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1. INTRODUCTION

An usual hypothesis to address the estimation problem in linear stochastic
systems is that the involved processes are gaussian; in this case, the least-
squares (LS) estimator of the signal is a linear function of the observations
and it can be easily obtained as the LS linear estimator. However, there exist
many practical situations where this gaussianity assumption is not realistic
and the LS estimator is not easily obtainable. This difficulty motivates the
necessity of looking for suboptimal estimators which improve the extensively
used linear ones. In this context, some authors as De Santis et al. [5] and
Carraveta et al. [3] have focused the study of the estimation problem in non-
gaussian systems on the search of polynomial estimators. Under a state-space
approach, a recursive algorithm for the LS second-order filter is derived in
[5] and generalized in [3] to an algorithm for the LS polynomial filter with
arbitrary degree; this estimation theory has been used, among others, by
Dalla-Mora et al. [4] for restoration of an image corrupted by additive non-
gaussian noise. In the last years, some other signal processing problems have
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been successfully solved by using polynomial estimators (see, for example, [1]
and [12]), and this fact justify the study of these estimators.

Systems with uncertain observations are characterized by including an
observation multiplicative noise described by a sequence of Bernoulli random
variables whose values -one or zero- indicate the presence or absence of signal
in the observation, respectively. These systems constitute an appropriate
model for analyzing those situations where the observation may not contain
the signal to be estimated, in which case it consists only of noise (for example,
situations of fading or reflection of transmitted signals from the ionosphere).

Due to the multiplicative noise component, even if the additive noises are
gaussian, the optimal estimators are not easily derived and the estimation
problem in systems with uncertain observations must be addressed under
a suboptimal approach. Particularly, linear and polynomial estimation
problems from uncertain observations have been treated by several authors,
as NaNacara and Yaz [11] and Caballero et al. [2], for different state-space
models.

Nevertheless, usually the state-space model for the signal to be estimated
is unavailable and only covariance information about the processes involved
in the observation equation is often accessible. The linear estimation problem
using that information has been considered in Nakamori et al. [8] under
the assumption that the uncertainty in the observations is modeled by
independent Bernoulli variables; however, there exist many situations, such
as data transmission in multichannel systems, in which this independence
assumption is not appropriate.

Under the assumption of non-independence of the Bernoulli variables
modelling the uncertainty and using the state-space model, Hadidi and
Schwartz [6] studied the LS linear estimation problem; they proved that the
linear estimators are not recursive in general, and they found a necessary and
sufficient condition for the recursivity. Under this condition, without using the
state-space model but only covariance information, recursive algorithms for
the linear estimation problem are obtained in Nakamori et al. [9] considering
that the observations are perturbed by additive white plus coloured noises; in
Nakamori et al. [10] non-independent uncertain observations perturbed only
by white noise are considered and algorithms for the quadratic estimators,
which improve the linear ones, are proposed.

In this paper the results in [9] and [10] are generalized; specifically, we

address the LS quadratic filtering and fixed-point smoothing problems from
uncertain observations perturbed by white and coloured noises, when the
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uncertainty is modeled by non-independent Bernoulli random variables and
the condition in [6] on the conditional probability matrices of these variables is
satisfied. Apart from the (2,2)-element of these matrices and the probability
that the signal exists in the observations, only the moments up to the fourth
one of the signal and additive noises (in a specific form which is satisfied for
a general kind of processes) are required for the estimation. The technique
proposed by De Santis [5], consisting in augmenting the signal and observation
vectors with their second-order Kronecker powers, is used to obtain the
quadratic estimators.

2. HYPOTHESES ON THE MODEL

Let z(k) and y(k) be n x 1 vectors which describe the signal and the
observation at time k, respectively. Let us suppose that the observation
equation is given by

(1) y(k) = U(k)z(k) + v(k) + vo(k)

where the additive noises, {v(k); k£ > 0} and {vo(k); k£ > 0}, are white and
coloured sequences, respectively, and the multiplicative noise, {U(k); k > 0},
is a sequence of Bernoulli random variables with P [U(k) = 1] = p(k) # 0.
Hence, in each instant of time k, the observation y(k) may not contain the
signal (U(k) = 0), in which case it will only consist of noise. The probability
1 — p(k) that the observation at time k is only noise is named false alarm
probability.

We assume the following hypotheses on the signal and the noise processes
of equation (1):

(I) The signal process {z(k); k£ > 0} has zero mean and its autocovariance
function, K,(k,s) = E[z(k)zT (s)], as well as the autocovariance function of
its second-order powers,

K ok, 8) = B[22 ()~ B2 (0)]) (2 s5) - B )T

(212(k) = 2(k) ® z(k), where ® denotes the Kronecker product [7]), are
expressed in a semi-degenerate kernel form,

_ [ A(k)BT(s), 0<s<k,
K (k,s) = { B(k)AT(s), 0<Fk<s,

)
a(k)b’(s), 0<s<Ek,
K, (k,s) = { b(k)aT(s), 0<k<s,
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where the n x M’ matrix functions A, B and the n? x L' matrix functions a,
b are known.

Moreover, let us suppose that the covariance of the signal and its second-order
powers, K, 12 (k,s) = E [2(k)2[%7(s)], can be also expressed as

2z[2

[ a(k)d(s), 0<s<k,
Kzz[Q](kas) - { dl(k)dz{(S), 0< k < s,

where ¢1, ¢a, di and dy are n x N, n? x N’, n x P' and n? x P' known matrix
functions, respectively.

(IT) The noise process {v(k); k > 0} is a zero-mean white sequence and its
moments, up to the fourth one, are also known and will be denoted as follows

Ry(k) = Ep(kWwT ()], Ry (k) = Elo(k)o?7 (k)]

vl2
Ry (k) = B | (0 (k) — B0 (8)]) (2 (k) — B[ (k)" .

(III) The coloured noise {vg(k); k > 0} has zero mean and its autocovariance
function, K,,(k,s) = E[vg(k)vl (s)], as well as the autocovariance function of
their second-order powers,

K 1k, 5) = B[ (6 ()~ E[of (D) o (5) — B (5))" ],
are expressed in a semi-degenerate kernel form,

a(k)F7(s), 0<s<k,
Rullos) ={ Grts) 0<k2o

_ [ (k)7 (s), 0<s <k,
Kvgﬂ(k’S) - { S(E)YI'(s), 0<k<s,

where the n x M" matrix functions «, 8 and the n? x L" matrix functions ~,
0 are known.
Also, the covariance function of the coloured noise and its second-order

powers, K_ (k,s) = E [vg(k)v([]2]T(s)], can be expressed in a similar way,

[2]
0Vq
namely,

[ a(k)ed(s), 0<s<Ek,
Kvov([)2](k’8) N { p1(k)pl(s), 0<k<s,

where €1, €2, p and py are n x N”, n? x N”, nx P" and n? x P" known matrix
functions, respectively.
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(IV) The multiplicative noise {U(k); k£ > 0}, is a sequence of Bernoulli
variables with conditional probability matrix P(k/j). As in [6], we assume
that the (2,2)-element of the conditional probability matrix,

[P(k[9)]3, = PUK) =1/U(j) = 1] = Ppa(k),

is independent of j, for j < k.
(V) The signal process, {z(k); k£ > 0}, and the noise processes, {U (k); k > 0},
{v(k); k> 0} and {vg(k); k& > 0}, are mutually independent.

3. QUADRATIC ESTIMATION PROBLEM

Our aim is to obtain the LS quadratic estimator of z(k) based on the
observations up to the instant L (L > k). By defining the random vectors
y2l() = y6) ® y(i), and since E[ymT(z')y[Q}(i)] < 00, this estimator
is the orthogonal projection of z(k) on the space of n-dimensional linear
transformations of y(1),...,y(L) and y&(1),...,y2(L). In order to treat
this problem, let us define the augmented signal and observation vectors by
aggregating to the original vectors, z(k) and y(k), their second-order powers
22/(k) and yl?(k), that is,

200~ (Lol ) 2= (b )

Then, the vector constituted by the first n entries of the linear estimator of
Z(k) based on Y(1),...,Y(L) provides the quadratic estimator of z(k).

Now, we analyze the properties of the random vectors Z(k) and Y(k)
which will be utilized to obtain the LS linear estimator of Z(k). In order to
study the properties of Y (k) we need to obtain an appropriate expression for
yPl(k). By employing the Kronecker product properties [7] and taking into
account that U(k) = U?(k) since U(k) takes the values 0 and 1, the following
expression is obtained

yPl(k) = U (K)2PL (k) + f (k) + fo(k)
with

@) FR) = (e + Kp) [(UR)2(8) +vo(k)) @ v(k)] + o (k)

(3) folk) = Uk) (L2 + K,2) (2(k) ® wo(k)) + vy (k)



404 S. NAKAMORI, R. CABALLERO, A. HERMOSO, J. JIMENEZ, J. LINARES

2

where I,,» is the n? x n? identity matrix and K,,» is the n? x n? commutation

matrix, which satisfies K, 2(z(k) @ v(k)) = v(k) @ z(k).
Then, by denoting

with

the vectors Y (k) = Y(k) — E[Y(k)] satisfy
(4) Y(k) =U(k)Z(F) + V (k) + Vo (k).

Note that, in view of their own definition, the processes {Z(k); k > 0},
{V(k); k >0} and {Vu(k); k£ > 0} involved in the above equation (4) all have
zero-mean. In the following propositions other statistical properties of these
processes are established.

PROPOSITION 1. Let us suppose that hypotheses (I)-(V) are satisfied.
Then the autocovariance function of the zero-mean process {Z(k); k > 0}
is expressed in a semi-degenerate kernel form, specifically

AE)BT(s), 0<s <k,

Kalts) = Bz 276 = { i) 0Sh sk

being
_ A(k) C1 (k) Onxpl O’n><L’
A(k) - < 0n2><M’ 0n2><N’ dg(k) a(k-)

— B(k) Opnxnt  d (k) (Y
B(k)_<0nzxM, CQ(/f;V) Onzxp/ Wj )

Moreover, the process {Z(k); k > 0} is independent of the multiplicative noise
{U(k); k> 0}.

Proof. Nakamori et al. [10]. 1
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PROPOSITION 2. Under hypotheses (I1)-(V), the zero-mean additive noise
{V(k); k > 0} of equation (4) is a sequence of mutually uncorrelated random
vectors with covariance matrices given by

et =V V0= (G )

being

5 Ras(k) = (I + Ko2) | (p(K) A(K) BT (k) + (k)87 (k)
R, (K)] (Lyz + Koz) + Ry ().

Moreover, {V(k); k > 0} is uncorrelated with the processes {Z(k); k > 0}

and {U(k)Z(k); k > 0}.

Proof. Using the independence hypothesis (V) on the model and taking
into account that {v(k); k > 0} is a white noise, it can be shown that, for
k+#s, E[V(k)VT(s)] =0. For k = s,

Rv(k) Rv'u 2 (k)
Ry (k) = < Rgv[ﬂ(k) RQ[Q](k) )

with Rgo(k) = E [(f(k) —E[f(k)])(f(k)—E [f(k)])T} . Using the Kronecker

product properties, again the independence hypothesis and expression (2), we
obtain that

Rao(k) = (2 + Ky2) |(p(K) E[2(k) 27 (k)] +E[wo (k)] ()]
OF [o(k)oT ()] | (2 + Ko2) + Ry (k).

Since, E [z(k)2T (k)] = A(k)BT (k), E [vo(k)vi (k)] = a(k)BT (k) and E[v(k)
vT (k)] = Ry(k), expression (5) is obtained.

The uncorrelation between {V(k); k& > 0} and the processes {Z(k); k >
0}, {U(k)Z(k); k > 0} is derived in a similar way, by using hypotheses (I)-(V)
and employing the Kronecker product properties. i

PROPOSITION 3. Let us suppose that hypotheses (I)-(V) are verified.
Then the zero-mean process {Vy(k); k > 0} of equation (4) is a coloured
noise whose covariance function, Ky, (k,s) = E[Vy(k)V{! (s)], is given by
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. [Ck)DT(s), 0<s<h,
(i) Ko (k,s) = {’D(k)CT(s), 0<k<s,

being
C(k) = (C1(k),Ca(k)) .  D(k) = (D1(k), D2(K)),

with

Ci(k) = (Poalk) = p(k) ) E [Z(R)].

Di(k) = p(k)E[Z(k)],
where

0

BZO= (e (aiypr ) )
and

< n><P 0n><L 0n><MM)

On 2% M 0'n,2><N pQ(k) ’Y(k) Z/)(k) ’

< n><N k) 0n><L” 0n><M’M”>

Op2xpr €2(k) Op2ypr O(K) x (k) ’
where

P(k) = Poo(k) (In2 + Kp2) (A(k) ® a(k))
x(k) = p(k) (I + Kp2) (B(k) ® B(k)) -
(ii)
Ky, (k. k) = p(k) (1 —p(k)) E[Z(K)] E [27 (k)]
a(k)BT (k) ei(k)e (k)
L awam i)

with

ra2 (k) = p(k)(Ip2 + Ky2) [A(k)BT (k) @ (k)BT (k)] (1,2 + Ky2)
+ (k)T (k).

Moreover, {Vy(k); k > 0} is uncorrelated with the processes {V (k); k > 0},
{Z(k); k >0} and {U(k)Z(k); k > 0}.

Proof. (i) For s < k, taking into account that, from hypothesis (IV),
E[U(k)U(s)] = P22(k)p(s), the hypotheses on the model lead to
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Ky (ky8) = (Paa(k) — p(k))p(s) E [Z(k)] B [27(s)]
a(k)BE(s) er(k)el (s)
+<p2<k)p1 T(s)  raa(k,s) )

with  roo(k,s) = E[(fg(k)—E[fo(k)])(fo(s)—E[fo(s)])T}. Using the
Kronecker product properties, again the independence hypothesis and
expression (3), we obtain that

ra2(k) = Pop(K)p(s) (T + Kp2) (A(R)BT () © a(k) 87 (5) ) (T2 + Ky
+(B)8" (5)
and taking into account that
A(k)BT (s) ® a(k)p" (s) = (A(k) ® a(k)) (B(s) ® B(s))" .
we obtain
raa(k) = 7(B)3" (5) + w(kIX" (9)
Hence, for s < k,
Ky (k, s) = (Paa(k) — p(k)) p(s) E[Z(k)

+< a(k)B7 (s) 1 (k)el (s) )
pa(K)pT(s) (k)07 (5) + p(k)xT (s)

&
N
=

Analogously, for k < s,
Ky (ks 5) = (Poa(s) = p(s)) p(k) E[Z(K)] E [27 (s)]

)—p
N < B(k)al (s) p1(k)p3 (s) )
a(k)el (s) S(k)y"(s) + x(k)p" (s)

)

VA

Finally, since u ® v = vec(vu' ), using hypothesis (I), it is immediate that

Elz vec ( BT(k)) )

and (i) is proved.

(ii) The proof of (ii) is similar to the previous one, taking now into account
that E[U(k) — p(k)]* = p(k)(1 — p(k)) and E [U*(k)] = p(k).

Finally, as in Proposition 2, the uncorrelation between {Vy(k); & > 0}
and the processes {V(k); k > 0}, {Z(k); k > 0} and {U(k)Z(k); k > 0}
is derived by using hypotheses (I)-(V) and employing the Kronecker product
properties. |1
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In view of the properties of the processes involved in equation (4), which
have been established in Propositions 1, 2 and 3, the recursive algorithms
given in [10] can be applied to obtain the linear filtering and fixed-point
smoothing estimators, /Z\(k,L), L > k, of the signal Z(k) based on the
observations Y (1),...,Y(L). These algorithms, which are presented in the
following theorem, allow us to obtain the required quadratic filtering and
fixed-point smoothing estimators of the original signal z(k), just by extracting
the first n entries of Z(k, L).

THEOREM 1. The linear fixed-point smoothing estimator, Z(k,L) for
L > k, can be recursively obtained from
Z(k,L) = Z(k,L — 1) + h(k, L, L)v(L)
v(L) =Y(L) — Poo(L)A(L)O(L — 1) = C(L)Q(L — 1)
O(L—-1)+ J(L,L)v(L), O0)=0
)=Q(L—1)+I(L, L)v(L), Q0)=0
being
J(L,L) = [p(L)BT(L) — Poa(L)r(L —1)AT(L) — ¢(L — 1)CT(L)| T X(L)
I(L, L) = [D"(L) = Pya(L)¢" (L — 1) AT (L) — d(L - 1)C"(L)] T~ (L)

(L) = [p(L)B(L) — P3,(L)A(L)r(L — 1) —Pao(L)C(L)" (L —1)] AT(L)
— [P22(L)A(L)e(L — 1) + Ry (L) +C(L)d(L — 1)]CT(L) + Kv, (L, L)

where
r(L) = r(L—1)+ J(L, L)I(L)J"(L,L), r(0)=0
c(L) = c¢(L — 1) + J(L, L)II(L)IT(L,L), ¢(0)=0
d(L) =d(L —1) + I(L, L)II(L)IT (L, L), d(0) = 0.

The smoothing gain, h(k, L, L), satisfies
h(k, L, L) = [p(L)B(k)A" (L) — Poo(L)E(k, L — 1) AT (L)

. — F(k,L—1)ch(D)) 17 4(L)
with E(k,L) = E(k,L — 1) + h(k, L, L)IW(L)JT (L, L),
F(k,L) = F(k,L —1) + h(k,L, L)II(L)I" (L, L),
F(k,k) = A(k)c(k), E(k,k) = A(k)r(k).

The initial condition is given by the filter, Z(k,k) = A(k)O(k), and the
filtering error variances, P(k, k), satisfy

P(k, k) = A(k)BT (k) — A(k)r(k)AT (k).

(
)
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Proof. Nakamori et al. [10]. 1§

4. COMPUTER SIMULATION RESULTS

In order to show the effectiveness of the proposed quadratic estimators,
we have performed a program in MATLAB, which simulates the signal value
at each iteration, and provides the linear and quadratic estimates, as well as
the corresponding error covariance matrices.

This program has been applied to a scalar signal generated by the following
first-order autoregressive model

2(k+1) =0.952(k) + w(k)

where {w(k); k > 0} is a zero-mean white Gaussian noise with Var [w(k)] =
0.1, for all £.

The autocovariance and crosscovariance functions of this signal and its
second-order powers are

K,(k,s) = 1.025641 x 0.95*7%, 0<s<k
K, (K, s) = 2.1038795 x 0.952(:=3) 0 <s <k
K, »(k,s) =0, Vs,k.

So, according to hypothesis (I),

A(k) = 1.025641 x 0.95%,  B(k) = 0.957%,
a(k) = 2.1038795 x 0.95%¢ b(k) = 0.9572F,
C1 (k) = CQ(k) = d1 (k) = dQ(k) =0.

As in [6], we consider that the signal can be transmitted through one of
two channels, with observation equations:

Channel I:  y(k) = z(k) + v(k) + vo(k)
Channel II:  y(k) = B(k)z(k) + v(k) + vo (k)

where {\(k); k > 0} are independent Bernoulli random variables with P[A(k)
= 1] = p, for all k. The noise {v(k); k > 0} is a white sequence with

E[p(k)] =0, Ry(k)=9.142857,
Ry, (k) = —62.693878, R, (k) = 429.900875

and {vg(k); k> 0} is a coloured noise generated by

’U[)(k‘ + ].) = 0.5’00 (k‘) + v (k‘)
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where {v;(k); k > 0} is a zero-mean white Gaussian noise with Var [v1 (k)] =
0.075, for all k. For this model, we have

Ky (k,s) =0.1x055 0<s<k
K2 (k,5) = 0.02 x 0.52k=8) < s<k
Ky2(k,s) =0, Vsk

2
0
and, according to hypothesis (I1T),

a(k) =0.1 x0.5%, B(k) =0.5"*,
(k) =0.02 x 0.5%%,  §(k) = 0.572
e1(k) = e2(k) = p1(k) = p2(k) = 0.

Assuming that Channel IT is randomly picked with probability ¢, the
observations can be expressed as

y(k) = U(k)z(k) +v(k) + vo(k)

being U(k) = (1 — 6) + 0A(k) and 6 a Bernoulli variable with P[0 = 1] = q.
Then, U(k) are Bernoulli variables with

p(k) = PlU(k) =1] =pg + (1 —q)
Pap(k) = [1—q(1 = p*)] /[1 - q(1 = p)].

In order to compare the linear and quadratic estimates of this signal, we
have performed two hundred iterations of the respective algorithms for several
values of the parameters p and ¢, which lead to different situations for the
sequence {U(k); k > 0}.

The linear and quadratic filtering error variances for p(k) = 0.72 and
different values of P, 5(k), namely P> 2(k) = 0.72, 0.8833 and 1, are displayed
in Figure 1, which shows that the quadratic filtering error variances are always
less than the linear ones. This figure also shows that the error variances
increase with P 2(k); so, as Py 2(k) increases, the estimations of the signal are
worse.

Figure 2 displays the simulated signal and the quadratic filtering estimates
for the same probability, p(k) = 0.72, and the above different values P o (k) =
0.72,0.8833, 1.

Figure 3 and Figure 4 display a simulated signal together with the linear
and quadratic filtering estimates for p(k) = 1 (the signal is always present in
the observations and, hence, P>(k) = 1) and p(k) = 0.72, P»2(k) = 0.8833,
respectively. In both cases, the figures show that the quadratic filtering
estimate follows the signal evolution better than the linear one, agreeing with
the comments about Figure 1.
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Figure 1: Linear and quadratic filtering error variances when p(k) = 0.72
and (a), (d): Pya(k) =1, (b), (e): Poo(k) = 0.8833, (¢), (f): Paa(k) =0.72.
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Figure 2: Signal and the quadratic filtering estimates for
p(k) =0.72 and P, o(k) = 0.72, 0.8833, 1.
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Figure 3: Signal, linear and quadratic filtering estimates for
p(k) =1 and Pyo(k) = 1.
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Figure 4: Signal, linear and quadratic filtering estimates
for p(k) = 0.72 and P (k) = 0.8833.
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