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1. INTRODUCTION

Let A be a complex Banach or Jordan-Banach algebra. To study the
properties of the spectrum function x — Spx we use the so called Hausdorff
distance on compact sets of the complex plane C defined by

A(o1,02) = max { sup {dist(A, o1)}, sup {dist (], 02)}}

AEo2 AEo1

where dist(\, o) = inf{|\ — p| : p € o} is the distance of the point A to the
compact set o (see [1, p. 48]). In this paper, we intend to prove that if the
spectrum of an element a € A is finite and the function x — Sp z is lipschitzian
at a, that is A(Sp(a + z),Sp(a)) < M]||z||, then a is diagonalizable; in other
words we can write a as a linear combination of projections. B. Aupetit
proved an analogous spectral characterization for idempotents in [3], that is,
elements e € A such that e? = e (hence in particular Spe = {0,1}), this is in
fact contained in the proof of [3, Theorem 1.1]. Recall that a Banach algebra
A is said to be semisimple if Rad(A) = {0}, where Rad(A) is the Jacobson
radical of A. In what follows p(x) stands for the spectral radius of the element
x, in our case we can write p(z) = max{|\| : A € Spz}. We gather now some
well-known results on the spectrum [1, 3].

PrOPOSITION 1.1. Let A be a semisimple Banach algebra and let p be an
idempotent element of A. Then pAp is a closed semisimple subalgebra of A
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with identity p such that Sp,,(prp) C Spa(prp) and ppap(prp) = paA(PTP)
for every x € A. Moreover, if a1,...,a, are elements of A such that a;a; = 0
for i # j, then

Sp(a; +---+a,)U{0} =Spay U---USpa, U{0}.

2. THE BANACH ALGEBRA CASE

To prove our result we need the following lemma which is taken from [3].
A proof is included since it is short and essential for our theorem.

LEMMA 2.1. Let ¢ € A be a quasinilpotent element. Suppose there exists
two positive constants r and M such that p(x) < M||x — q|| for ||x — q|| < r,
then ¢ € Rad(A).

Proof. Let y € A be arbitrary. For |A\| > M, we have p(q—i—%) < M%, SO
p(y + A\q) < M||y||. Hence the upper semicontinuous function A — p(y + Aq)
is bounded on the complex plane C. Being subharmonic [1, Theorem 3.4.7],
it is constant by Liouville’s theorem for subharmonic functions [1, Theorem
A.1.1]. So p(y + Ag) = p(y) for every y € A. By the characterization of the
radical [1, Theorem 5.3.1] we have ¢ € Rad(A). 1

THEOREM 2.2. Let A be a semisimple Banach algebra, and let a € A have
finite spectrum, Spa = {aq,...,a,}. Suppose that the spectral mapping
x +— Spy(z) is lipschitzian at a. Then there exists n nonzero orthogonal
projectons pi,...,p, whose sum is 1 such that a = ai1p1 + -+ + appn.

Proof. Let a € A be with Spa = {a1,...,a,}. By Holomorphic Func-
tional calculus (see [5, Proposition 7.9]), there exist n nonzero orthogonal
projections pi,...,p, such that 1 = py +---+py, pip; = 0 for i # j, ap; = p;a
and Spy(a;) = {a;}, for 1 < i < n. Set a; = pja. Then a; € p;Ap; with
SPy, ap; (ai) = {a;} by Proposition 1.1. Let us now see that the spectral map-
ping = + Sp,, 4, () is lipschitzian at a; — a;p; for each 1 < < n. Indeed,
take i = 1 and let z1 € p1Ap1, we have

n n
a—o1l+x; :Zai—al (sz> + 21
i=1 i=1

n
= (a1 —a1p1 + 1) + Z(@j — a1p;).
=2
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By the preceding and orthogonality we have
Spala —anl+21)U{0} =Spyla; —a1pr + 1) U{0, 0 — 1, ..., — 1 }

and

PprAp: (a1 — aap1 + 1) = palar — aqpr + 1)
= A(Spa(a1 — aqpr + 1), Spa(ar — aipr))
= A(Spa(a— aap1 + 21),Spa(a — a1pr))
= A(Spala+21),Spa(a))
< Ml[z]|.

Therefore, = + Sp,, 4, (7) is lipschitzian at a1 — aip1, with Sp,, 4, (a1
—aip1) = 0. Hence a3 — ajp; = 0 by Lemma 2.1, which completes the
proof. |

3. THE JORDAN-BANACH CASE

We recall that a complex Jordan algebra A is non-associative and the
product satisfies the identities ab = ba and (ab)a® = a(ba?), for all a,b in
A. A unital Jordan-Banach algebra is a Jordan algebra with a complete
submultiplicative norm. An element a € A is said to be invertible if there
exists b € A such that ab = 1 and a?b = a. The spectrum of z € A is by
definition the set of A € C for which A — x is not invertible in A.

Since we consider only complex semisimple Jordan-Banach algebras, the
analogue of Proposition 1.1 is valid in the Jordan case if we replace the sub-
algebra pAp by U,A and use Propositions 4, 5, 6 and 7 of [4].

Using the characterization of the Jacobson radical for Jordan algebras
obtained in [2], Lemma 2.1 is also true for Jordan-Banach algebras.

With all these results and those in [6] we can establish exactly as in the
associative case the following analogue of Theorem 2.2.

THEOREM 3.1. Let A be a semisimple complex Jordan-Banach algebra,
and let a € A have finite spectrum, Spa = {aj,...,a,}. Suppose that
the spectral mapping x +— Spy(x) is lipschitzian at a. Then there exists n
nonzero orthogonal projectons p1, ..., p, whose sum is 1 such that a = a1p1+
e appn.

Proof. Almost the same as the proof of Theorem 2.2 except that the unital
algebra pAp is replaced by the algebra U, A. Note also that the spectral map-
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ping theorem used here is applied to the full closed subalgebra of A generated
by a which is unital and associative (cf. [6, Theorem 2.7]). |1
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