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1. The Mazur intersection property and its relatives

It was Mazur [39] who first drew attention to the euclidean space property:
every bounded closed convex set can be represented as an intersection of closed
balls. He began the investigation to determine those normed linear spaces
which posses this property, named after him the Mazur intersection property
or MIP. He proved Theorem 1.1, whose proof is so nice and clear that it
deserves to be the starting point for this survey. The following easy (and
useful) fact will be used extensively throughout the rest of the paper: a closed,
convex and bounded set C is an intersection of balls if and only if for every
x /∈ C, there is a closed ball containing the set but missing the point. Hence,
the MIP can be regarded as a separation property by balls which is stronger
than the classical separation property by hyperplanes. We denote by B and
S the unit ball and unit sphere of a Banach space. Analogously, B∗ and S∗

will stand for the corresponding unit ball and unit sphere in the dual space.

Theorem 1.1. If a norm ‖·‖ in a Banach space X is Fréchet differentiable,
then (X, ‖ · ‖) satisfies the Mazur intersection property.
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Proof. Consider a closed convex and bounded set C and assume that 0 /∈
C. We will find x ∈ X and r > 0 such that C ⊂ x+rB but 0 /∈ (x+rB). Since
0 /∈ C, there is a norm one functional f ∈ S∗ such that inf f(C) > 0. Using
Bishop-Phelps theorem, we can find a norm-attaining functional g ∈ S∗ close
enough to f so that inf g(C) > 0. If we pick x ∈ S satisfying g(x) = 1 then
g = ‖·‖′(x). The idea now is considering a ball big enough so that its boundary
play the role of a separating hyperplane. To this end, put ε = (inf g(C))/2
and, for n ≥ 2, consider the ball Bn = nεx + (n − 1)εB. Clearly, for every
n ≥ 2 we have 0 /∈ Bn. We will show that C ⊂ Bn for some n. If this is not the
case, for each n ≥ 2 we can choose xn ∈ C \Bn. Then ‖xn − nεx‖ > (n− 1)ε
and hence

(1) ‖x− (1/nε)xn‖ > 1− 1/n

Using that ‖ · ‖ is Fréchet differentiable at x and g = ‖ · ‖′(x) we can write,
for every h ∈ X,

(2) ‖x + h‖ − ‖x‖ − g(h) = r(h), where lim
h→0

r(h)/||h|| = 0.

Replacing now in the above equation h by −(1/nε)xn, using (1) and the
equality ε = inf g(C)/2, we obtain

r(−(1/nε)xn) = ‖x− (1/nε)xn‖ − 1 + g((1/nε)xn) > 1/n .

Hence, for n ≥ 2,

(3)
r(−(1/nε)xn)
‖ − (1/nε)xn‖ ≥

(1/n)
‖(1/n)ε−1xn‖ ≥

ε

supn{‖xn‖} .

which contradicts (2) since {xn} ⊂ C, C is bounded and limn ‖(1/nε)xn‖ = 0.

Norm one functionals f ∈ X∗ satisfying that for every ε > 0 there exists
a weak* slice S = {x∗ ∈ B∗ : x∗(x) ≥ 1 − δ} (where x ∈ S and δ > 0)
such that diam (f ∪ S) < ε were introduced in [7] under the name of semi-
denting points. When, in addition, we ask that f ∈ S, then we recover
the classical definition of weak* denting point. Semidenting points play an
important role in questions related to the MIP because of the following key
result, due to Chen and Lin, whose proof can be found in [7]. It is the key
to the subsequent characterization of MIP, probably the most useful between
the several characterizations known of this property [18].
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Proposition 1.2. A functional f ∈ S∗ is a semi-denting point of B∗ if
and only if for every closed convex and bounded set C and every x ∈ X, if f
separates C and x then there is a ball D in X with C ⊂ D and x /∈ D.

Proposition 1.3. Given a Banach space, the following conditions are
equivalent:

(i) The space has the Mazur intersection property.

(ii) There is a dense set of semi-denting points in S∗.
(iii) There is a dense set of weak* denting points in S∗.

Proof. To prove the equivalence between (ii) and (iii), note that weak*
denting points are semi-denting points so we only need to prove (ii) =⇒ (iii).
To this end, define Fn as the set of those norm one functionals lying in the
(relative to S∗) interior of some S∗∩S where S is a weak* slice of diameter less
than 1/n. Then Fn is open and, using (ii), dense in S∗. Therefore F = ∩nFn

is also dense in S∗ (actually, F is a Gδ dense set). Note, finally, that F is the
set of weak* denting points of S∗.

To prove that (i) implies (ii), we will use Proposition 1.2 to see that every
norm one functional is a semidenting point. Indeed, consider f ∈ S∗, C
a closed, convex and bounded set and, finally, x ∈ X \ C. Assume, for
instance, that f(x) > 0 and sup f(C) < 0 (otherwise we can consider a suitable
translation C − y and x − y). There is λ > 0 satisfying C ⊂ λMf where
Mf = {z ∈ B : f(z) ≤ 0}. Now, since X has the MIP, Mf is an intersection
of balls, thus implying the existence of a ball D containing Mf but missing x.
The same ball D separates C from x.

The arguments to prove that (ii) implies (i) are quite similar. Let C be
convex, bounded and closed and let x /∈ C. By using (ii), we can find a semi-
denting point f ∈ S∗ separating C from x, say for instance that sup f(C) <
f(x). We may assume that sup f(C) < 0 and f(x) > 0. Clearly, for enough
big n ∈ N, C ⊂ nB and x ∈ nB. Using that f is semi-denting, it is not
difficult to prove that Mf is an intersection of balls, and so it is nMf . As a
consequence, there is a ball containing Mf (hence C) that miss the point x,
thus implying that C is also an intersection of balls.

Clearly, the set of semi-denting points is closed. Indeed, if f ∈ S∗ is
not semi-denting, there is ε > 0 such that the set B(f, ε) = {x∗ ∈ S∗ :
‖x∗ − f‖∗ < ε} does not contain the intersection of S∗ with a weak* slice
and thus no point g of B(f, ε) is semi-denting, either. As a consequence,
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condition (ii) of Proposition 1.3 easily implies that every norm-one functional
is a semi-denting point. A weak* denting point is an extreme point. In a finite
dimensional space, and extreme point is always a weak* denting point, so the
classical Phelps’ result is inmediate from the above proposition.

Corollary 1.4. [47] A finite dimensional normed linear space X has the
MIP if and only if the set of extreme points of B∗ is dense in S∗.

Since the weak* denting points of B∗∗ must be points of X, we get easily
the following consequence of Proposition 1.3. Besides, having in mind Pro-
position 1.1, note also that next corollary generalizes the well known result
that X is reflexive if the norm of X∗ is Fréchet differentiable.

Corollary 1.5. A Banach space whose dual X∗ satisfies the MIP is re-
flexive.

There exist some other characterizations of spaces with MIP, in terms of
the duality mapping, support mappings and points of ε-differentiability (see
[18]), though probably the most useful is the one given in Proposition 1.3.

Among the several intersection properties that appeared as variations on
the MIP, probably the most important is the weak* Mazur intersection prop-
erty or MIP* introduced in [18]: a dual space satisfies the MIP* if every
weak* compact convex set is an intersection of closed dual balls. In [18] it is
shown that every result for MIP has an analogous formulation for MIP*. In
particular, it is connected with convexity properties of the predual space:

Proposition 1.6. [18] A dual space X∗ has the MIP* if and only if the
set of denting points of the predual unit ball is dense in its unit sphere.

The nice piece of work contained in [18] was the culmination of previous
results obtained, among others, by Phelps [47] and Sullivan [56]. Since these
pioneering works, the investigation on different intersection properties has
been slow but steady. Whitfield and Zizler studied in [60] the property that
every compact convex set is an intersection of closed balls. Further research
on this property was carried out later by Sersouri in [52] and [53] and later
by J. Vanderwerff [59]. The corresponding intersection property for weakly
compact and convex sets was investigated by Zizler in [65] and J. Vanderwerff
in [59]. Finally, an uniform version of the MIP was considered in [61] by
Whitfield and Zizler. A unified approach to different intersection properties
is presented by Chen and Lin in [6]. Other authors have also contributed to
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the study of MIP and MIP* as Acosta and Galan in [1], P. Bandyopadhyaya
and A. Roy in [3] and finally, P. Georgiev and P. S. Kenderov, whose results
will be mentioned in the next sections.

2. Renorming Banach spaces with MIP or MIP*

Both MIP and MIP* are metric properties and hence invariant under iso-
metries but not under isomorphisms. The question of whether a Banach space
can be renormed with MIP or a dual space with MIP* has not an easy answer.
Indeed, one might well ask how, when provided with a norm, one can construct
an equivalent norm such that every closed convex body is an intersection of
(new) closed balls. Zizler [65] realized that Troyansky renorming techniques
for LUR norms ([11], Lemma 7.1.1) can be applied to study intersection prop-
erties. This fruitful idea turned out to be specially successful when applied
first to MIP* [41] and later to MIP [31]. Recall that a biorthogonal system
{xi, x

∗
i }i∈I ⊂ X×X∗ is fundamental provided X = span ({xi}i∈I). Through-

out this section and also in Section 3, all Banach spaces are assumed to be
infinite dimensional.

Lemma 2.1. Let X be a Banach space with a fundamental biorthogonal
system {xi, x

∗
i }i∈I ⊂ X ×X∗. Then, the subspace Y = span ({xi}i∈I) admits

a LUR norm.

Theorem 2.2. Let X be a Banach space with a fundamental biorthogonal
system. Then X∗ admits an equivalent norm with the MIP*.

The above theorem applies to a fairly wide class of Banach spaces includ-
ing, for instance, the dual of `∞(Γ). This fact will be used later to prove that
almost every norm (in the sense of Baire) in this space is Fréchet differentiable
on a dense set. We only know few Banach spaces which admits no fundamental
biorthogonal system. This is the case, for instance, of Kunen, Shelah and the
space `c∞(Γ) (the subspace of all elements of `∞(Γ) with countable support,
cardΓ being strictly bigger than the cardinal of the continuum), spaces that
will appear later in this survey. Before stating the analogous versions of these
results for the MIP let us mention that, once we know that there is an equi-
valent norm with MIP (or MIP*, if it is dual) in a Banach space, then there
are many. In fact, Georgiev [16] proved that almost every norm (again in the
Baire sense, that will be precised latter) satisfies this property provided there
is one satisfying it.
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Proposition 2.3. [16] Given a Banach space X, the set of norms having
the MIP is either empty or residual. Analogously, the set of dual norms having
MIP* is either empty or residual (in the set of all dual norms).

This result has many applications. For instance, it can be used together
with the following proposition to show the density of norms which are Fréchet
differentiable in open dense sets in spaces with MIP or MIP*. There exist even
stronger results linking MIP, MIP* and differentiability that will be discussed
later, in the section devoted to almost Asplund spaces.

Proposition 2.4. [41] If X∗ has MIP*, then the predual norm can be
approximated by norms which are Fréchet differentiable on an open dense set.
Also, if X has MIP, then the dual norm can be approximated by (dual) norms
which are Fréchet differentiable on an open dense set.

It was for long time an open problem to determine whether spaces with the
MIP are Asplund spaces. Also, it was unknown if every Asplund space admits
a norm with the MIP or, in particular, a Fréchet differentiable norm. The
latter was shown in the negative by Haydon [28]. First and second problems
were also answered in the negative in [31] using, together with Proposition
1.3, the following results.

Theorem 2.5. Let (X∗, ‖·‖∗) be a dual Banach space with a biorthogonal
system {xi, fi}i∈I ⊂ X∗ ×X and X0 = span ({xi}i∈I). Then, X∗ admits an
equivalent dual norm | · |∗ which is locally uniformly rotund at the points of
X0. Then, if X0 is dense in X∗, the Banach space X with the predual norm
| · | has the Mazur Intersection property.

Outline of the proof. We may assume that ‖fi‖ = 1, for every i ∈ I and
let us consider ∆ = {0} ∪ N ∪ I. Define the map T from X∗ into `∞(∆) as
follows:

T (x)(δ) =




‖x‖∗ if δ = 0
2−nGn(x) if δ = n ∈ N
fi(x) if i ∈ I

for every x ∈ X∗ and δ ∈ ∆, where

FA(x) =
∑

i∈A

|fi(x)|

EA(x) = dist
(
x, span({xi}i∈A)

)
A ⊂ I, cardA < ∞



intersection of balls 61

Gn(x) = sup
card A≤n

{EA(x) + nFA(x)}.

Clearly T (X∗) ⊆ `∞(∆) and T (X0) ⊆ c0(∆). On the other hand, since
2−n(1 + n2) ≤ 2 for every n ∈ N , we have ‖x‖∗ ≤ ‖T (x)‖∞ ≤ 2‖x‖∗ .

For every δ ∈ ∆, consider the map Tδ(x) = T (x)(δ), x ∈ X∗. Obviously,
if δ ∈ I ∪ {0} the map Tδ is weak*-l.s.c. . Moreover, the maps FA and, the
maps EA are weak*-l.s.c., so Tδ is weak*-l.s.c. for every δ ∈ ∆.

Let p be the Day norm [11, p.69] in `∞(∆) , and consider in X∗ the map
n(x) = p(T (x)) , x ∈ X∗. It can be easily proved that n(·) is an equivalent
norm in X∗. The norm n(·) has the following expression:

n(x)2 = sup

{
n∑

i=1

|Tδi(x)|2
4i

: (δ1, δ2, . . . , δn) ⊂ ∆, δi 6= δj , n ∈ N
}

so n(·) is weak*-l.s.c. , that is, n is a dual norm | · |∗. The norm p defined in
`∞(∆) is locally uniformly rotund at the points of c0(∆). It can be checked
that the norm | · |∗ is locally uniformly rotund at the points of X0 [31]. Now,
it is straightforward to verify that the points of X0 ∩ S|·|∗ are weak* denting
points of B|·|∗ . Finally, if the subspace X0 is dense in X∗, by the Proposition
1.3, the space X endowed with the predual norm of | · |∗ has the Mazur
intersection property.

Corollary 2.6. Let X, Y be Banach spaces such that densX∗ ≤ dens
Y ∗. Suppose that Y ∗ has a fundamental biorthogonal system {yi, fi}i∈I ⊂
Y ∗ × Y . Then, the Banach space X ⊕ Y admits an equivalent norm with the
MIP.

Proof. Let us consider Z = X ⊕ Y with the norm ||(x, y)||Z = ||x||X +
||y||Y . By Theorem 2.5 we need only to show that Z∗ ≈ X∗ ⊕ Y ∗ has also a
fundamental biorthogonal system in Z∗×Z. An element x∗+y∗ of X∗⊕Y ∗ is
considered an element of Z∗ in the usual way: (x∗+y∗)(x+y) = x∗(x)+y∗(y)
for every x ∈ X, y ∈ Y . Relabel the fundamental biorthogonal system given
in Y ∗ as {yn

i , fn
i }i∈I, n∈N . We may assume that ‖yn

i ‖Y ≤ 1/n for every
i ∈ I, n ∈ N. Let us take a dense set {xi}i∈I of X∗. Then, the system

S = {xi + yn
i , fn

i }i∈I, n∈N ⊂ Z∗ × Z

is a fundamental biorthogonal system in Z∗ and we conclude the proof.
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As a corollary, we get that every Banach space X can be embedded into a
Banach space with the MIP: just consider X ⊕ `2(Γ) with cardΓ = densX∗.
Thus, for instance, the non-Asplund space `1 ⊕ `2(c) admits an equivalent
norm with the MIP. We also obtain as an application of the above corollary
the following result of Deville [8].

Corollary 2.7. [8] For every ordinal η, the long James space J(η), its
predual M(η) and every finite dual of J(η) admit an equivalent norm with
the Mazur intersection property.

Proof. First, we need to observe that `2(η) can be complementably em-
bedded into J(η). Indeed, consider the subset

A = {α ∈ [0, η] : α = 2n or α = γ + 2n , with γ ordinal limit and n ≥ 1 }

and the subspace H(η) = {f ∈ J(η) : f(α) = 0 if α /∈ A}. The subspace
H(η) is isomorphic to `2(A) and cardA = card η. On the other hand, the
projection f ∈ J(η) −→ p(f) ∈ H(η) defined as

p(f)(α) =
{

f(α)− f(α− 1) if α ∈ A
0 if α /∈ A

is continuous and, therefore, H(η) is complemented in J(η). Thus, we have
that J(η) ≈ `2(η)⊕ Y for a Banach space Y (which can be easily identified
with J(η) ) and J(η)∗ ≈ `2(η)⊕ Y ∗.

On the other hand, M(η), J(η) and every finite dual of J(η) are As-
plund spaces [12]. Consequently dens `2(η) = card η ≥ densY = dens Y ∗ =
densY ∗∗ and, applying Corollary 2.6, we obtain that J(η) and J(η)∗ admit
a norm with the Mazur intersection property. The assertion for M(η) and
the dual spaces of J(η)∗ follows from the fact that M(η) is isometric to J(η)∗

(cf. [12]).

Consider the James’tree space JT . It is shown in [37] that JT ∗∗ is iso-
morphic to JT ⊕ `2(R). Then, as a consequence of Corollary 2.6, we obtain
that JT ∗∗ and finite even duals of JT ∗∗ admit an equivalent norm with the
Mazur intersection property. On the other hand, notice that the space JT ∗

and finite odd duals of JT admit a Fréchet differentiable norm since their
duals are WCG. We finish this section with the following consequences, the
first one already mentioned.
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Corollary 2.8. (i) Every Banach space X can be almost isometrically
complementably embedded into a Banach space with the Mazur intersection
property.

(ii) Every Banach space X may be isometrically embedded into a Banach
space Z with the Mazur intersection property.

Proof. (i) Let us consider the Banach space Z = X⊕ `2(Γ) with cardΓ =
densX∗ . By Corollary 2.6, Z can be renormed with the MIP and a useful
result of Georgiev [16] ensures that the set of equivalent norms with the Mazur
intersection property in a Banach space is either empty or residual. In this case
the set is residual and implies the assertion. Notice that densZ = densX∗.
Clearly, this is sharp in the sense that, necessarily, if a Banach space Z has
the MIP, densZ = densZ∗. In addition, if X is a subspace of Z, densZ ≥
densX∗.

(ii) We denote by α = densX, β = α+(= min {γ ordinal number : card γ
> α }), and the Banach space

mα(β) = {x ∈ `∞(β) : supp x has cardinality at most α },

with the supremum norm ‖x‖ = supγ<β |xγ |. Obviously, X may be isomet-
rically embedded into (mα(β), ‖ · ‖) . On the other hand, by Corollary 2.8,
mα(β) embeds into a Banach space (Z, |· |) with the Mazur intersection prop-
erty and, by a result of Partington [46], (mα(β), ‖ · ‖) embeds isometrically
into (mα(β), | · |) . Therefore, X embeds isometrically into (Z, | · |) . Note
that, with this argument, we have densX∗ < densZ∗

We are concern now with the three-space problem for the MIP. The fol-
lowing result states that being isomorphic to a Banach space with the MIP
is a three space property [51]. An application of this result states that every
space of continuous functions over a tree can be renormed with the MIP [31].

Proposition 2.9. Let X be a Banach space and Y be a closed subspace
of X such that Y admits a norm with the Mazur Intersection Property and
X/Y admits a norm with the Mazur intersection property. Then X admits a
norm with the Mazur intersection property.

Sketch of the Proof. M. Raja [51] proved the following renorming the-
orem: Consider the set D of all weak*-denting points of the (dual) unit ball of
a dual Banach space X∗. Then, X∗ admits an equivalent dual norm which is
locally uniformly rotund at every point of D. Thus, we may assume that both
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Y ∗ and (X/Y )∗ admit equivalent dual norms with a (Gδ) dense set of LUR
points. The existence of an equivalent dual norm in X∗ with a (Gδ) dense
set of LUR points follows by imitating the proof of the three-space property
for locally uniform rotund renormings given in [21]: We consider, under the
standard identifications, (X/Y )∗ to be the annihilator subspace Y ⊥ with the
weak* topology in (X/Y )∗ being the same as the induced weak* topology
which Y ⊥ inherites as a subspace of X∗. Then, we may assume that there
is a norm on Y ⊥ which is σ(Y ⊥, X)-l.s.c. and has a Gδ dense set of locally
uniformly rotund points. The subspace Y ⊥ is weak* closed so this norm can
be extended to an equivalent dual norm ‖ · ‖∗ on X∗. Let | · |∗ be an equi-
valent dual norm on Y ∗ which is locally uniformly rotund at a Gδ dense set.
Consider the restriction map Q : X∗ → Y ∗, which is weak*-weak* continuous
and the Bartle-Graves continuous selection mapping B : Y ∗ → X∗, which is
bounded on bounded sets, B(y∗) = |y∗|∗B(y∗/|y∗|∗) and B(0) = 0. For
every y∗ ∈ S|·|∗ = {y∗ ∈ Y ∗ : |y∗|∗ = 1}, take y ∈ Y such that y∗(y) = 1 and
|y| ≤ 2. Define Py∗(x∗) = x∗(y)B(y∗), for x∗ ∈ X∗, which is weak*-weak*
continuous. The following family of weak* l.s.c. convex functions defined
on X∗

ϕy∗(x∗) = |Q(x∗) + y∗|∗,
ψy∗(x∗) = ||x∗ − Py∗(x∗)||∗, y∗ ∈ S||·||∗ ,

is uniformly bounded on bounded sets. Therefore, if we consider

φk(x∗) = sup{ϕy∗(x∗)2 + 1
kψy∗(x∗)2 : y∗ ∈ S|·|∗},

φ(x∗) = ‖x∗‖∗2 + |Q(x∗)|∗2 +
∑

k

2−kφk(x∗),

the Minkowski functional ||| · |||∗ of the set {x∗ ∈ X∗ : φ(x∗) + φ(−x∗) ≤ 4} is
an equivalent dual norm on X∗.

Consider the mapping (not necessarily linear) S : X∗ → Y ⊥, defined as
S(x∗) = x∗ − B(Q(x∗)) . It is proved in [21] that x∗ is a locally uniformly
rotund point for ||| · |||∗ provided Q(x∗) is locally uniformly rotund for | · |∗
and S(x∗) is locally uniformly rotund for ‖ · ‖∗ in Y ⊥. To conclude, observe
that the mappings S and Q are continuous and open. Then, the sets

L|·|∗ = {x∗ ∈ X∗ : | · |∗ is locally uniformly rotund at Q(x∗)},
L‖·‖∗ = {x∗ ∈ X∗ : S(x∗) is weak* denting of ‖ · ‖∗ in Y ⊥ }
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and therefore L = L|·|∗ ∩ L‖·‖∗ are Gδ dense sets of X∗. Hence, the space
(X, ||| · |||) has the Mazur intersection property.

Haydon gave in [28] an example of an Asplund space admitting no equi-
valent Gâteaux differentiable norm, namely the space C0(L) of all continu-
ous functions vanishing at the infinity over the following tree L : denote
by ω1 the smallest uncountable ordinal, α an ordinal number and consider
L =

⋃
α<ω1

ωα
1 which is called the full uncountable branching tree of height

ω1. Therefore, it is a natural question to ask whether the space C0(L) admits
an equivalent norm with the Mazur intersection property [11, Ch. VII]. The
answer is affirmative. Moreover, for every tree T , the space C0(T ) admits a
norm with the Mazur intersection property.

Lemma 2.10. Let K be a compact Hausdorff scattered space such that
cardK = card I, I being the set of isolated points of K. Then, the Banach
space C(K) admits an equivalent norm with the Mazur intersection property.

Proof. The space C(K) is an Asplund space, so its dual space is identifiable
with `1(K). For every ω ∈ K ′ = K \ I, we can consider disjoint subsets of
different points {tωn}∞n=1 ⊂ I and A = I \ {tωn : ω ∈ K ′, n ∈ N }. Denote
by δt ∈ `1(K) the evaluation at the point t ∈ K and by χt the characteristic
function at the point t. Clearly χt ∈ C(K) if and only if t is an isolated
point in K. Let us consider the biorthogonal system {yω

n , fω
n }n∈N, ω∈K′ ⊂

C(K)∗ × C(K) , where yω
n = (1/n)δtωn and fω

n = nχtωn . Then, the system

S = {δω + yω
n , fω

n }n∈N, ω∈K′ ∪ {δt, χt}t∈A ⊂ C(K)∗ × C(K)

is a fundamental biorthogonal system in C(K)∗. We apply now Corollary 2.6
to finish the proof.

Remark 2.11. The above tree L =
⋃

α<ω1
ωα

1 equipped with the order
topology is a locally compact scattered Hausdorff space such that the cardinal
of its isolated points is equal to card(L). Hence, its Alexandrov compactifica-
tion αL is a compact Hausdorff scattered space such that card(αL) = card(I),
I being the set of isolated points of αL. So, the Banach space C(αL) veri-
fies Lemma 2.10. As C0(L) is isomorphic to C(αL), C0(L) also verifies this
Lemma.

Every tree T equipped with the order topology is a locally compact scattered
Hausdorff space with card(T ) ≥ card(I), I being the set of isolated points of
T . When card(T ) > card(I) we cannot apply Lemma 2.10 but, in spite of this
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fact, next proposition shows that C0(T ) admits an equivalent norm with the
MIP.

Proposition 2.12. The Banach space C0(T ) admits a norm with the
Mazur intersection property whenever T is a tree space.

Proof. For any t ∈ T we denote by t+ the set of immediate successors of t
and consider the subset of T

H = {t ∈ T ′ : t+ = ∅},

where T ′ is the set of all accumulation points of T and the closed subspace of
C0(T )

Y = {f ∈ C0(T ) : f(t) = 0, if t ∈ H}.
The space T \H is locally compact, Hausdorff, scattered and verifies that the
cardinal of its isolated points is equal to card(T \H). Hence, the Alexandrov
compactification α(T \H) of T \H is scattered and verifies that card(α(T \
H)) = card(I), I being the set of isolated points of α(T \H). Observe that
Y ≈ C0(T \ H) is isomorphic to the space of all continuous functions on
α(T \H). Then, by Lemma 2.10, we obtain a norm on Y such that its dual
norm has a dense set of locally uniformly rotund points. On the other hand,
it can be easily verified using the fact that H is an antichain and the Tietze’s
extension theorem that C0(T )/Y is isomorphic to c0(H) , and then, C0(T )/Y
admits a norm such that its dual norm has a dense set of locally uniformly
rotund points. Now the assertion follows from Proposition 2.9.

3. MIP, MIP*, Asplund and almost Asplund spaces

The results obtained in the previous section provide a wide range of Banach
spaces with an equivalent MIP norm. This could induce to think that this
class of Banach spaces is larger than the class of Asplund spaces. This is not
the case. There are Asplund spaces which cannot be renormed with the MIP
([31] and [22]). An example to this assertion is the Kunen space [35], a C(K)
Banach space where K is a scattered compact set (and thus C(K) is Asplund)
constructed assuming the continuum hypothesis. The Kunen space is a non-
separable Asplund space satisfying that for every uncountable set {xi}i∈I in
the space, there exists i0 ∈ I such that

(4) xi0 ∈ conv
({xi}I\{i0}

)
.
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The first example of a non-separable Banach space satisfying (4) was con-
structed by Shelah assuming the diamond principle for ℵ1 [54].

Proposition 3.1. The Kunen and Shelah spaces do not admit an equi-
valent norm with the Mazur intersection property. Analogously, the duals of
the previous spaces do not admit a dual norm with the MIP*.

Proof. First, if a Banach space X with a norm | · | has the Mazur intersec-
tion property, then, by Proposition 1.3(iii), the dual norm | · |∗ has a dense set
of weak* denting points in its unit sphere. Consider 0 < δ < 1 and find a fam-
ily of weak* denting points (fα)α∈I ⊂ S|·|∗ with card I = densX∗ = densX
such that

(5) |fα − fβ| ≥ δ, for α 6= β.

Then, there is a family of slices S(B|·|∗ , yα, ρα), for α ∈ I, with |yα| =
1, fα(yα) > ρα > 0 , and

(6) S(B|·|∗ , yα, ρα) ∩ S(B|·|∗ , yβ, ρβ) = ∅, for α 6= β.

We denote xα = (1/ρα)yα for every α ∈ I. It follows from (6) that fα(xα) >
1 and |fα(xβ)| ≤ 1 for α, β ∈ I, β 6= α. Consequently,

(7) xα /∈ conv
({xβ}β∈I\{α}

)
.

Therefore, if X is a non-separable Banach space with the MIP, there is an
uncountable subset {xα}α∈I ⊂ X satisfying (7). This implies that that the
Kunen and Shelah spaces does not admit an equivalent norm with the MIP.

For the second assertion, consider the Banach space (X∗, | · |∗) with the
weak* Mazur intersection property. Then, by Proposition 1.6, the norm | · |
has a dense set of denting points in its unit sphere. Take 0 < δ < 1 and find
a family of denting points (xα)α∈I in X, |xα| = 1, with card I = dens X such
that

(8) |xα − xβ| ≥ δ, for α 6= β.

From the fact that the points (xα)α∈I are denting in B|·| and condition (8), we
get that, for every α, xα /∈ conv

({xβ}β∈I\{α}
)
. Thus, the duals of the Kunen

and Shelah spaces do not admit an equivalent dual norm with MIP*.
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The property exhibited in (4) shared by the spaces contructed by Shelah
and Kunen, that is, for every uncountable family of points in the space there
is one point in the closed convex hull of the rest, has been extensively studied
in [22]. Let us denote this property by KS. The following result was proved
for the Kunen space in [31] and for the general case in [22].

Theorem 3.2. Let X be a Banach space. The following assertions are
equivalent:

(i) X has the KS property.

(ii) Every weak*-closed convex subset K ⊂ X∗ is weak*-separable.

(iii) Every convex subset K ⊂ X∗ is weak*-separable.

Let us mention that there are still a number of open problems concerning
the MIP, as the existence of points of Fréchet differentiability in spaces with
this property. While spaces with Fréchet differentiable norm satisfy the Mazur
intersection property, it is unknown if it is also the case of spaces with a
(Fréchet) differentiable bump function. In this setting, it was proved in [10]
the following result.

Theorem 3.3. [10] If a Banach space has the Radon-Nikodým property
and a Fréchet differentiable bump function, then it has an equivalent norm
with the MIP.

We are concerned now with the connections between Mazur intersection
property on X or weak* Mazur intersection property on X∗ and the gen-
eric differentiability of “most” equivalent (dual) norms defined on X∗ or X,
respectively. Let F be the space of all sublinear, positively homogeneous,
continuous functionals on a Banach space X, furnished with the metric ρ as-
sociated to the uniform convergence on bounded sets. Analogously, let F ∗ be
the space of all sublinear, positively-homogeneous, continuous and w∗-lower
semicontinuous functionals on X∗. The spaces (F, ρ) and (F ∗, ρ) are complete
metric spaces and thus Baire spaces.

A Banach space X (resp. the dual X∗ of a Banach space X) is called almost
Asplund (resp. almost weak* Asplund) space, if there exists a dense Gδ subset
F0 of F (resp. F ∗

0 of F ∗) such that every f ∈ F0 (resp. every f∗ ∈ F ∗
0 )

is Fréchet differentiable on a dense Gδ subset of X (resp. of X∗). The first
author to consider this class of Banach spaces was P. Georgiev [15]. He proved
that MIP in X and MIP* in X∗ imply that X is almost Asplund and X∗ is
almost weak* Asplund. More connections between differentiability of convex
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functions and Mazur (weak* Mazur) intersection properties were investigated
by Kenderov and Giles [34] and J. P. Moreno [41], among others. Later on,
following the ideas of [15], it was proved in [17] that the dual of a Banach space
with the MIP is a almost weak∗ Asplund space and, analogously, the predual
of a dual space with the MIP* intersection property is an almost Asplund
space. We will focus here on this last result and its geometrical derivations.

Some interesting consequences are obtained by considering norms instead
of sublinear functionals. Among them, we can mention that “almost all in the
Baire sense” (we shall detail this later) equivalent norms on a Banach space
with a fundamental biorthogonal system are Fréchet differentiable on a dense
Gδ subset. This is the case, for instance, of spaces `1(Γ) and `∞(Γ), for every
Γ, whose bad differentiability behavior is well known. Moreover, there are
only few examples of spaces without fundamental biorthogonal system ([49],
[44]) so this result applies for most Banach spaces.

Denote by HX , or just H if there is no ambiguity on the space we are
considering, the set of all bounded, closed, convex and nonempty subsets of a
real Banach space X. The Hausdorff distance between C1, C2 ∈ H is given by

d(C1, C2) = inf {ε > 0 : C1 ⊂ C2 + εB, C2 ⊂ C1 + εB},

where B is the unit ball of X. The space (H, d) is a complete metric space
[36] and, hence, a Baire space. Denote by H∗ the elements of HX∗ which
are weak* closed. The space (H∗, d) is also a complete metric space. The
mappings I : (H, d) → (F ∗, ρ), where I(K) := σK the support functional on
K: σK(x∗) = supx∈K〈x, x∗〉, and Î : (H∗, d) → (F, ρ), where Î(K∗) := σK∗ ,
the support functional on K∗ defined on X, σK∗(x) = supx∗∈K∗〈x, x∗〉, are
homeomorphisms. The existence of the homeomorphisms I and Î and the
duality between Fréchet differentiability and strong exposition can be tied
together in the following Lemma 3.4 whose proof is omitted.

Lemma 3.4. A Banach space X is almost Asplund if and only if there is
a dense Gδ subset H∗0 ⊂ H∗ such that every element of H∗0 has a dense Gδ

set of weak*-strongly exposing functionals in X. A dual Banach space X∗ is
almost weak* Asplund if and only if there is a dense Gδ subset H0 ⊂ H such
that every element of H0 has a dense Gδ set of strongly exposing functionals
in X∗.

Let b : X → S∗ be a selection of the subdifferential mapping of the norm,
i.e. 〈x, b(x)〉 = ‖x‖ for every x ∈ X. Given C ⊂ X, f ∈ X∗ and α > 0,
we will denote by S(C, f, α) the slice {x ∈ C : f(x) > sup f(C) − α}. The
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following lemma is a key tool in the proof of the result cited above. There is an
analogous version for a dual Banach space with the weak* Mazur Intersection
Property.

Lemma 3.5. Let X be an infinite dimensional Banach space with the
Mazur intersection property. Then, for every n ≥ 2, there is a subset Xn ⊂ X
such that: (i) ∪∞n=2 b(Xn) is dense in S∗,

(ii) 〈x, b(x)〉 > supz∈Xn\{x}〈b(x), z〉, for every x ∈ Xn,

(iii) ‖b(x)− b(y)‖ > 1
n , for every x, y ∈ Xn, x 6= y.

Proof. By Proposition 1.3, the dual norm has a dense set X∗
0 of weak*

denting points in its unit sphere. Consider for every n ≥ 2, a maximal subset
X∗

n ⊂ X∗
0 satisfying ‖x∗ − y∗‖ > 2/n, for every x∗, y∗ ∈ X∗

n , x∗ 6= y∗. Then,
F ∗

0 = ∪∞n=2X
∗
n ⊂ X∗

0 is dense in S∗, and for every x∗ ∈ X∗
n there is a slice

S(B∗, yn(x∗), γn(x∗)), yn(x∗) ∈ B∗ and γn(x∗) ∈ (0, 1
n) so that,

x∗ ∈ S(B∗, yn(x∗), γn(x∗)), diamS(B∗, yn(x∗), γn(x∗)) <
1
2n

and

(9) S(B∗, yn(x∗), γn(x∗)) ∩ S(B∗, yn(z∗), γn(z∗)) = ∅

for every x∗, z∗ ∈ X∗
n, x∗ 6= z∗. By (9) it follows that yn(x∗1) 6= yn(x∗2) for

x∗1 6= x∗2, i.e. the mapping yn : X∗
n → S is an injection. We have ‖x∗ −

b(yn(x∗))‖ < 1
2n , for every x∗ ∈ X∗

n and

‖b(yn(x∗1))− b(yn(x∗2))‖ >
1
n

for each x∗1, x
∗
2 ∈ X∗

n, x∗1 6= x∗2. If we define Xn = { yn(x∗)
1−γn(x∗) : x∗ ∈ X∗

n}, then
it is easy to check the conditions (i), (ii), (iii) and the proof is completed.

Theorem 3.6. Consider a Banach space X with dual X∗.

(i) If X has the Mazur intersection property then X∗ is almost weak*
Asplund.

(ii) If X∗ has the weak* Mazur intersection property then X is almost
Asplund.
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Sketch of the proof. The idea of the proof is contained in Theorem 4 of
[15]. In order to prove (i), it is enough to show the existence of a dense Gδ

subset B0 ⊂ H such that every element of B0 has a dense Gδ set of strongly
exposing functionals in X∗. Let {Xn}n≥2 be the sequence we have found in
Lemma 3.5 and for every x ∈ Xn define:

αn(x) = 〈x, b(x)〉 − sup
y∈Xn\{x}

〈y, b(x)〉,

For integers n ≥ 2 and m ≥ 1 denote:

Hn,m = {x ∈ Xn : αn(x) > 1/m}

and define Bn,m,k as the set of all Z ∈ H for which there are α > 0 and γ > 0
such that diamS(Z, b(x), α) < 1

k − γ for each x ∈ Hn,m if Hn,m 6= ∅ and
Bn,m,k = H if Hn,m = ∅. It can be proved that Bn,m,k is a dense and open
subset of H for every n ≥ 2 and m, k ∈ N. We omit the rather technical and
cumbersome proof that can be found in [17]. Finally, it is easy to see that
every element of B0 := ∩n,m,kBn,m,k is strongly exposed by each x∗ ∈ M , being
M = ∪n,m{b(w) : w ∈ Hn,m}. By the Baire category theorem, B0 is dense
Gδ in H. Since M is dense in S∗ and since the strongly exposing functionals
form a Gδ subset, the proof is completed. The proof of (ii) is similar.

An interesting corollary is now at hand, as a direct consequence of the
above result and the results in section 2.

Corollary 3.7. Consider a Banach space X with dual X∗.

(i) If X has a fundamental biorthogonal system then X is almost Asplund.

(ii) If X∗has a fundamental biorthogonal system {xi, x
∗
i }i∈I ⊂ X∗×X then

X∗ is almost weak* Asplund.

Let N be the set of all equivalent norms on a Banach space X furnished
with the metric ρ, defined in this way,

ρ(n1, n2) = sup{|n1(x)− n2(x)|; x ∈ B||·||}, where n1, n2 ∈ N,

and N∗ the set of all equivalent dual norms on X∗. Since N is an open subset
of the complete metric space of all continuous seminorms on X under the
distance ρ and the map π : ‖ · ‖ → ‖ ·‖∗ is an homeomorphism between N and
N∗, both are Baire spaces. If the space H (H∗) is replaced by the set of all
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unit balls of equivalent norms (dual norms, respectively), we obtain analogous
results replacing F (F ∗) by N (N∗).

There are few known Banach spaces without fundamental biorthogonal
systems. In fact, the question whether every Banach space is almost Asplund
remains open. According to Corollary 3.7, a possible counterexample should
have no fundamental biorthogonal system. This is the case of Kunen space
mentioned above, but it is Asplund. On the other hand, it is worth to mention
that the duals of the Kunen and Shelah spaces are not almost weak* Asplund.
In fact, there is no equivalent dual norm being Fréchet differentiable on a dense
set in the preceding spaces. Otherwise, the unit ball of the associated (predual)
norm in the Kunen or Shelah spaces would be the closed convex hull of its
strongly exposed points. This would produce in the Kunen and Shelah spaces,
by imitating the proof of Proposition 3.1, an uncountable family satisfying
the separation property given in (7), thus a contradition. Plichko proved that
`c∞(Γ) (being cardΓ strictly bigger than the cardinal of the continuum) does
not admit a fundamental biorthogonal system. We do not know if this space
and the Shelah space are almost Asplund.

Next theorem illustrates, under a different point of view, the relation-
ship between convexity and Mazur intersection properties. As an application,
analogies and differences between these properties and the Radon-Nikodým
property are exhibited. Our aim here is to point out that Mazur intersec-
tion properties seem to be a good alternative to Radon-Nikodým property
when some convexity conditions are required [17], [23] and [29]. Recall that a
Banach space X is said to have the Radon-Nikodým property if every element
of H is the closed convex hull of its strongly exposed points. A Banach space
X is Asplund if and only if X∗ has the Radon-Nikodým property.

Theorem 3.8. (A) Let X be a Banach space whose dual X∗ has the
weak* Mazur intersection property. Then

(i) there exists a dense Gδ subset B0 ⊂ H such that every element of B0 is
the closed convex hull of its strongly exposed points.

(ii) there exists a dense Gδ subset B∗0 ⊂ B∗X∗ such that every element of B∗0
is the weak* closed convex hull of its weak* strongly exposed points.

(B) Let X be a Banach space with the Mazur intersection property. Then
there is B0 satisfying (i) and there exists a dense Gδ subset B∗0 ⊂ B∗X∗ such
that every element of B∗0 is the weak* closed convex hull of its weak* denting
points.
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4. Intersection of closed balls and porosity

4.1. Distance of two sets. Given a normed space X, and two closed
and bounded subsets C, D ⊂ X, denote by %(C, D) = inf{‖x− y‖ : x ∈ A, y ∈
B}. F. Hausdorff calls %(A,B) the lower distance between A and B, though
it is clear that it is not a metric, since the triangle inequality is not fulfilled.
How to define then a distance between closed and bounded sets? Here is the
most accepted formula, namely the Hausdorff distance, that we have already
used in section 3:

d(C, D) = sup{%(x,D), %(y, C) : x ∈ C, y ∈ D}
= inf{ε > 0 : C ⊂ D + εB and D ⊂ C + εB}

being B the unit ball. A well known theorem of H. Hahn establishes that
the family of all closed and bounded sets of X, endowed with the Haudorff
distance, is a complete metric space when X is complete [36]. Recall that
HX (or simply by H, when it causes no confusion) denotes the family of
all closed, bounded and convex subsets of X. To prove that H is also a
complete metric space with the Hausdorff metric, when X is complete, it
just suffices to prove that, given a convergent sequence {Cn} ⊂ H, the limit
C also is a convex set. We may assume that d(Cn, C) < 1/n, for every n.
Defining Dn = Cn + (1/n)B, we know that C ⊂ Dn and d(Dn, C) < 2/n, so
limn{Dn} = C. Now, take x, y ∈ C and suppose that z lies in the segment
[x, y] = {tx + (1 − t)y : t ∈ [0, 1]}. If z /∈ C, there is m ∈ N satisfying
(z + (2/m)B) ∩ C = ∅. This implies that z /∈ Dm, which contradicts the fact
z ∈ Dn, for every n. Thus z ∈ C and C is convex. Therefore, H endowed with
the Hausdorff distance is a complete metric space and hence a Baire space.

4.2. Porous sets. Motivated by problems in Real Analysis and, espe-
cially, in differentiation theory, several authors considered what came to be
known as porosity, a notion which concerns the size of holes of a set near a
point. Topologically speaking, porous sets are smaller than merely being a
countable union of nowhere dense closed sets [62]. Consequently, porosity has
been usually used to describe smallness in a topological sense. Precisely, let
M be a metric space, P a subset of M , B(x,R) the closed ball centered at
x with radius R and γ(x,R, P ) the supremum of all r for which there exists
y ∈ M such that B(y, r) ⊂ B(x, R) \ P . The number

ρ(x, P ) = 2 lim
R→0

sup
γ(x, R, P )

R
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is called the porosity of P at x. We say that P is porous at x whenever
ρ(x, P ) > 0 and, when P is porous at every point of M , we simply say that P
is a porous set. If there is ε > 0 satisfying ρ(x, P ) > ε for every x ∈ M , then
P is said to be uniformly porous. Finally, replacing “ lim sup ” by “ lim inf ”
in the above definition, we encounter the notions of very porosity and very
porous set, respectively. The unit sphere of a normed linear space is an easy
example of an uniformly very porous set.

In convex geometry, the use of porosity received in recent years a great
deal of attention. Several topics as smoothness, strict convexity, diameters,
nearest points and others have been investigated by using porosity. We refer
to the works of Zamfirescu [63], [64] and Gruber [25], [26] for more information
about this rich line of research.

In Banach space theory, porosity has been used to describe topological
properties of the set of points of Frechet nondifferentiability [48], [50] and also
in relation with questions of best approximation [5] and variational principles
[9]. For these and other applications of porosity, we refer to Zajicek’s survey
[62] and Phelps’ book [48].

Let M be the collection of all intersections of balls, considered as a subset
of H furnished with the Hausdorff metric. The space has the Mazur inter-
section property or MIP if M = H [39]. We will prove that M is uniformly
very porous if and only if the space fails the MIP. To this end, we need a
handy description of the elements of H \M, obtained as a consequence of
Proposition 4.1, whose proof is partially based in Proposition 1.3. The only
difficulty lies in (iii) implies (i) (see [30] for the details of the proof). In what
follows, given f ∈ X∗, we denote Kf = ker f ∩ B, Lf = {x ∈ B : f(x) ≥ 0}
and Mf = {x ∈ B : f(x) ≤ 0}.

Proposition 4.1. Given a Banach space, the following conditions are
equivalent:

(i) The space has the Mazur intersection property.

(ii) There is a dense set F ⊂ S∗ satisfying Mf ∈ M (Lf ∈ M) for each
f ∈ F .

(iii) There is a dense set F ⊂ S∗ satisfying Kf ∈M for each f ∈ F .

Theorem 4.2. The set M is uniformly very porous if and only if the
space fails the Mazur Intersection Property.

Proof. We find it convenient to isolate from the argument the following
observation: consider C ∈ H and λ > 0 so that D = {x ∈ C : d(x, ∂C) ≥
λ} 6= ∅; every set E ∈ H with d(C, E) < λ contains also D. The proof is fairly
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easy: if x ∈ D\E, there is a norm one functional f separating x and E. Say, for
instance, that f(x) > sup f(E). Clearly, sup f(C) ≥ f(x)+λ > sup f(E)+λ,
so d(C, E) > λ, a contradiction.

By Proposition 4.1, if X fails the Mazur Intersection Property there is
a norm one functional f such that Mf /∈ M. It means that there is also
x0 ∈ B \Mf such that every ball containing Mf contains also x0. Denote by
α = f(x0) > 0 and consider an arbitrary subset C ∈ B . We will prove that

ρ(C,M) = 2 lim
R→0

inf
γ(C,R,M)

R
≥ α

1 + α
.

and the proof will be accomplished by looking at two cases.
Case 1. The functional f attains its maximum over C, say at y0 ∈ C.

Define the sets CR = C + RB and DR = {x ∈ CR : f(x) ≤ sup f(C)}.
Notice that DR /∈M since DR contains y0 + RMf and misses the point y0 +
Rx0. However, we do not know the existence of r > 0 such that Bd(DR, r) ⊂
H\M, which is necessary to compute the porosity of C. It is then convenient
to select a suitable modification of DR, namely the set ER = DR + αR

2 B .
We claim that the ball Bd(ER, αR/2− 1/n) satisfies

Bd(ER, αR/2− 1/n) ∩ M = ∅
for n ∈ N large enough so that αR/2 − 1/n > 0. Indeed, if G ∈ H and
d(G,ER) ≤ αR/2 − 1/n then y0 + Rx0 /∈ G but, due to the first remark,
y0 + RMf ⊂ G so every ball containing G should contain also y0 + Rx0.

Now, since d(ER, C) ≤ R + Rα/2, then Bd(ER, αR/2− 1/n) ⊂ B(C, R +
Rα). It means that γ(C, R + Rα,M) ≥ αR/2 − 1/n, for n large enough, so
γ(C,R + Rα,M) ≥ αR/2, thus implying that

2 lim
R→0

inf
γ(C,R + Rα,M)

R + Rα
≥ lim

R→0
inf

αR

R + Rα
=

α

1 + α
.

Case 2. The functional f does not attain its maximum over C. Given
R > 0, we take ym so that f(ym) = sup f(C) and d(ym, C) < R/m. Consider
now Cm = conv ({ym ∪ C}). Since Cm satisfies the condition of Case 1,
γ(Cm, R + Rα,M) ≥ αR/2 and, consequently, γ(C, R + Rα + R/m,M) ≥
αR/2. Therefore

2 lim
R→0

inf
γ(C, R + Rα + R/m,M)

R + Rα + R/m

≥ lim
R→0

inf
αR

R + Rα + R/m
=

α

1 + α + 1/m

for every m ∈ N and the theorem is proved.
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Notice that, if C /∈ M, then x + λC /∈ M for every x ∈ X and λ ∈ R.
It means that M is porous in a much stronger sense than stated in Theorem
4.2, and close to the notions of cone meager and angle-smallness introduced
by Preiss and Zajicek (see [50] and [48]).

5. Stability of the sum in M.

Two of the most important ways of combining two convex sets C,D to
produce a third one are the vector sum C+D and the convex hull conv(C∪D),
together with the operations C+̂D = (C + D) and conv (C ∪ D) of forming
the respective closures. The stability of M with respect to the usual set
operations is very easy to check: M is stable under translations, dilations and
intersections and it is not stable under unions, convex hulls and the closure
of convex hulls. For instance, if you consider in R⊕∞ R the sets C = {(0, 0)}
and D = {(1, 1)}, then conv(C ∪D) is not an intersection of balls. However,
the situation with respect to the sum and the closure of the sum seems to be
more complicated. The present note is concerned with the extent to which
the property of being an intersection of balls is preserved by the operations +
and +̂. We will concentrate our attention also in a modest but quite relevant
question: let B be the unit ball of X, λ > 0 and C ∈ M; is it true that
C + λB ∈ M? An affirmative answer to this question would provide the
following topological consequence for M.

Proposition 5.1. The set M is a closed subset of H provided C+̂λB ∈
M for every C ∈M and each λ > 0.

Proof. Let {Cn} be a sequence in M and let C ∈ H be such that limn

d(Cn, C) = 0. To prove that C ∈ M, take x /∈ C and let δ = dist(x,C) > 0.
We may assume that d(Cn, C) < δ/4, for every n ∈ N . On the one hand,
C ⊂ Cn+̂2d(Cn, C)B and, on the other hand, x /∈ Cn+̂2d(Cn, C)B. Now, as
the set Cn+̂2d(Cn, C)B is an intersection of balls, there is a ball D such that
x /∈ D and C ⊂ Cn+̂2d(Cn, C)B ⊂ D.

The stability ofM under the operation + implies, in particular, that C+D
is a closed set whenever C, D ∈M. Therefore, in this case, C+̂λB = C+λB ∈
M and, by the above proposition, M is closed. Incidentally, let us mention
that the stability under +̂ does not imply the stability under the vector sum,
as the following remark shows. Recall that many non-reflexive Banach spaces
can be renormed to satisfy the MIP. The space c0(N) is the simplest example
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since every separable space with separable dual admits a Fréchet differentiable
(and thus MIP) norm [11].

Remark 5.2. When X is a nonreflexive Banach space with the MIP and
C ∈ M, the set C + λB need not be closed. Consequently, M need not be
stable under vector sums, even if it is stable under +̂.

Detail. Indeed, when X is nonreflexive, there is a functional f ∈ S∗

which does not attain its norm. Since X has the MIP and M = H, the set
C = {x ∈ B : f(x) ≤ 0} is an intersection of balls. However, this is not the
case for C+λB because this set is not closed when 0 < λ < 1/2. Indeed, there
is x ∈ (1/2)B for which f(x) = λ. Hence for all n with 1/n < 1/2−λ we have
x + (λ + 1/n)B ⊂ B. Then ∅ 6= Dn = (x + (λ + 1/n)B) ∩ f−1((−∞, 0]) ⊂ C.
If xn ∈ Dn, clearly (xn + λB)∩ (x + (1/n)B) 6= ∅ and so x is in the closure of
C + λB. However, C ∩ f−1(λ) = ∅ and so x /∈ C + λB.

5.1. The binary intersection property. When B is the unit ball
and C = ∩iBi is an intersection of balls, it is tempting to write

(10) C + λB = ∩iBi + λB = ∩i(Bi + λB)

and, as a consequence, to conclude that C + λB ∈ M. However, (10) is false
in general. To be convinced of this, consider (R2, ‖ · ‖2) and define B1 as the
Euclidean unit ball, B2 = B1 + (2, 0) and take λ = 1.

As an easy example, notice that (10) holds in (Rn, ‖ · ‖∞). Sine [55]
proved that (10) is satisfied in those normed spaces with the so called binary
intersection property (BIP): every collection of mutually intersecting closed
balls has nonempty intersection. However, we will prove in Section 5.2 that
the validity of (10) for every λ > 0 does not characterizes spaces with the
BIP. This property plays a major role in questions of extendability of general
continuous linear maps, as proved by Nachbin and Goodner (see [45] and
references therein). We note that normed spaces with the BIP are complete.
Moreover, a Banach space X has the BIP if and only if X = C(K,R) with the
supremum norm, where K is a extremally disconnected, or Stonean, compact
Hausdorff space (Nachbin [43], Goodner [27] and Kelley [32]). The following
proposition improves that above mentioned result of Sine.

Proposition 5.3. If a normed space X has the BIP then every (nonemp-
ty) C = ∩iBi ∈M and D ∈M satisfy ∩iBi + D = ∩i(Bi + D).
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Proof. Recall that, as noted above, we have X = C(K,R). Given an
extreme point e of the unit ball of X, there is only one way of making X
into a complete vector lattice having e as an order unit such that the norm
deduced from the order relation and e is identical to the sup norm [43]. For
instance, we can choose e = 1K if the canonical order induced by R in C(K,R)
is desired. Every closed ball is identical to a segment and, in particular,
Bi = B(xi, ri) = [xi − rie, xi + rie]. Therefore,

C = ∩iBi = [sup
i
{xi − rie}, inf

i
{xi + rie}]

and, analogously, D = [α, β]. Indeed, given any bounded family {fi} ⊂ C(K)
both infi fi and supi fi (taken in the order of C(K)) are continuous functions
on K (see [38], Prop. 1.a.4). Consequently,

∩iBi + D = [sup
i
{xi − rie}, inf

i
{xi + rie}] + [α, β]

= [sup
i
{xi − rie}+ α, inf

i
{xi + rie}+ β]

= [sup
i
{α + xi − rie}, inf

i
{β + xi + rie}]

= ∩i(Bi + D)

5.2. The case of c0(I). The geometry of the unit ball of the space
`∞(I) is quite close to that of the unit ball of c0(I). Thus, it seems quite
natural to ask about the stability of M in this latter space. (Recall that
for a (not necessarily countable) set I, a point x = (xi) is in c0(I) provided
xi → 0 in the sense that for any ε > 0, there are only finitely many indices
i ∈ I for which |xi| > ε.) First of all, we must try to obtain an easy-to-use
description of sets which are intersection of balls. Denote by {ei} and {fi} the
canonical basis of c0(I) and the associated functionals, respectively. Since the
unit ball for the supremum norm on c0(I) is B = ∩if

−1
i ([−1, 1]) it is easy to

show that B′ is a closed ball with radius λ > 0 if and only if it has the form
B′ = ∩if

−1
i ([ai, bi]), where ai → −λ, bi → λ and bi − ai = 2λ for all i ∈ I.

Consequently, if {Bα = ∩if
−1
i ([aαi, bαi])} is a collection of closed balls with

nonempty intersection, we have

∩αBα = ∩α ∩i f−1
i ([aαi, bαi])

= ∩i ∩α f−1
i ([aαi, bαi])

= ∩if
−1
i ([sup

α
{aαi}, inf

α
{bαi}]).

(11)
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Moreover, fixing an index α0, for each i we have aα0i ≤ supα aαi ≤ infα bαi ≤
bα0i and, as a consequence, there exists k > 0 such that −k ≤ supα aαi ≤
infα bαi ≤ k for every i ∈ I. Conversely, a set C = ∩if

−1
i [ai, bi] is an inter-

section of balls provided there exists k > 0 such that −k ≤ ai ≤ bi ≤ k for
all i. To see this, let x /∈ C and suppose, for instance, that fi0(x) < ai0 .
We claim that the ball (ai0 + k)ei0 + kB contains C but not x. To this end,
note first that fi0(x − (ai0 + k)ei0) < −k so x /∈ (ai0 + k)ei0 + kB. Clearly,
C ⊂ kB ∩ f−1

i0
([ai0 , bi0 ]) and, also,

kB ∩ f−1
i0

([ai0 , bi0 ]) ⊂ (ai0 + k)ei0 + kB .

Indeed, if y ∈ kB∩f−1
i0

([ai0 , bi0 ]), then fi0(y−(ai0+k)ei0) = fi0(y)−(ai0+k) ≥
−k and also fi0(y)− (ai0 + k) ≤ bi0 − ai0 − k ≤ k − k − ai0 = −ai0 ≤ k. For
any other index i 6= i0, we have |fi(y − (ai0 + k)ei0)| = |fi(y)| ≤ k. We are
ready now to state the next proposition.

Proposition 5.4. Given C and D two (nonempty) intersections of balls
in c0(I), the set C + D is also an intersection of balls. Precisely, if C =
∩if

−1
i [ai, bi] and D = ∩if

−1
i [ci, di], then C + D = ∩if

−1
i [ai + ci, bi + di].

Proof. The inclusion C +D ⊂ ∩if
−1
i [ai + ci, bi + di] is straightforward. To

prove the reverse inclusion, we will assume that 0 ∈ [ci, di] for every i ∈ I
(otherwise, we would replace C and D by C ′ = C − u and D′ = D − u
for some u ∈ D ). Let z =

∑
i ziei ∈ ∩i{f−1

i ([ai + ci, bi + di])}. We want
x =

∑
i xiei ∈ C and y =

∑
i yiei ∈ D such that zi = xi + yi for every i ∈ I.

Since ai + ci ≤ ai ≤ bi ≤ bi + di, each i ∈ I falls into one (and only one) of
the following subsets: I1 = {i ∈ I : ai + ci ≤ zi < ai}, I2 = {i ∈ I : ai ≤
zi ≤ bi}, I3 = {i ∈ I : bi < zi ≤ bi + di}. We define xi = ai in case i ∈ I1,
xi = zi in case i ∈ I2 and xi = bi in case i ∈ I3. Obviously, ai ≤ xi ≤ bi and
ci ≤ yi = zi − xi ≤ di. Since |xi| ≤ |zi| for all i ≥ m for some m ∈ N, we are
assured that x (and hence y) is an element of c0(I).

Corollary 5.5. If C = ∩αBα is a nonempty intersection of balls in
(c0, ‖ · ‖∞) and λ > 0 then ∩αBα + λB = ∩α(Bα + λB). Consequently, the
validity of (10) does not characterizes the BIP.

Proof. Since Bα = ∩if
−1
i ([aαi, bαi]) and λB = ∩if

−1
i ([−λ, λ]), Proposition

5.4 implies that Bα +λB = ∩if
−1
i ([aαi−λ, bαi +λ]). As a consequence, using
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again Proposition 5.4 we obtain

∩αBα + λB = ∩if
−1
i ([sup

α
{aαi}, inf

α
{bαi}]) + ∩if

−1
i ([−λ, λ])

= ∩if
−1
i ([sup

α
{aαi} − λ, inf

α
{bαi}+ λ])

= ∩if
−1
i ([sup

α
{aαi − λ}, inf

α
{bαi + λ}])

= ∩i ∩α f−1
i ([aαi − λ, bαi + λ])

= ∩α ∩i f−1
i ([aαi − λ, bαi + λ])

= ∩α(Bα + λB).

(12)

5.3. Polyhedral norms. Recall that a Banach space is polyhedral [33]
if the unit ball of any of its finite dimensional subspaces is a polyhedron. The
typical example of a polyhedral space is c0 endowed with the usual supremum
norm. Is it true that M is stable under vector sums in every polyhedral
space? We will answer this question in the negative, despite the fact that the
geometry of the unit ball of these spaces is quite close to that of (c0, ‖ · ‖∞).

Most of the knowledge that we have about polyhedral spaces is due to
the work of V. Fonf (see [13] and [14]). Among many other things he proved
that, given a polyhedral Banach space X with unit ball B, there is a set (not
necessarily countable) {fi}i∈I of norm–one functionals such that:

For every x ∈ X, there is i0 ∈ I such that ‖x‖ = fi0(x)(13)

For every i ∈ I, f−1
i ({1}) ∩B has nonempty

(relative) interior in f−1
i ({1})(14)

With this tool in our hands, we easily obtain a description of the sets in M
which is just a generalization of the one obtained for c0(Γ). In the following
proposition, we keep the above notation (see [24]).

Proposition 5.6. A bounded convex set C in a polyhedral Banach space
is an intersection of balls if and only if C = ∩if

−1
i ([inf fi(C), sup fi(C)]).

The Proposition above implies that in a finite dimensional Banach space
with polyhedral norm, every set in M is a finite intersection of balls. The first
question pertaining to the stability of M in a polyhedral space is whether,
given two sets C = ∩if

−1
i [ai, bi] and D = ∩if

−1
i [ci, di], one has

(15) C + D = ∩if
−1
i [ai + ci, bi + di] .
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As the next proposition shows, the answer to this question can be negative,
even if we reformulate the question in a slightly different way: Is (15) true if
we assume, in addition, that ai = inf fi(C), bi = sup fi(C), ci = inf fi(D) and
di = sup fi(D)? The answer is again no, since a positive answer would imply
the stability of M under vector sums in every polyhedral Banach space, and
this is not the case even in finite dimensional spaces.

Proposition 5.7. The set M is not stable under vector sums in (Rn, ‖ ·
‖1), n > 3 or in `1(I).

Proof. The segment C joining the point (1/2, 1/2, 0) with (−1/2,−1/2, 0)
is an intersection of exactly two balls of radius 1. This is also the case of the
segment D joining the point (−1/2, 1/2, 0) with (1/2,−1/2, 0). However, the
set C + D is not an intersection of balls. Indeed, denote by {f1, f2, f3, f4} the
norm one functionals satisfying (13) and (14) and by B the unit ball. Since
C + D = B ∩ {(x, y, z) ∈ R3 : z = 0}, we have that inf fi(C + D) = −1 and
sup fi(C + D) = 1 for every i = 1, ..., 4. According to Corollary 6.4, if C + D
were an intersection of balls then

C + D = ∩if
−1
i ([inf fi(C + D), sup fi(C + D)]) = ∩if

−1
i ([−1, 1]) = B

which is a contradiction.
The spaces (Rn, ‖ · ‖1) and `1(I) are particular cases of X = Y ⊕1 Z where

Y = (R3, ‖ · ‖1) and ⊕1 denotes that the sum is endowed with the `1-norm.
The intersection of every ball in X with the subspace Y is an `1-ball. As a
consequence, if a closed, bounded and convex subset of Y is an intersection
of X-balls, it is also an intersection of Y -balls. Finally, the sets C and D
considered in the above paragraph are intersection of X-balls but this is not
the case for the set C + D. For instance, to see that D is the intersection
of the two balls B1 = (1/2, 1/2, 0) + B and B2 = (−1/2,−1/2, 0) + B, just
take into account that, for every x = (x1, x2, x3) + z ∈ B1 ∩ B2 we have
|x1−1/2|+|x2−1/2|+|x3|+‖z‖ ≤ 1 and |x1+1/2|+|x2+1/2|+|x3|+‖z‖ ≤ 1.
Consequently,

|x1 − 1/2|+ |x2 − 1/2| ≤ 1− |x3| − ‖z‖
|x1 + 1/2|+ |x2 + 1/2| ≤ 1− |x3| − ‖z‖

and the only solution is when |x3| = ‖z‖ = 0 and (x1, x2) ∈ D.

It has been proved in [24] that in (R3, ‖ · ‖1) the family M is stable under
adding balls. As a consequence, we get that this property is different from
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being stable under the closure of vector sums. Though the result is also
true for (Rn, ‖ · ‖1) with n > 3, the arguments of the proof are those of the
tridimensional case, which has the advantage of great simplicity.

In Remark 5.2, we observed the existence of spaces for which M is not
stable by adding balls. However, we have no example of a normed space for
which M is not stable under the operation C+̂λB, C ∈ M and λ > 0. On
the other hand, the set of norms for which M is stable under vector sums
is not closed in the space of all equivalent norms, endowed with the uniform
metric. Indeed, in a finite dimensional Banach space, the set of norms with
the Mazur intersection property is dense.

6. Mazur sets and Mazur spaces

As we mentioned in the introduction, a set C is an intersection of balls
if it satisfies the following separation property: For every x /∈ C, there is a
closed ball B such that C ⊂ B but x /∈ B. This property can be strengthened
by simply replacing the point x by a hyperplane. We say that C is a Mazur
set if given any hyperplane H with dist(C, H) > 0, there is a ball D such
that C ⊂ D and D ∩ H = ∅. Note that this is equivalent to saying that C
is a Mazur set if given f ∈ X∗ with sup f(C) < λ, then there exists a ball D
such that C ⊂ D and sup f(D) < λ. (Consider the hyperplane H = f−1(λ)).
Denote by P the collection of all Mazur sets of a normed space.

By the separation theorem, every Mazur set is an intersection of balls and
so P ⊂ M ⊂ H. However, we will show that the converse is not always
true, even if the norm is Fréchet differentiable. There are mainly two reasons
connecting Mazur sets with the subject of this paper: On the one hand, P is
always stable under (the closure) of vector sums; on the other hand, sometimes
P = M 6= H.

Proposition 6.1. Given two Mazur sets C and D, the set C+̂D is always
a Mazur set. However, C ∩D is not necessarily a Mazur set. Consequently,
P is always stable under the closure of vector sums but it is not necessarily
stable with respect to intersections.

Proof. Let C and D be two Mazur subsets of a Banach space X. Consider
a functional f ∈ X∗ and λ ∈ R such that sup f(C+̂D) < λ. Denote by
α = sup f(C) and β = sup f(D). Clearly, sup f(C+̂D) = sup f(C)+sup f(D)
and so α + β < λ. Therefore, there are two real numbers α′ and β′ satisfying
α < α′, β < β′ and α′ + β′ < λ. Now, since C and D are Mazur sets, there
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are two closed balls B1 and B2 such that C ⊂ B1 and D ⊂ B2 satisfying
sup f(B1) < α′ and sup f(B2) < β′. The sum of the two balls B1 and B2 is
again a ball B3 that obviously contains C+̂D and satisfies

sup f(B3) = sup f(B1) + sup f(B2) < α′ + β′ < λ.

Since we know that there exist Banach spaces for which M is not stable under
the closure of vector sums (we proved that (R3, ‖ · ‖1) is such an example),
the first part of this proposition implies that P can actually be different from
M. The two segments C and D of Proposition 5.7 are the intersection of two
balls (which are, obviously, Mazur sets) but they themselves are not Mazur
sets.

Definition 6.2. Spaces in which every element ofM is a Mazur set (P =
M) will be called Mazur spaces.

In an analogous way, we can define a subset C of a dual Banach space
X∗ to be a weak* Mazur set if it can be separated by balls from weak*
closed hyperplanes H with dist(C, H) > 0. We can denote the family of all
weak* Mazur sets by P∗ and we can say that X∗ is a weak* Mazur space
if P∗ = M. Proposition 6.1 can be formulated for weak* Mazur sets and
proved in essentially the same way. We do not know, however, an example of
a weak* Mazur set which is not a Mazur set. Therefore, we know no example
of a weak* Mazur space which is not a Mazur space (that is, a dual space
for which P ( P∗ = M). Going back to Mazur spaces, the next proposition
shows that the case P = M = H has a nice geometric characterization, in
terms of weak* denting points of the dual unit ball. Recall that a Banach
space satisfies the MIP if and only if the set of weak* denting points of the
dual ball is a residual set of the dual sphere [18] (see also Proposition 1.3).

Proposition 6.3. A Mazur space X satisfies the Mazur intersection prop-
erty if and only if every norm one functional in X∗ is a weak* denting point
of B∗.

Proof. Chen and Lin proved in [6] that f is a weak* denting point of
the dual unit ball B∗ if, and only if, for every bounded subset A ⊂ X with
inf f(A) > 0 there is a ball D containing A such that inf f(D) > 0. Suppose
that P = H and consider f ∈ B∗ and a bounded subset A such that inf f(A) >
0. Then C ≡ conv(A) ∈ P and thus there is a ball D satisfying A ⊂ C ⊂ D
with inf f(D) > 0. Conversely, let C ∈ H and H be a closed hyperplane such
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that dist(C, H) > 0. We may assume that H is the kernel of a norm-one
functional f ∈ B∗ and inf f(C) > 0. The existence of the desired ball is due
to the fact that f is a weak* denting point.

In Remark II.7.6 of [11], there is an example of a dual norm on `1(N) with
the property that every point of the unit sphere is a weak* denting point.
Consequently, Mazur spaces with the MIP need not be reflexive, although they
are certainly Asplund spaces. Indeed, their dual spaces admit dual LUR norms
[51] and, therefore, they admit Fréchet differentiable norms. Spaces for which
every point of the unit sphere is a denting point can be characterized as those
satisfying a weaker notion of local uniform rotundity introduced by Troyanski
in [58] and called average locally uniform rotundity (see also [11]). On the
other hand, there is a wide family of Banach spaces which are not Asplund
spaces, even though they can be renormed to satisfy the MIP [31]. Obviously,
these (renormed) spaces cannot be Mazur spaces. The next corollary contains
an example of an Asplund space satisfying the MIP but failing to be a Mazur
space.

Corollary 6.4. A reflexive space with a Fréchet differentiable norm is
always a Mazur space. However, spaces with Fréchet differentiable norms need
not be Mazur spaces. Finally, Mazur spaces with the MIP are always smooth
spaces.

Proof. In a reflexive space with a Fréchet differentiable norm, every norm
one functional of the dual is the differential of the norm at some point. Con-
sequently, it is a weak* strongly exposed point (and thus a weak* denting
point) of the dual unit ball.

On the other hand, it is well known that there is only a partial duality
between smoothness and convexity. As a matter of fact, from the pioneer-
ing results about renormings on spaces of continuous functions on scattered
compact spaces due to Talagrand [57], we know that there are spaces with
Fréchet differentiable norm whose dual space admits no rotund norm. This
is the case, for instance, for C([0, ω1]). Since every weak* denting point is
also an extreme point, the proposition above implies that the dual norm of a
Fréchet norm in a Mazur space must be rotund. As a consequence, C([0, ω1]),
endowed with an equivalent Fréchet differentiable norm is not a Mazur space.
The previous proposition shows that, in particular, a Mazur space with the
MIP has a dual rotund norm and thus the norm of the space itself is Gâteaux
differentiable.
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To finish our discussion on Mazur spaces and the MIP, notice that the
condition of Fréchet differentiability in Corollary 6.4 is essential. Indeed,
there are even finite dimensional Banach spaces with the MIP which are not
Mazur spaces. Take, for instance, a norm in R3 with a dense set of denting
points which contains a segment in its unit sphere. The predual norm has the
MIP but R3 endowed with this predual norm is not a Mazur space.

6.1. Examples of Mazur spaces. This section is devoted to present-
ing some examples of Mazur spaces which are not merely reflexive spaces with
a Fréchet differentiable norm. We will prove that this is the case for c0(I) and
`∞(I) with their usual norms. These spaces are natural candidates to be
Mazur spaces in view of the results obtained in Sections 2 and 3. It is a bit
surprising that every two dimensional space is a Mazur space. This result
distinguishes dimension d ≤ 2 from dimension d ≥ 3: Note that (R3, ‖ · ‖1) is
not a Mazur space, since M is not stable under vector sums (Proposition 5.7).

Proposition 6.5. For every set I, the space (c0(I), ‖ · ‖∞) is a Mazur
space.

Proof. Consider C = ∩if
−1
i ([ai, bi]), a norm one functional f =

∑
i yie

∗
i ∈

`1 and two real numbers α > β such that inf f(C) = α > β. There is no loss
in generality in assuming that 0 ∈ C. We must find a ball D such that C ⊂ D
and inf f(D) > β. We know from Section 5.2 that D = ∩if

−1
i ([ci, di]) is a

ball of radius λ > 0 if and only if ci → −λ, di → λ and di − ci = 2λ. Since
we want C ⊂ D, we need [ai, bi] ⊂ [ci, di] for every i ∈ I and accordingly we
choose λ = sup{max{|ai|, |bi|}}. The strategy will be to define ci = −λ and
di = λ except for a finite number of coordinates. More precisely, let F ⊂ I be
a finite set such that

∑
i/∈F |yi| < (α− β)/2λ. For every i ∈ F , we define

ci =
{

ai if yi > 0
bi − 2λ if yi ≤ 0

di =
{

ai + 2λ if yi > 0
bi if yi ≤ 0

and, for every i /∈ F , take ci = −λ and di = λ. It is easy to check that
D = ∩if

−1
i ([ci, di]) is a ball and that C ⊂ D. We just need to compute
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inf f(D). Let F+ = {i ∈ F : yi > 0}. For every x ∈ D we have

f(x) =
∑

i∈I

xiyi =
∑

i∈F+

xiyi +
∑

i∈F\F+

xiyi +
∑

i/∈F

xiyi

≥
∑

i∈F+

aiyi +
∑

i∈F\F+

(bi − 2λ)yi −
∑

i/∈F

λ|yi|

≥
∑

i∈F+

aiyi +
∑

i∈F\F+

biyi − (α− β)/2

≥ α − (α− β)/2 = (α + β)/2 > β

since the point
∑

i∈F+ aiei +
∑

i∈F\F+ biei is an element of C = ∩if
−1
i ([ai, bi]).

Indeed, ai, bi ∈ [ai, bi] when i ∈ F and, for the rest of coordinates, 0 always
belongs to [ai, bi] since 0 ∈ C.

Proposition 6.6. Let K be a Stonean compact Hausdorff space. Then
C(K) is a Mazur space.

We finish this section with a result that distinguishes dimension d ≤ 2.
Indeed, we will see later that for normed linear space X with dimension greater
than 2 there is an equivalent norm ‖ · ‖ for which (X, ‖ · ‖) is not a Mazur
space.

Theorem 6.7. Every two dimensional normed linear space is a Mazur
space.

The following lemma is a key tool in proving Theorem 6.7. We will denote
by B∗ the dual unit ball of B. As usual, extC stands for the collection of all
extreme points of C.

Lemma 6.8. Suppose that C ∈M, x ∈ ∂C and that there exists f ∈ ∂B∗\
extB∗ satisfying f(x) = sup f(C). Then there is y ∈ B with f(y) = sup f(B)
such that any g ∈ ∂B∗ with g(y) = sup g(B) satisfies g(x) = sup g(C).

Proof. Since f is not an extreme point of B∗, there is a vertex y ∈ ∂B
such that f(y) = 1. Suppose that there is g ∈ ∂B∗ with g(y) = 1 but
g(x) < sup g(C). Choose h ∈ ∂B∗ with h(y) = 1 such that f lies in the
interior of the segment defined by h and g. Let x′ be the intersection of the
lines {s ∈ R2 : h(s) = h(x)} and {s ∈ R2 : g(s) = sup g(C)}. Since x′ /∈ C,
the proof of the lemma will be accomplished by showing that x′ is in every
ball containing C, which provides a contradiction.
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Indeed, let a+λB be a ball such that C ⊂ a+λB. Consider a point z ∈ C
satisfying g(z) = sup g(C). Necessarily

g(a + λy) ≥ g(a + λB) ≥ sup g(C) = g(z)

and, analogously, h(a + λy) ≥ h(x). Hence we have

x′ ∈ conv {x, z, a + λy}
which implies x′ ∈ C.

Notice that the condition f /∈ ext B∗ was essential in the above lemma.
In fact, the statement is not true for extreme points. Suppose, for instance,
that D is the euclidean ball in R2 and B = {(2, 0) + 3D} ∩ {(0, 2) + 3D} ∩
{(−2, 0) + 3D} ∩ {(0,−2) + 3D}. Let {y} = ∂B ∩ {(t, t), t > 0} and let f be
the unique functional supporting (0,−2) + 3D at y. Define C = {(x1, x2) ∈
R2 : −1 ≤ f(x1, x2) ≤ 1,−1 ≤ x1 ≤ 1} and let {x} = ∂C ∩{(0, t), t > 0}. The
only support point of f in B is y and B has many other support functionals
at y, while f is the only functional supporting C at x.

On the other hand, the lemma is not valid for higher dimensional spaces.
Consider, for instance, the space (R3, ‖·‖1), the set C = {(t, t, 0),−1 ≤ t ≤ 1},
the point x = (0, 0, 0) ∈ C and the functional f(x1, x2, x3) = x3 which is not
an extreme point of the dual unit ball.

Proof of Theorem 6.7. It is enough to show that for any C ∈M, f ∈ ∂B∗

and ε > 0, there is a closed ball Bε containing C and satisfying sup f(Bε) =
sup f(C) + ε. We split the proof into two cases.

Case 1: f ∈ extB∗. There exists y ∈ ∂B such that f(y) = 1 and the line
L = {s ∈ R2 : f(s) = 1} is (at least) a one-sided tangent to B at y. Since y
defines two sides in L, it is convenient to fix one which is tangent to B and call
it the positive side (with respect to y). Let LC = {x ∈ R2 : f(x) = sup f(C)}
and Lε = {x ∈ R2 : f(x) = sup f(C) + ε}. We fix a point z ∈ Lε satisfying,
first, that {z + sy : s ∈ R} ∩ C = ∅ and second, that the set ∂C ∩ {x ∈ R2 :
f(x) = sup f(C)} lies in the positive side of LC with respect to the point

z′ = {z + sy : s ∈ R} ∩ LC .

Finally, for every λ > 0, we consider the point aλ = z−λy and the ball aλ+λB.
We just need to show that there is λC > 0 such that C ⊂ aλC

+ λCB. To do
that, we first choose a point b in the positive side of LC with respect to z′ and
λ0 > 0 such that

C ⊂ conv {b, aλ0 , z = aλ0 + λ0y} .



88 a.s. granero, m. jiménez-sevilla, j.p. moreno

We need only find λC > 0 satisfying λC ≥ λ0 and b ∈ aλC
+ λCB. Consider

the point b′ = Lε ∩ {aλ0 + s(b − aλ0) : s ∈ R} and define the sequence
{xn = z + (b′ − z)/n}. Let yn be the corresponding point of ∂(a1 + B) such
that the segment joining xn and yn is orthogonal (in the euclidean sense) to
Lε. If xn ∈ ∂(a1 + B), in this case we define yn = xn. Notice that yn is
well defined for n sufficiently large. Since the positive side of Lε is tangent to
a1 + B at z, we have

‖yn − xn‖ ‖xn − z‖−1 = n ‖yn − xn‖ ‖b′ − z‖−1 n→∞−→ 0 .

Therefore, there is an n0 such that

n ‖yn − xn‖ ‖b′ − z‖−1 < ε ‖b′ − z‖−1

for every n ≥ n0. As a consequence, n ‖yn−xn‖ < ε and hence ∂(an +nB)∩
[b′, b] 6= ∅ for n ≥ n0. This implies that b ∈ an + nB for n ≥ n0. To finish the
proof of Case 1, define λC = max{λ0, n0}.

Case 2: f /∈ extB∗ . Let φ, ψ ∈ extB∗ be such that f lies in the interior
of the segment [φ, ψ] ⊂ ∂B∗. Let y ∈ B be such that f(y) = 1. We have
ψ(y) = φ(y) = 1, since ψ(y) ≤ 1, φ(y) ≤ 1 and there is 0 < t < 1 satisfying
1 = f(y) = tφ(y) + (1 − t)ψ(y). Consider now x ∈ C satisfying f(x) =
sup f(C). By Lemma 6.8 we know that ψ(x) = supψ(C) and, analogously,
φ(x) = supφ(C). As in the preceding case, we will consider balls aλ + λB
for which aλ + λy = x + εy. Now pick z, w ∈ R2 with φ(z) = φ(x) and
ψ(w) = ψ(x) satisfying C ⊂ conv{z, w, x}. The only question is whether
there is λ > 0 so that z, w ∈ aλ +λB. The existence of such a λ can be proved
using an argument of differentiability, as in Case 1, since ψ and φ are extreme
points of B∗.

Corollary 6.9. A Banach space has dimension less than three if and
only if is a Mazur space with respect to every equivalent norm.

Proof. It is clear that one dimensional spaces are always Mazur spaces
and Theorem 6.7 states that this is also the case of two dimensional spaces.
To prove the reverse, suppose that the Banach space X contains a three–
dimensional subspace Y , which can be assumed (after renorming) to be (R3, ‖·
‖1). Letting Z (in its inherited norm) be the complement of Y in X, so we
can assume that X is the `1–sum Y ⊕1 Z. We proved in Proposition 5.7 that
in this case M is not stable under the closure of vector sums and hence X
with this norm is not a Mazur space.
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92 a.s. granero, m. jiménez-sevilla, j.p. moreno

[64] Zamfirescu, T., Baire categories in convexity, Atti Sem. Mat. Fis. Univ.
Modena, 39 (1) (1991), 139 – 164.

[65] Zizler, V., Renormings concerning the Mazur intersection property of balls
for weakly compact convex sets, Math. Ann., 276 (1986), 61 – 66.


