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1. Introduction

Let A be a complex Banach or Jordan-Banach algebra. To study the
properties of the spectrum function x 7→ Spx we use the so called Hausdorff
distance on compact sets of the complex plane C defined by

∆(σ1, σ2) = max
{

sup
λ∈σ2

{dist(λ, σ1)}, sup
λ∈σ1

{dist(λ, σ2)}
}

where dist(λ, σ) = inf{|λ − µ| : µ ∈ σ} is the distance of the point λ to the
compact set σ (see [1, p. 48]). In this paper, we intend to prove that if the
spectrum of an element a ∈ A is finite and the function x 7→ Sp x is lipschitzian
at a, that is ∆

(
Sp(a + x), Sp(a)

) ≤ M ||x||, then a is diagonalizable; in other
words we can write a as a linear combination of projections. B. Aupetit
proved an analogous spectral characterization for idempotents in [3], that is,
elements e ∈ A such that e2 = e (hence in particular Sp e = {0, 1}), this is in
fact contained in the proof of [3, Theorem 1.1]. Recall that a Banach algebra
A is said to be semisimple if Rad(A) = {0}, where Rad(A) is the Jacobson
radical of A. In what follows ρ(x) stands for the spectral radius of the element
x, in our case we can write ρ(x) = max{|λ| : λ ∈ Sp x}. We gather now some
well-known results on the spectrum [1, 3].

Proposition 1.1. Let A be a semisimple Banach algebra and let p be an
idempotent element of A. Then pAp is a closed semisimple subalgebra of A
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with identity p such that SppAp(pxp) ⊂ SpA(pxp) and ρpAp(pxp) = ρA(pxp)
for every x ∈ A. Moreover, if a1, . . . , an are elements of A such that aiaj = 0
for i 6= j, then

Sp(a1 + · · ·+ an) ∪ {0} = Sp a1 ∪ · · · ∪ Sp an ∪ {0}.

2. The Banach algebra case

To prove our result we need the following lemma which is taken from [3].
A proof is included since it is short and essential for our theorem.

Lemma 2.1. Let q ∈ A be a quasinilpotent element. Suppose there exists
two positive constants r and M such that ρ(x) ≤ M ||x− q|| for ||x− q|| < r,
then q ∈ Rad(A).

Proof. Let y ∈ A be arbitrary. For |λ| > ||y||
r , we have ρ

(
q+ y

λ

) ≤ M ||y||
|λ| , so

ρ(y + λq) ≤ M ||y||. Hence the upper semicontinuous function λ 7→ ρ(y + λq)
is bounded on the complex plane C. Being subharmonic [1, Theorem 3.4.7],
it is constant by Liouville’s theorem for subharmonic functions [1, Theorem
A.1.1]. So ρ(y + λq) = ρ(y) for every y ∈ A. By the characterization of the
radical [1, Theorem 5.3.1] we have q ∈ Rad(A).

Theorem 2.2. Let A be a semisimple Banach algebra, and let a ∈ A have
finite spectrum, Sp a = {α1, . . . , αn}. Suppose that the spectral mapping
x 7→ SpA(x) is lipschitzian at a. Then there exists n nonzero orthogonal
projectons p1, . . . , pn whose sum is 1 such that a = α1p1 + · · ·+ αnpn.

Proof. Let a ∈ A be with Sp a = {α1, . . . , αn}. By Holomorphic Func-
tional calculus (see [5, Proposition 7.9]), there exist n nonzero orthogonal
projections p1, . . . , pn such that 1 = p1 + · · ·+pn, pipj = 0 for i 6= j, api = pia
and SpA(ai) = {αi}, for 1 ≤ i ≤ n. Set ai = pia. Then ai ∈ piApi with
SppiApi

(ai) = {αi} by Proposition 1.1. Let us now see that the spectral map-
ping x 7→ SppiApi

(x) is lipschitzian at ai − αipi for each 1 ≤ i ≤ n. Indeed,
take i = 1 and let x1 ∈ p1Ap1, we have

a− α11 + x1 =
n∑

i=1

ai − α1

(
n∑

i=1

pi

)
+ x1

= (a1 − α1p1 + x1) +
n∑

j=2

(aj − α1pj).
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By the preceding and orthogonality we have

SpA(a− α11 + x1) ∪ {0} = SpA(a1 − α1p1 + x1) ∪ {0, α2 − α1, . . . , αn − α1}
and

ρp1Ap1(a1 − α1p1 + x1) = ρA(a1 − α1p1 + x1)
= ∆

(
SpA(a1 − α1p1 + x1), SpA(a1 − α1p1)

)

= ∆
(
SpA(a− α1p1 + x1), SpA(a− α1p1)

)

= ∆
(
SpA(a + x1),SpA(a)

)

≤ M ||x1||.
Therefore, x 7→ Spp1Ap1

(x) is lipschitzian at a1 − α1p1, with Spp1Ap1
(a1

−α1p1) = 0. Hence a1 − α1p1 = 0 by Lemma 2.1, which completes the
proof.

3. The Jordan-Banach case

We recall that a complex Jordan algebra A is non-associative and the
product satisfies the identities ab = ba and (ab)a2 = a(ba2), for all a, b in
A. A unital Jordan-Banach algebra is a Jordan algebra with a complete
submultiplicative norm. An element a ∈ A is said to be invertible if there
exists b ∈ A such that ab = 1 and a2b = a. The spectrum of x ∈ A is by
definition the set of λ ∈ C for which λ− x is not invertible in A.

Since we consider only complex semisimple Jordan-Banach algebras, the
analogue of Proposition 1.1 is valid in the Jordan case if we replace the sub-
algebra pAp by UpA and use Propositions 4, 5, 6 and 7 of [4].

Using the characterization of the Jacobson radical for Jordan algebras
obtained in [2], Lemma 2.1 is also true for Jordan-Banach algebras.

With all these results and those in [6] we can establish exactly as in the
associative case the following analogue of Theorem 2.2.

Theorem 3.1. Let A be a semisimple complex Jordan-Banach algebra,
and let a ∈ A have finite spectrum, Sp a = {α1, . . . , αn}. Suppose that
the spectral mapping x 7→ SpA(x) is lipschitzian at a. Then there exists n
nonzero orthogonal projectons p1, . . . , pn whose sum is 1 such that a = α1p1+
· · ·+ αnpn.

Proof. Almost the same as the proof of Theorem 2.2 except that the unital
algebra pAp is replaced by the algebra UpA. Note also that the spectral map-
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ping theorem used here is applied to the full closed subalgebra of A generated
by a which is unital and associative (cf. [6, Theorem 2.7]).
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