Diagonalization in Banach Algebras and Jordan-Banach Algebras

Abdelaziz Maouche

Department of Mathematics and Statistics, College of Science, Sultan Qaboos University P.O. Box 36 Al Khod 123, Muscat, Sultanate of Oman e-mail: maouche@squ.edu.om

(Presented by A. Rodríguez Palacios)

AMS Subject Class. (2000): 46H70, 17A15 Received September 10, 2003

1. Introduction

Let A be a complex Banach or Jordan-Banach algebra. To study the properties of the spectrum function $x \mapsto \operatorname{Sp} x$ we use the so called Hausdorff distance on compact sets of the complex plane \mathbb{C} defined by

$$\Delta(\sigma_1, \sigma_2) = \max \left\{ \sup_{\lambda \in \sigma_2} \{ \operatorname{dist}(\lambda, \sigma_1) \}, \sup_{\lambda \in \sigma_1} \{ \operatorname{dist}(\lambda, \sigma_2) \} \right\}$$

where $\operatorname{dist}(\lambda,\sigma)=\inf\{|\lambda-\mu|:\mu\in\sigma\}$ is the distance of the point λ to the compact set σ (see [1, p. 48]). In this paper, we intend to prove that if the spectrum of an element $a\in A$ is finite and the function $x\mapsto\operatorname{Sp} x$ is lipschitzian at a, that is $\Delta\big(\operatorname{Sp}(a+x),\operatorname{Sp}(a)\big)\leq M||x||$, then a is diagonalizable; in other words we can write a as a linear combination of projections. B. Aupetit proved an analogous spectral characterization for idempotents in [3], that is, elements $e\in A$ such that $e^2=e$ (hence in particular $\operatorname{Sp} e=\{0,1\}$), this is in fact contained in the proof of [3, Theorem 1.1]. Recall that a Banach algebra A is said to be semisimple if $\operatorname{Rad}(A)=\{0\}$, where $\operatorname{Rad}(A)$ is the Jacobson radical of A. In what follows $\rho(x)$ stands for the spectral radius of the element x, in our case we can write $\rho(x)=\max\{|\lambda|:\lambda\in\operatorname{Sp} x\}$. We gather now some well-known results on the spectrum [1, 3].

PROPOSITION 1.1. Let A be a semisimple Banach algebra and let p be an idempotent element of A. Then pAp is a closed semisimple subalgebra of A

with identity p such that $\operatorname{Sp}_{pAp}(pxp) \subset \operatorname{Sp}_A(pxp)$ and $\rho_{pAp}(pxp) = \rho_A(pxp)$ for every $x \in A$. Moreover, if a_1, \ldots, a_n are elements of A such that $a_i a_j = 0$ for $i \neq j$, then

$$\operatorname{Sp}(a_1 + \dots + a_n) \cup \{0\} = \operatorname{Sp} a_1 \cup \dots \cup \operatorname{Sp} a_n \cup \{0\}.$$

2. The Banach algebra case

To prove our result we need the following lemma which is taken from [3]. A proof is included since it is short and essential for our theorem.

LEMMA 2.1. Let $q \in A$ be a quasinilpotent element. Suppose there exists two positive constants r and M such that $\rho(x) \leq M||x-q||$ for ||x-q|| < r, then $q \in \operatorname{Rad}(A)$.

Proof. Let $y \in A$ be arbitrary. For $|\lambda| > \frac{||y||}{r}$, we have $\rho(q + \frac{y}{\lambda}) \leq M \frac{||y||}{|\lambda|}$, so $\rho(y + \lambda q) \leq M||y||$. Hence the upper semicontinuous function $\lambda \mapsto \rho(y + \lambda q)$ is bounded on the complex plane \mathbb{C} . Being subharmonic [1, Theorem 3.4.7], it is constant by Liouville's theorem for subharmonic functions [1, Theorem A.1.1]. So $\rho(y + \lambda q) = \rho(y)$ for every $y \in A$. By the characterization of the radical [1, Theorem 5.3.1] we have $q \in \text{Rad}(A)$.

THEOREM 2.2. Let A be a semisimple Banach algebra, and let $a \in A$ have finite spectrum, $\operatorname{Sp} a = \{\alpha_1, \ldots, \alpha_n\}$. Suppose that the spectral mapping $x \mapsto \operatorname{Sp}_A(x)$ is lipschitzian at a. Then there exists n nonzero orthogonal projectons p_1, \ldots, p_n whose sum is 1 such that $a = \alpha_1 p_1 + \cdots + \alpha_n p_n$.

Proof. Let $a \in A$ be with $\operatorname{Sp} a = \{\alpha_1, \ldots, \alpha_n\}$. By Holomorphic Functional calculus (see [5, Proposition 7.9]), there exist n nonzero orthogonal projections p_1, \ldots, p_n such that $1 = p_1 + \cdots + p_n$, $p_i p_j = 0$ for $i \neq j$, $a p_i = p_i a$ and $\operatorname{Sp}_A(a_i) = \{\alpha_i\}$, for $1 \leq i \leq n$. Set $a_i = p_i a$. Then $a_i \in p_i A p_i$ with $\operatorname{Sp}_{p_i A p_i}(a_i) = \{\alpha_i\}$ by Proposition 1.1. Let us now see that the spectral mapping $x \mapsto \operatorname{Sp}_{p_i A p_i}(x)$ is lipschitzian at $a_i - \alpha_i p_i$ for each $1 \leq i \leq n$. Indeed, take i = 1 and let $x_1 \in p_1 A p_1$, we have

$$a - \alpha_1 1 + x_1 = \sum_{i=1}^n a_i - \alpha_1 \left(\sum_{i=1}^n p_i \right) + x_1$$
$$= (a_1 - \alpha_1 p_1 + x_1) + \sum_{j=2}^n (a_j - \alpha_1 p_j).$$

By the preceding and orthogonality we have

$$\operatorname{Sp}_A(a - \alpha_1 1 + x_1) \cup \{0\} = \operatorname{Sp}_A(a_1 - \alpha_1 p_1 + x_1) \cup \{0, \alpha_2 - \alpha_1, \dots, \alpha_n - \alpha_1\}$$

and

$$\rho_{p_1 A p_1}(a_1 - \alpha_1 p_1 + x_1) = \rho_A(a_1 - \alpha_1 p_1 + x_1)
= \Delta \left(\operatorname{Sp}_A(a_1 - \alpha_1 p_1 + x_1), \operatorname{Sp}_A(a_1 - \alpha_1 p_1) \right)
= \Delta \left(\operatorname{Sp}_A(a - \alpha_1 p_1 + x_1), \operatorname{Sp}_A(a - \alpha_1 p_1) \right)
= \Delta \left(\operatorname{Sp}_A(a + x_1), \operatorname{Sp}_A(a) \right)
\leq M||x_1||.$$

Therefore, $x \mapsto \operatorname{Sp}_{p_1Ap_1}(x)$ is lipschitzian at $a_1 - \alpha_1p_1$, with $\operatorname{Sp}_{p_1Ap_1}(a_1 - \alpha_1p_1) = 0$. Hence $a_1 - \alpha_1p_1 = 0$ by Lemma 2.1, which completes the proof.

3. The Jordan-Banach case

We recall that a complex Jordan algebra A is non-associative and the product satisfies the identities ab = ba and $(ab)a^2 = a(ba^2)$, for all a, b in A. A unital Jordan-Banach algebra is a Jordan algebra with a complete submultiplicative norm. An element $a \in A$ is said to be invertible if there exists $b \in A$ such that ab = 1 and $a^2b = a$. The spectrum of $x \in A$ is by definition the set of $\lambda \in \mathbb{C}$ for which $\lambda - x$ is not invertible in A.

Since we consider only complex semisimple Jordan-Banach algebras, the analogue of Proposition 1.1 is valid in the Jordan case if we replace the subalgebra pAp by U_pA and use Propositions 4, 5, 6 and 7 of [4].

Using the characterization of the Jacobson radical for Jordan algebras obtained in [2], Lemma 2.1 is also true for Jordan-Banach algebras.

With all these results and those in [6] we can establish exactly as in the associative case the following analogue of Theorem 2.2.

THEOREM 3.1. Let A be a semisimple complex Jordan-Banach algebra, and let $a \in A$ have finite spectrum, $\operatorname{Sp} a = \{\alpha_1, \dots, \alpha_n\}$. Suppose that the spectral mapping $x \mapsto \operatorname{Sp}_A(x)$ is lipschitzian at a. Then there exists n nonzero orthogonal projectons p_1, \dots, p_n whose sum is 1 such that $a = \alpha_1 p_1 + \dots + \alpha_n p_n$.

Proof. Almost the same as the proof of Theorem 2.2 except that the unital algebra pAp is replaced by the algebra U_pA . Note also that the spectral map-

260 A. MAOUCHE

ping theorem used here is applied to the full closed subalgebra of A generated by a which is unital and associative (cf. [6, Theorem 2.7]).

ACKNOWLEDGEMENTS

The autor wishes to express his gratitude to the referee for his valuable comments and suggestions.

References

- [1] AUPETIT, B., "A Primer on Spectral Theory", Springer-Verlag, New York, 1991.
- [2] AUPETIT, B., Spectral characterization of the radical in Banach and Jordan-Banach algebras, *Math. Proc. Camb. Phil. Soc.* **114** (1993), 31–35.
- [3] AUPETIT, B., Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras, J. London Math. Soc. **62** (2) (2000), 917–924.
- [4] AUPETIT, B., BARIBEAU, L., Sur le socle dans les algèbres de Jordan-Banach, Can. J. Math. 41 (1989), 1090–1100.
- [5] BONSALL, F.F., DUNCAN, J., "Complete Normed Algebras", Springer-Verlag, New York, 1973.
- [6] Martinez, J., Holomorphic functional calculus in Jordan-Banach algebras, Ann. Sci. Univ. Clermont Ferrand II, Math. 27 (1991), 125–134.