theorems we can ignore
non-extreme points of the sets over which we take the maxima (not changing
these maxima). Leaving only the points belonging to the closure of exposed
points we obtain the representations

diamB(K) = max {〈x, u〉 : x ∈ cl exp DK, u ∈ cl expB∗} , (3.1)

∆B(K) =
(
max {〈x, u〉 : u ∈ cl exp(DK)∗, x ∈ cl expB}

)−1
. (3.2)

Suppose that both K and B are polytopes. Then the latter relations become
discrete and can be investigated in the spirit of computational geometry. In
both the formulae we have to compute the quantity max{〈x, u〉 : x ∈ X,
y ∈ Y } with X = cl expDK, Y = cl expB∗ for (3.1) and X = cl exp(DK∗),
Y = cl expB for (3.2). If X and Y can be given explicitly, we have to solve a
simple task, i.e., among 1

2 · cardX · cardY values we have to find the maximal
one (card stands for the cardinality of a set). If one of these sets, say X, is
given explicitly and the convex hull of the other one is defined by a system
of linear inequalities, we can also compute the corresponding cross-section
measure, but in this case the problem is much harder, since it is reduced to
1
2 · cardX linear programming tasks. It is important that all these tasks have
the same domain of definition and therefore can be solved altogether.

The following theorem shows in which directions we can expect the optimal
values for lengths of affine diameters or the width of a convex body.
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Theorem 4. For a convex body K in a Minkowski space Md(B) the
following statements hold true.

I. The width of K is maximal at one of the directions from cl expB∗, i.e,
we have

diamB(K) = max {wK,B(u) : u ∈ cl expB∗} .

II. There exists an affine diameter of K having maximal length and being
parallel to some u ∈ cl expDK, i.e.,

diamB(K) = max {lK,B(u) : u ∈ cl expDK} .

III. The width of a convex body is necessarily minimal at one of the direc-
tions from cl exp(DK)∗, i.e.,

∆B(K) = min {wK,B(u) : u ∈ cl exp(DK)∗} .

IV. There exists an affine diameter of K having the minimal length and
being parallel to some u ∈ cl expB, i.e., we have

∆B(K) = min {lK,B(u) : u ∈ cl expB} .

Proof. I. By Theorem 2, DK is inscribed in diamB(K) ·B. Consequently
B∗ is inscribed in diamB(K) · (DK)∗. Therefore, for some u ∈ cl expB∗

we have u ∈ diamB(K) · bd(DK)∗. Then rB∗(u) = diamB(K) · r(DK)∗(u).
Simple equivalent transformations of the latter equality yield diamB(K) =
wK(u)/hB(u) = wK,B(u).

II. Using again that DK is inscribed in diamB(K) · B, we find a point u
from cl expDK with u ∈ diamB(K) ·bd B. Consequently diamB(K) · rB(u) =
rDK(u), which is equivalent to diamB(K) = lK,B(u). Since u corresponds to
some affine diameter of K having the same direction as the vector u, the proof
is complete.

The remaining Parts III and IV can be proved analogously.

Parts II and III of Theorem 4 are direct extensions of the corresponding
Euclidean statements, while Parts I and IV are purely Minkowskian. More
precisely, Part I really “works” when B is not smooth, and Part IV when B
is not strictly convex. For instance, if B is a polygon with 2n vertices, we
have to compute the width function for n different directions in order to find
the Minkowskian diameter (see Figs. 1 and 2, where n = 2), and we have to
evaluate the lengths of n affine diameters in order to find the Minkowskian
thickness (see Figs. 2 and 3).
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