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Introduction

Classically, a Kaehler structure consists of a Riemann metric and a com-
plex structure, which are related by well known compatibility conditions. The
Riemann metric is then called a Kaehler metric. If a Kaehler metric is allowed
to be non-degenerate and non-definite, the concept of indefinite Kaehler struc-
ture appears naturally. So, we have a geometry which is, at the same time,
complex and semi-Riemannian. Besides its purely mathematical interest, in-
definite Kaehler geometry (in the case of index 2) could be seen, from the point
of view of Physics, as a synthesis of two important geometries: the Lorent-
zian geometry of space-time and the symplectic geometry of phase space. The
indefinite Kaehler metric is a complex version of the Lorentzian metric and
the Kaehler form is a covariant version of the classical symplectic form. It is
argued in G. Kaiser [22] that indefinite Kaehler geometry could be a unifying
geometry to study holomorphic bundles on complexifications of space-time.

M. Barros and the first author [7] systematically introduced indefinite
Kaehler manifolds and studied several properties involving their curvature.
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After introducing the standard spaces of constant holomorphic sectional cur-
vature (that is, the simply connected complete indefinite complex space forms)
[7], [61], it is natural to think about their complex submanifolds. These are
taken to be non-degenerate in the sense that the induced metric becomes non-
degenerate. Therefore, a complex submanifold itself has an indefinite Kaehler
structure, namely, the inherited one from the ambient space. So, sometimes
non-degenerate complex submanifolds are also called as indefinite Kaehler
submanifolds.

Our viewpoint to study complex submanifolds will be the differential geo-
metric one, that is, with emphasis on the semi-Riemannian metric as in K.
Ogiue [42] and A. Ros [49]. In the definite case, complex submanifolds of rel-
evant Kaehler manifolds were previously well known in Algebraic Geometry,
in fact, several complex submanifolds are important algebraic varieties. How-
ever, we have to construct good examples of complex submanifolds which we
will study later. It will be shown that the behavior of (non-degenerate) com-
plex submanifolds in indefinite complex space forms is quite different to that
known in the definite case. We can say that the geometrical properties are
richer in the indefinite case, and, sometimes, so rich that some natural geomet-
ric assumptions don’t lead to expected classifications. We will construct and
explain many examples of complex submanifolds in several indefinite complex
space forms. Then, we will give a number of results, which will be compared
with the definite case. Both for the convenience of the reader and for historical
reasons, we will deal first with complex hypersurfaces. Then, we will consider
complex submanifolds of higher codimension, although the case of hypersur-
faces will be eventually looked at again. Furthermore, some current problems
and remarks are explained in the hope of giving an extensive panoramic view
of the research on this topic.

To end this section we would like to point out that we have chosen here
the so called complex approach to complex submanifolds. As it is well known
there is another approach (the real approach). Our choice treats to unify
several results obtained from the two different approaches. In order to keep a
reasonable length of the paper we have not used both ones simultaneously. The
reader interested can consult [42] where both approaches were simultaneously
used in the positive definite case. Using [42] is not difficult to translate the
content which follows to real notation.
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Chapter 1. Linear preliminaries

1.1. Scalar product vector spaces. Let V be an m-dimensional
vector space over R, which is called a real vector space. Given a symmetric
bilinear form b on V , two vectors v and w of V are said to be orthogonal
with respect to b, written v⊥w, provided b(v, w) = 0. Thus, b is called a
scalar product provided that it is non-degenerate, that is, b(v, w) = 0 for
any vector w in V implies v = 0, equivalently when the only vector which is
orthogonal to any other is the zero vector. The symmetric bilinear form b is
an inner product provided that it is positive definite. For a real vector space
V equipped with a scalar product b, a vector v in V is said to be spacelike,
null or timelike, according as b(v, v) > 0 or v = 0, b(v, v) = 0 and v 6=0 or
b(v, v) < 0, respectively. It is easily seen that there is a null vector in V if and
only if neither b nor −b is an inner product.

In the sequel, V will denote a scalar product space, that is, a real vector
space furnished with a scalar product b. Let W be a subspace of V . Then
the restriction b|W to W of the scalar product is also symmetric and bilinear,
but not necessarily non-degenerate. In fact, for a 1-dimensional subspace W
spanned by a null vector, b|W is degenerate. A subspace W is said to be
non-degenerate if b|W is non-degenerate.

The index of the scalar product b on V is defined to be the largest integer
ind V which is the dimension of a subspace W of V such that b|W is negative
definite. Thus the index s satisfies 0≤s≤m and s = 0 if and only if b is positive
definite.

Two subsets A and B of V are said to be orthogonal, denoted by A⊥B,
provided that v and w are orthogonal for all v of A and w of B. For a subspace
W of V , the set W⊥ consisting of vectors v of V such that v⊥W becomes
a subspace, which is called the W -perpendicular subspace. The following
properties concerning about the perpendicular operation are well known.

Lemma 1.1.1. If W is a subspace of a scalar product space V , then we
have

(1) dimW + dimW⊥ = dimV ;

(2) (W⊥)⊥ = W ;

(3) W is non-degenerate if and only if V is the direct sum decomposition of
W and W⊥.

Observe that, because of this property it follows that W is non-degenerate
if and only if W⊥ is also so.
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A vector v of V is said to be unit provided that b(v, v) = ±1. As usual a set
of mutually orthogonal unit vectors is said to be orthonormal. The following
result is also well known.

Lemma 1.1.2. For a vector space V with a scalar product b we have the
following properties:

(1) There exists an orthonormal basis {e1, . . . , em} for V , that is, b(ei, ej) =
εiδij , where εj = b(ej , ej) = ±1;

(2) Each vector v of V has a unique expression

v =
∑

εjb(v, ej)ej ;

(3) For any orthonormal basis {e1, . . . , em} for V , the number of negative
signs in the signature (ε1, . . . , εm) is equal to the index s of V ;

(4) If W is non-degenerate, then we have

ind V = ind W + ind W⊥.

1.2. Complexifications. A complex structure on a real vector space
V , dim V = m ≥ 1, is a linear operator J of V such that J2 = −I, where I
stands for the identity transformation of V . A vector space furnished with a
complex structure J can be made a vector space over C by defining a scalar
multiplication by complex numbers as follows:

(a + ib)v = av + bJv for any v∈V and a, b∈R,

where i denotes the imaginary unit. This complex vector space is denoted by
VJ . Since v 6=0 and Jv are linearly independent, the dimension m of V must
be even and m/2 is the complex dimension of VJ .

Conversely, given a complex vector space V of complex dimension n, let
J be the linear operator of V defined by Jv = iv for any v∈V . Then V can
be regarded as a real vector space if real scalars are only used, and it is of
dimension 2n and J is a complex structure of V .

Lemma 1.2.1. For a 2n-dimensional real vector space V with a complex
structure J , there exists a basis {v1, . . . , vn, Jv1, . . . , Jvn}.

Now, let V be an m-dimensional real vector space and V c be the com-
plexification of V . The set V c is by definition the set of vectors v + iw for



344 a. romero, y.j. suh

any vectors v and w of V , and the sum and the scalar multiplication defined
naturally on V c by

(v1 + iw1) + (v2 + iw2) = (v1 + v2) + i(w1 + w2),
(a + ib)(v + iw) = (av − bw) + i(aw + bv),

for any vectors v, w, vj , wj (j = 1, 2) of V and any a, b ∈ R. It is easy to see
that V c, endowed with these operations, is a complex vector space of complex
dimension m. Then V can be regarded as a real subspace of V c in a natural
way. In fact, if we call v − iw the conjugate vector of v + iw, noted v + iw,
then a vector of V c which equals to its conjugate is called a real vector. Thus,
V can be naturally regarded as the real vectors of V c.

For a linear operator f of V , a natural extension f c from V c to V c is
defined by f c(v + iw) = f(v) + if(w). Then it is easily seen that f c is C-
linear and the extension is unique in a natural way. In fact, let f ′ be another
extension of f , that is, f ′(v) = f(v) for any vector v of V . Since f ′ is also
C-linear, the relationship

f ′(v + iw) = f ′(v) + if ′(w) = f(v) + if(w) = f c(v + iw)

follows for any vectors v and w of V .

Remark 1.2.2. For a vector space V with a complex structure J the com-
plex vector space VJ ought to be distinguished from the complexification of
V c of V .

Concerned with a basis for the complexification V c of V it is easily seen
that the following property holds true.

Lemma 1.2.3. A basis {v1, . . ., vm} for a real vector space V is also a basis
for the complex vector space V c.

We assume next that V is a real 2n-dimensional vector space equipped
with a complex structure J . Then J can be uniquely extended to a complex
linear operator Jc of V c and it satisfies Jc2 = −I. The eigenvalues of Jc are
therefore i and −i. Let V 1,0 and V 0,1 be the eigenspaces of Jc corresponding
to the eigenvalues i and −i, respectively. On the other hand, the dual space
V ∗ of V admits a complex structure J∗ defined by (J∗ω)(v) = ω(Jv), ω ∈ V ∗,
v ∈ V . Then, similarly the complexification V ∗c of the dual space V ∗ admits
the complex structure J∗c which is the natural extension of J∗. Let V1,0

and V0,1 be the eigenspaces of J∗c corresponding to the eigenvalues i and −i,
respectively. The following result is then easy to prove.
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Proposition 1.2.4. We have the direct sum decompositions as complex
vector spaces V c = V 1,0 ⊕ V 0,1, V ∗c = V1,0 ⊕ V0,1, where

V 1,0 = {v − iJv : v∈V }, V 0,1 = {v + iJv : v∈V };
V1,0 = {ω∈V ∗c : ω(v) = 0 for all v∈V 0,1},
V0,1 = {ω∈V ∗c : ω(v) = 0 for all v∈V 1,0}.

1.3. Hermitian scalar products. A Hermitian scalar product g on
a real vector space V with a complex structure J is a scalar product g on V
which is J-invariant; that is, g satisfies

g(Jv, Jw) = g(v, w) for any v and w of V. (1.3.1)

It is usually said that the Hermitian scalar product g on V is compatible with
the complex structure J .

In order to explain this terminology, the concept of a Hermitian scalar
product on a complex vector space V ′ is introduced. It is by definition a
C-valued function h on V ′×V ′ such that

(1) h(v′, w′) is C-linear in v′;

(2) h(w′, v′) = h(v′, w′);

(3) h is non-degenerate in the sense that h(v′, w′) = 0 for any vector w′ of
V ′ implies that v′ = 0.

Suppose that the complex vector space VJ , induced from a 2n-dimensional
real vector space V with a complex structure J , admits a Hermitian scalar
product h. If a real-valued function g on V×V is defined as the real part of
h, then g is a Hermitian scalar product on (V, J).

In fact, for any v and w of V , the function g is given by

g(v, w) = {h(v, w) + h(w, v)}/2,

from which it is easy to see that g is symmetric and bilinear. That g(v, w) = 0
for any w of V implies that h(v, w) is pure imaginary, say ia, a ∈ R. Then
h(v, Jw) becomes also so and moreover we have

h(v, Jw) = h(v, iw) = −ih(v, w) = a,

which yields that

a = −ih(v, w) = 0 for any w of V.
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It means that g is non-degenerate, since h does so. Furthermore it satisfies

g(Jv, Jw) = Re h(iv, iw) = Re h(v, w) = g(v, w).

In particular, we have

h(v, w) = g(v, w)− ig(Jv,w). (1.3.2)

Conversely, for a real vector space V with a complex structure J and a
Hermitian scalar product g, a complex valued function h on VJ×VJ is defined
by (1.3.2). A simple computation shows that h satisfies conditions (1) and
(2) of the previous notion of Hermitian scalar product. Condition (3), that is
the non-degeneracy of h, is only here asserted. Suppose that h(X, Y ) = 0 for
any vector Y of VJ . We put X = (a + ib)v, a, b∈R, v∈V with v 6=0. For any
vector w in V⊂VJ we then have

h(X, w) = ah(v, w) + bh(Jv, w)
= {ag(v, w) + bg(Jv,w)}+ i{−ag(Jv, w) + bg(v, w)}
= 0,

which implies that

(a2 + b2)g(v, w) = (a2 + b2)g(Jv, w) = 0,

for any w and therefore a = b = 0; that is, X = 0.

Accordingly, a Hermitian scalar product h on VJ corresponds one to one to
that on (V, J), and from this fact it is said that the Hermitian scalar product
g is compatible with the complex structure J .

Now, for a real vector space V endowed with a complex structure J and a
Hermitian scalar product g, there exists a natural extension of g on V c which
is denoted by the same symbol. The extension g is defined by

g(X1, X2) = {g(v1, v2)− g(w1, w2)}+ i{g(v1, w2) + g(w1, v2)} (1.3.3)

for any vectors Xj = vj + iwj of V c, j = 1, 2. The proof of the following result
is straightforward.

Proposition 1.3.1. Let g be a Hermitian scalar product on a real vector
space V with a complex structure J . Then g can be uniquely extended to a
symmetric C-bilinear form on V c and it satisfies the following properties:
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(1) g(X̄, Ȳ ) = g(X, Y );

(2) g is non-degenerate;

(3) g(X, Y ) = 0 for any X and Y in V 1,0 or in V 0,1.

Conversely, every symmetric C-bilinear form g on V c satisfying the pre-
vious (1), (2) and (3) is the natural extension of a Hermitian scalar product
on V .

Remark 1.3.2. For the natural extension g to V c of the Hermitian scalar
product g of V , the complex valued function on V c×V c defined by

h(X, Y ) = g(X, Ȳ )

is a Hermitian scalar product on V c.

For details in this section, see Kobayashi and Nomizu [25] and O’Neill [44],
for instance.

Chapter 2. Indefinite Kaehler manifolds

2.1. Complex manifolds We begin by recalling some basic concepts
of complex manifolds. An almost complex structure J of a real manifold
M is a tensor field1 of type (1,1) which satisfies J2

x = −Ix at any point x
of M , where Ix is the identity transformation of the tangent space TxM .
A manifold furnished with an almost complex structure is called an almost
complex manifold. As is well known, an almost complex manifold is orientable
and of even dimension.

Now, we recall that a complex manifold M , with complex dimension n,
carries a natural almost complex structure given as follows:

For a complex coordinate system {zj} with zj = xj + iyj in a coordinate
(open) neighborhood around x of M , it is seen that {x1, y1, . . . , xn, yn} is a
real local coordinate system of M and hence

( ∂

∂x1

)
x
,
( ∂

∂y1

)
x
, . . .,

( ∂

∂xn

)
x
,
( ∂

∂yn

)
x

gives a basis for TxM . An operator Jx of TxM can be defined by

Jx

( ∂

∂xj

)
x

=
( ∂

∂yj

)
x
, Jx

( ∂

∂yj

)
x

= −
( ∂

∂xj

)
x
, (2.1.1)

1In this lecture note, manifolds and other geometric objects are assumed to be of class
C∞.
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for j = 1, . . . , n. Then the definition of Jx is independent of the choice of the
complex coordinate system around x.

In fact, let {wj} with w = uj + ivj be another complex coordinate system.
Since zj = xj + iyj is holomorphic, the following Cauchy-Riemann equations
hold true on a neighborhood of x,

∂xj

∂uk
=

∂yj

∂vk
,

∂xj

∂vk
= − ∂yj

∂uk
,

for j, k = 1, . . . , n.
On the other hand, we always have for any k

( ∂

∂uk

)
x

=
∑

j

{(∂xj

∂uk

)
x

( ∂

∂xj

)
x

+
( ∂yj

∂uk

)
x

( ∂

∂yj

)
x

}
,

from which together with the definition of Jx it follows that

J
( ∂

∂uk

)
x

=
∑

j

{(∂xj

∂uk

)
x

( ∂

∂yj

)
x
−

( ∂yj

∂uk

)
x

( ∂

∂xj

)
x

}

=
( ∂

∂vk

)
x
.

Similarly, we get

Jx

( ∂

∂vk

)
x

= −
( ∂

∂uk

)
x
,

which means that the definition (2.1.1) of Jx is independent of the choice
of the coordinate neighborhoods. The tensor field J which assigns to each
point x of M the operator Jx is smooth, since the components of J relative
to the local coordinate system {x1, y1, . . . , xn, yn}, induced from the complex
coordinate system in a neighborhood, are given by either of 0, 1 and −1. The
definition of J yields

J2
x = −Ix at any point x,

and hence J is an almost complex structure of M . The almost complex
structure J on a complex manifold M described here is said to be induced by
the complex structure of M , in fact, J is then called a complex structure.

The complexification TxM c of the tangent space at any point x, TxM , of
a real manifold M is called the complex tangent space at x. A complex vector
field Z is uniquely expressed as Z = X + iY , where X and Y are real vector
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fields. If we denote by DrM the space of r-forms on M , then an element of
the complexification DrM c of DrM is called a complex r-form on M . Every
complex r-form ω may be written as ω′+iω′′, where ω′ and ω′′ are real r-forms
on M .

Suppose that M is an almost complex manifold with an almost complex
structure J . By means of Proposition 1.2.4 we have the direct sum decom-
positions

TxM c = TxM1,0 ⊕ TxM0,1, TxM∗c = D1,0
x ⊕D0,1

x ,

where TxM1,0 and TxM0,1 (resp. D1,0
x and D0,1

x ) denote the eigenspaces of J
(resp. of J∗) corresponding to the eigenvalues i and −i. A complex tangent
vector at a point x (resp. a complex 1-form) is said to be of type (1,0) or (0,1)
if it belongs to TxM1,0 or TxM0,1 (resp. to D1,0

x or D0,1
x ). In particular, let M

be a complex manifold and {zj} with zj = xj + iyj be a complex coordinate
system of M . When we set

∂

∂zj
=

1
2

( ∂

∂xj
− i

∂

∂yj

)
,

∂

∂z̄j
=

1
2

( ∂

∂xj
+ i

∂

∂yj

)
,

the complex vector ∂
∂zj is the component of type (1,0) of ∂

∂xj , and ∂
∂z̄j is the

component of type (0,1) of ∂
∂xj . Moreover, the complex vector fields

∂

∂z1
, · · ·, ∂

∂zn
,

∂

∂z̄1
, · · ·, ∂

∂z̄n
(2.1.2)

are said to be a natural complex frame field which form, at any point x of the
corresponding neighborhood, a basis for the complex tangent space TxM c.
From the previous construction of the complex structure J it follows that

∂
∂z1 , · · ·, ∂

∂zn (resp. ∂
∂z̄1 , · · ·, ∂

∂z̄n ) form a basis for TxM1,0 (resp. for TxM0,1) at
each point x of the coordinate neighborhood.

Since dzj = dxj + idyj and dz̄j = dxj − idyj , we see that

dz1, . . ., dzn, dz̄1, . . ., dz̄n

form, at any point x, the dual basis corresponding to the basis (2.1.2) of TxM c

and dz1, . . ., dzn (resp. dz̄1, . . ., dz̄n) form a basis of D1,0
x (resp. of D0,1

x ).
For the details in this section see Kobayashi and Nomizu [25].
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2.2. The notion of indefinite Kaehler manifold. An indefinite
Hermitian metric on an almost complex manifold M is an indefinite Rieman-
nian metric g invariant under the almost complex structure J , i.e., g is a
non-degenerate symmetric tensor field of type (0,2) on M (hence with con-
stant index) and it satisfies

g(JX, JY ) = g(X,Y )

for any vector fields X and Y of M . An indefinite Hermitian metric thus
defines a Hermitian scalar product on each tangent space TxM with respect to
the almost complex structure J . A (complex) n-dimensional complex manifold
endowed with an indefinite Hermitian metric (with respect to its complex
structure J) is called an indefinite Hermitian manifold. Accordingly, Jv is
spacelike (resp. null or timelike) for any spacelike (resp. null or timelike)
vector v of TxM , and hence the index of g is an even number 2s, 0≤s≤n.

Throughout this section the following convention of the ranges on indices
is used:

A,B, . . . = 1, . . ., n, 1̄, . . ., n̄;
i, j, . . . = 1, . . ., n;

j∗ = j + n.

For a complex coordinate system {zj} of M , we put

{ZA} = {Zj , Zj̄}, Zj =
∂

∂zj
, Zj̄ = Z̄j =

∂

∂z̄j
. (2.2.1)

Given an indefinite Hermitian metric g, the Hermitian scalar product, defined
by gx, on each tangent space TxM can be extended, making use of Proposition
1.3.1, to a complex symmetric bilinear form g on the complex tangent space
TxM c. We set

gAB = g(ZA, ZB). (2.2.2)

Since g satisfies (1) and (3) of Proposition 1.3.1 and Zj (resp. Zj̄) is of type
(1,0) (resp. of type (0,1)), we have

gjk = gj̄k̄ = 0 (2.2.3)

and (gjk̄) is an n×n Hermitian matrix. It is then customary to express

ds2 = 2
∑

gjk̄dzjdz̄k (2.2.4)
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for the metric g. Let gjk, gjk∗ , gj∗k and gj∗k∗ be the components of the indefin-
ite Hermitian metric g with respect to the basis { ∂

∂xj , ∂
∂yj }, where zj = xj+iyj .

Since g is J-invariant, we have

gjk = gj∗k∗ , gj∗k = −gjk∗ , (2.2.5)

where the same symbol denotes both the indefinite Hermitian metric g and
its natural extension to complex tangent vectors. With respect to { ∂

∂xj , ∂
∂yj }

the metric g is written as

ds2 =
∑(

gjkdxjdxk + gjk∗dxjdyk + gj∗kdyjdxk + gj∗k∗dyjdyk
)
.

Now the fundamental 2-form Φ of M is defined by

Φ(X, Y ) = g(X, JY )

for any vector fields X and Y on M , which is also called the Kaehler form of
g. An indefinite Hermitian manifold M such that its associated fundamental
2-form is closed is said to be an indefinite Kaehler manifold.

The fundamental 2-form Φ may be naturally extended to complex vector
fields V =

∑{dzj(V )Zj + dz̄j(V )Z̄j} and W =
∑{dzj(W )Zj + dz̄j(W )Z̄j}

on M . A simple computation shows that this extension is written

Φ = −2i
∑

gjk̄dzj∧dz̄k. (2.2.6)

On the other hand, given complex vector fields U and V on M , say U =
X + iX ′ and V = Y + iY ′, the bracket [U, V ] is defined by

[U, V ] =
{

[X,Y ]− [X ′, Y ′]
}

+ i
{

[X, Y ′] + [X ′, Y ]
}

.

It is easy to see that

dΦ(U, V,W ) = dΦ(X, Y, Z)− dΦ(X,Y ′, Z ′)− dΦ(X ′, Y, Z ′)− dΦ(X ′, Y ′, Z)

+ i
{

dΦ(X,Y, Z ′) + dΦ(X,Y ′, Z) + dΦ(X ′, Y, Z)− dΦ(X ′, Y ′, Z ′)
}

,

for any complex vector fields, U = X + iX ′, V = Y + iY ′ and W = Z + iZ ′;
which implies that the fundamental 2-form Φ is closed if and only if the
indefinite metric g satisfies

∂gij̄

∂zk
=

∂gkj̄

∂zi
,

∂gij̄

∂z̄k
=

∂gik̄

∂z̄j
.

Therefore, by using here exactly the same argument which classically works
in the definite case, one finds



352 a. romero, y.j. suh

Proposition 2.2.1. Let M be an indefinite Hermitian manifold with an
indefinite Hermitian metric g and a complex structure J . The fundamental
2-form Φ is closed if and only if ∇J = 0, where ∇ denotes the Levi-Civita
connection corresponding to g.

We end this section with several remarks relating the existence of an in-
definite Kaehler metric on a manifold to some restrictions on its topology.

(a) If (M, g, J) is an indefinite Hermitian manifold, then M admits a J-
invariant (i.e. holomorphic) distribution of dimension the index of g.

(b) On the other hand, taking into account the fundamental 2-form of an
indefinite Kaehler manifold (M, g, J), M may be contemplated as a sym-
plectic manifold. Thus, if M is assumed to be compact, then, according
to the well known Hodge-Lichnerowicz’s Theorem, any of its even Betti
numbers is not zero (see [45, Theorem 8.8], for instance).

(c) Finally, it is a relevant fact that several examples of compact manifolds
which admit indefinite Kaehler metrics but do not admit any positive
definite Kaehler metric were found in [6].

2.3. Local formulas for indefinite Kaehler submanifolds. First
of all we recall several well known local formulas for the curvature tensor
(in complex notation) of an indefinite Kaehler manifold, which are adap-
ted to one of its non-degenerate complex submanifolds. Let (M̃, g′, J) be an
(n+ p)-dimensional (connected) indefinite Kaehler manifold of index 2(s+ t),
(n≥2, 0≤s≤n, 0≤t≤p), and let M be an n-dimensional non-degenerate com-
plex submanifold of index 2s of M̃ . We can choose a local orthonormal frame
field {EA} = {E1, ..., En+p} on an open subset of M̃ in such a way that, re-
stricted to M , E1, ..., En are tangent to M and the others are normal to M .
Here and in the sequel the following convention on the range of indices, unless
otherwise stated, is used:

A,B, . . . = 1, . . . , n, n + 1, . . . , n + p;
i, j, . . . = 1, . . . , n;
x, y, . . . = n + 1, . . . , n + p.

With respect to this frame field, let {ωA} = {ωi, ωy} be its (local) dual frame
field. Namely, it satisfies

ωA(EB) = g′(EA, EB) = εAδAB,
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and, therefore we can write g′ = 2
∑

A εAωA⊗ω̄A where {εA} = {εi, εx} are
given by

εi = −1 or 1 according to 1≤i≤s or s + 1≤i≤n,

εx = −1 or 1 according to n + 1≤x≤n + t or n + t + 1≤x≤n + p.

The canonical forms ωA and the connection forms ωAB of the ambient
space M̃ satisfy the structure equations:

dωA +
∑

B

εBωAB∧ωB = 0, ωAB + ω̄BA = 0, (2.3.1)

dωAB +
∑

C

εCωAC∧ωCB = Ω′AB,

Ω′AB =
∑

CD

εCεDR′
ĀBCD̄ωC∧ω̄D,

(2.3.2)

where Ω′AB (resp. R′
ĀBCD̄) denotes the components of the Riemannian

curvature 2-form Ω′ (resp. the components of the Riemannian curvature
tensor R′) of M̃ .

The second equation of (2.3.1) means the skew-Hermitian symmetry of
Ω′AB, which is equivalent to

R′
ĀBCD̄ = R̄′̄

BADC̄ .

The Bianchi identities
∑

B εBΩ′AB∧ωB = 0 obtained from (2.3.1) and (2.3.2),
taking exterior differentiation, give the further symmetric relations

R′
ĀBCD̄ = R′

ĀCBD̄ = R′
D̄BCĀ = R′

D̄CBĀ. (2.3.3)

Now, with respect to the previously chosen frame, the Ricci tensor S′ of
M̃ can be expressed as follows

S′ =
∑

CD

εCεD(S′CD̄ωC⊗ω̄D + S′C̄Dω̄C⊗ωD),

where S′CD̄ =
∑

B εBRB̄BCD̄ = S′D̄C = S̄′C̄D. The scalar curvature K is then
given by

K = 2
∑

D

εDS′DD̄.
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The indefinite Kaehler manifold M̃ is said to be Einstein if its Ricci tensor
S′ is proportional to g′, that is

S′CD̄ = λεCδCD, λ =
K

2(n + p)
,

where the constant λ is called the Ricci curvature of the Einstein manifold.
The components R′

ĀBCD̄;E and R′
ĀBCD̄;Ē (resp. S′AB̄;C and S′AB̄;C̄) of

the covariant derivative of the Riemannian curvature tensor R′ (resp. the
Ricci tensor S′) are respectively defined by

∑

E

εE(R′
ĀBCD̄;EωE + R′

ĀBCD̄;Ēω̄E) = dR′
ĀBCD̄

−
∑

E

εE(R′
ĒBCD̄ω̄EA + R′

ĀECD̄ωEB + R′
ĀBED̄ωEC + R′

ĀBCĒω̄ED),

∑

C

εC(S′AB̄;CωC + S′AB̄;C̄ ω̄C) = dS′AB̄ −
∑

C

εC(S′CB̄ωCA + S′AC̄ ω̄CB).

The second Bianchi formula is given by

R′
ĀBCD̄;E = R′

ĀBED̄;C , (2.3.4)

and hence we have

S′AB̄;C = S′CB̄;A =
∑

D

εDR′
B̄ACD̄;D, KB = 2

∑

C

SBC̄;C , (2.3.5)

where dK =
∑

C εC(KCωC + K̄C ω̄C).
The components S′

AB̄;CD
and S′

AB̄;CD̄
of the second covariant derivative of

S′ are expressed by
∑

D

εD(S′AB̄;CDωD + S′AB̄;CD̄ω̄D) = dS′AB̄;C

−
∑

D

εD(S′DB̄;CωDA + S′AD̄;C ω̄DB + S′AB̄;DωDC).
(2.3.6)

Now, taking exterior differentiation of the definition of S′
AB̄;C

and S′
AB̄;C̄

,
and using (2.3.6), the Ricci formula for the Ricci tensor S′ is given as follows

S′AB̄;CD̄ − S′AB̄;D̄C =
∑

E

εE(R′̄
DCAĒS′EB̄ −R′̄

DCEB̄S′AĒ). (2.3.7)
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Next we focus our attention on a non-degenerate complex submanifold M
of M̃ . Restricting the above canonical forms {ωA} = {ωi, ωy} to M , we have

ωx = 0 (2.3.8)

and, consequently, the induced indefinite Kaehler metric g of index 2s of M
is written as g = 2

∑
j εjωj⊗ω̄j . Therefore, the restriction to M of the frame

field {Ej} is a local orthonormal frame field with respect to g, and {ωj} is
its dual frame field, which consists of complex 1-forms of type (1,0) on M .
Moreover ω1, ..., ωn, ω̄1, ..., ω̄n are linearly independent, and they are said to
be a set of local canonical 1-forms on M .

It follows from (2.3.8) and the Cartan lemma, by taking exterior differen-
tiation, that

ωxi =
∑

j

εjh
x
ijωj , hx

ij = hx
ji. (2.3.9)

The quadratic form h locally defined as

∑

ijx

εiεjεxhx
ijωi⊗ωj⊗Ex

with values in the normal bundle is called the second fundamental form of
the submanifold M . The second fundamental form h can be equivalently de-
scribed as h(X, Y ) = ∇′XY − ∇XY , for all vector fields X,Y tangent to M ,
where ∇′ and ∇ denote the Levi-Civita connections of the metric of M̃ and
the one of M , respectively. As in the definite case, h satisfies h(JX, Y ) =
h(X, JY ) = Jh(X, Y ). This property implies that h(JX, JY ) = −h(X,Y ),
for all X, Y . Consequently, the mean curvature vector field, (1/2n) traceg h,
of an indefinite complex submanifold vanishes. When M̃ is a positive definite
Kaehler manifold, it is then said that every complex submanifold is minimal.
However, we are dealing here with indefinite metrics and, therefore, a better
sentence for our setting would be to say that every indefinite complex subman-
ifold is stationary (i.e. a critical point to the 2n-dimensional area functional).
It should be remarked that a stationary positive definite complex submanifold
with negative definite normal bundle is usually called maximal.

Making use of the structure equations of M̃ it follows that the structure
equations of M are given by
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dωi +
∑

j

εjωij∧ωj = 0, ωij + ω̄ji = 0, (2.3.10)

dωij +
∑

k

εkωik∧ωkj = Ωij ,

Ωij =
∑

kl

εkεlRījkl̄ωk∧ω̄l,
(2.3.11)

where Ωij (resp. Rījkl̄) denote the components of the Riemannian curvature
form Ω (resp. the components of the Riemannian curvature tensor R) of M .
Moreover, the following relationships hold,

dωxy +
∑

z

εzωxz∧ωzy = Ωxy, Ωxy =
∑

kl

εkεlRx̄ykl̄ωk∧ω̄l, (2.3.12)

where Ωxy are the components of the normal curvature form on M . For the
Riemannian curvature tensors R and R′ of M and M̃ , respectively, it follows
from (2.3.1), (2.3.2), (2.3.9), (2.3.10) and (2.3.11) that

Rījkl̄ = R′̄
ijkl̄ −

∑
x

εxhx
jkh̄

x
il, (2.3.13)

which is called the Gauss equation. From this equation, the components of
the Ricci tensor S and the scalar curvature r of M satisfy

Sij̄ =
∑

k

εkR
′̄
ijkk̄ − h2

ij̄ , (2.3.14)

r = 2
∑

j

Sjj̄ = 2
∑

jk

εjεkR
′̄
jjkk̄ − 2h2, (2.3.15)

where we have written h2
ij̄

=
∑

kx εkεxhx
ikh̄

x
kj and h2 =

∑
k εkh

2
kk̄

.
Now the components hx

ij;k and hx
ij;k̄

of the covariant derivative of the second
fundamental form of M are given by

∑

k

εk(hx
ij;kωk + hx

ij;k̄ω̄k) =dhx
ij −

∑

k

εk(hx
kjωki + hx

ikωkj)

+
∑

y

εyh
y
ijωxy.
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Substituting dhx
ij in this definition into the exterior derivative of (2.3.9), using

the structure equations (2.3.1), (2.3.2) and (2.3.10), (2.3.11) we get

hx
ij;k = hx

ji;k = hx
ik;j , hx

ij;k̄ = −R′
x̄ijk̄. (2.3.16)

Similarly the components hx
ij;kl and hx

ij;kl̄
of the second covariant derivative of

the second fundamental form can be defined by
∑

l

εl(hx
ij;klωl + hx

ij;kl̄ω̄l) =dhx
ij;k −

∑

l

εl(hx
lj;kωli + hx

il;kωlj

+ hx
ij;lωlk) +

∑
y

εyh
y
ij;kωxy.

A straightforward computation give rise to the Ricci formula

hx
ij;kl =hx

ij;lk,

hx
ij;kl̄ − hx

ij;l̄k =
∑

r

εr(Rl̄kir̄h
x
rj + Rl̄kjr̄h

x
ir)

−
∑

y

εyRx̄ykl̄h
y
ij .

(2.3.17)

Until now, we are dealing with arbitrary indefinite Kaehler manifolds as
ambient spaces for complex submanifolds. Next, we will specialize to the
important case in which indefinite complex space forms are considered as
ambient spaces. But before a few comments about holomorphic sectional
curvature is in order. Given an indefinite Kaehler manifold (M, g, J), re-
call that a plane section π of the tangent space TxM of M , at any point
x, is said to be non-degenerate provided that gx|π is non-degenerate. Note
that π is non-degenerate if and only if there is a basis {u, v} of π such that
g(u, u)g(v, v) − g(u, v)2 6=0. A holomorphic plane spanned by u and Ju is
non-degenerate if and only if it contains some vector v with g(v, v)6=0. The
sectional curvature of a non-degenerate holomorphic plane π spanned by u
and Ju is called the holomorphic sectional curvature, and it is denoted by
H(π) = H(u). An indefinite Kaehler manifold M is said to be of constant
holomorphic sectional curvature if its holomorphic sectional curvature func-
tion H(π) is constant for all non-degenerate holomorphic plane π and for any
point of M . In this case, M is called an indefinite complex space form, which
is denoted by Mm

s (c), provided that it is of constant holomorphic sectional
curvature c ∈ R, of complex dimension m and of index 2s. The standard
models of indefinite complex space forms are the following three kinds which
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were given by Barros and the first author [7] and Wolf [61]. Namely, the in-
definite complex Euclidean space Cm

s , the indefinite complex projective space
CPm

s (c) and the indefinite complex hyperbolic space CHm
s (c), according as

c = 0, c > 0 and c < 0. For an integer s (0 < s < m) it is seen in [7], extending
a well-know result by Hawley and Igusa in the positive definite case (see for
instance Kobayashi and Nomizu [25, p. 171]), that Cm

s , CPm
s (c) and CHm

s (c)
are the only geodesically complete, simply connected and connected indefinite
complex space forms of dimension m and of index 2s. Moreover, an indefinite
complex space form Mm

s (c) must be locally holomorphically isometric to Cm
s ,

CPm
s (c) or CHm

s (c) provided that c = 0, c > 0 or c < 0, respectively.
Let us consider now that the ambient space is an indefinite complex space

form M̃n+p
s+t (c′) of constant holomorphic sectional curvature c′. If Mn

s is a
(non-degenerate) complex submanifold of M̃n+p

s+t (c′), then (2.3.13), (2.3.14),
(2.3.15), (2.3.16) and (2.3.17) specialize to get

Rījkl̄ =
c′

2
εjεk(δijδkl + δikδjl)−

∑
x

εxhx
jkh̄

x
il, (2.3.18)

Sij̄ = (n + 1)
c′

2
εiδij − h2

ij̄ , (2.3.19)

r = n(n + 1)c′ − 2h2, (2.3.20)
hx

ij;k = hx
ji;k = hx

ik;j , hx
ij;k̄ = 0, (2.3.21)

hx
ij;kl̄ =

c′

2
(
εkh

x
ijδkl + εih

x
jkδil + εjh

x
kiδjl

)

−
∑
ry

εrεy

(
hx

rih
y
jk + hx

rjh
y
ki + hx

rkh
y
ij

)
h̄y

rl.
(2.3.22)

Besides of the holomorphic sectional curvature, on indefinite Kaehler man-
ifolds it is possible to consider another curvature functions. Precisely, we end
this section recalling the notion of real bisectional curvature of an indefinite
Kaehler manifold, in order to be used later. In [10] R.L. Bishop and S.I.
Goldberg introduced the notion of totally real bisectional curvature B on a
(positive definite) Kaehler manifold (M, g, J). A totally real plane Span{u, v}
of TxM is, by definition, orthogonal to its image by the complex structure
Span{Ju, Jv}. Thus, two orthonormal vectors u and v span a totally real
plane if and only if u, v and Jv are orthonormal. The totally real bisectional
curvature of a totally real plane Span{u, v} is then defined by

B(u, v) =
g(R(u, Ju)Jv, v)

g(u, u)g(v, v)
. (2.3.23)
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C.S. Houh [18] showed that an (n≥3)-dimensional Kaehler manifold has
constant totally real bisectional curvature c if and only if it has constant holo-
morphic sectional curvature 2c (see Example 2.3.1 for the sufficient condition).

On the other hand, S.I. Goldberg and S. Kobayashi introduced in [17] the
notion of holomorphic bisectional curvature H(u, v), which is determined by
two holomorphic planes Span{u, Ju} and Span{v, Jv}. They asserted that the
complex projective space CPn(c) is the only compact Kaehler manifold with
positive holomorphic bisectional curvature and constant scalar curvature.

If we compare the notion of totally real bisectional curvature B(u, v) with
the one of holomorphic bisectional curvature H(u, v) and the one of holo-
morphic sectional curvature H(u), then H(u, v) turns out to be the totally
real bisectional curvature B(u, v) (resp. the holomorphic sectional curvature
H(u)) when the two holomorphic planes Span{u, Ju} and Span{v, Jv} are
orthogonal to each other (resp. coincide with each other). From this asser-
tion it follows that the positiveness of B(u, v) is weaker than the positiveness
of H(u, v), because H(u, v) > 0 implies that both of B(u, v) and H(u) are
positive but we do not know whether B(u, v) > 0 implies H(u, v) > 0 or not.

Now let us also denote by (M, g, J) an n-dimensional indefinite Kaehler
manifold. Of course, the previous formula (2.3.23) may be used to define
the totally real bisectional curvature of a non-degenerate totally real plane
Span{u, v}. Let us remark that the previously mentioned result by Houh was
extended to indefinite Kaehler manifolds in [7].

If it is assumed g(u, u) = g(v, v) = ±1, then we can use the first Bianchi
identity in (2.3.23), we get

B(u, v) = g(R(u, Jv)Jv, u) + g(R(u, v)v, u)
= K(u, v) + K(u, Jv),

(2.3.24)

where K(u, v) and K(u, Jv) mean the sectional curvatures of the planes
Span{u, v} and Span{u, Jv}, respectively. Hereafter unless otherwise stated,
we only consider such a situation; that is, we only consider definite totally
real planes.

Now if we put u′ = 1√
2
(u + v) and v′ = 1√

2
J(u− v), then it is easily seen

that g(u′, u′) = ±1, g(v′, v′) = ±1, and g(u′, Jv′) = 0. Thus

B(u′, v′) =
g(R(u′, Ju′)Jv′, v′)

g(u′, u′)g(v′, v′)
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implies that

g(u′, u′)g(v′, v′)B(u′, v′) = g(R′(u′, Ju′)Jv′, v′)

=
1
4
g(u, u)g(v, v)

{
H(u) + H(v) + 2B(u, v)− 4K(u, Jv)

}
,

where H(u) = K(u, Ju), and H(v) = K(v, Jv) are the holomorphic sectional
curvatures of the planes Span{u, Ju} and Span{v, Jv}, respectively. Since
Span{u, v} is definite, it follows that

g(u′, u′)g(v′, v′) = g(u, u)g(v, v) = 1

and therefore

4B(u′, v′)− 2B(u, v) = H(u) + H(v)− 4K(u, Jv). (2.3.25)

If we put u′′ = 1√
2
(u + Jv), and v′′ = 1√

2
(Ju + v), then the definiteness

of the plane Span{u, v} such that g(u, u) = g(v, v) = ±1 implies g(u′′, u′′) =
g(v′′, v′′) = ±1 and g(u′′, v′′) = 0. Using a similar method to the one considered
to get (2.3.25), we have

4B(u′′, v′′)− 2B(u, v) = H(u) + H(v)− 4K(u, v). (2.3.26)

Summing up (2.3.25) and (2.3.26), we obtain

2B(u′, v′) + 2B(u′′, v′′) = H(u) + H(v). (2.3.27)

Now we compute the totally real bisectional curvatures of several distin-
guished examples of indefinite Kaehler manifolds.

Example 2.3.1. Let M̃n
s (c) be an indefinite complex space form of con-

stant holomorphic sectional curvature c and of index 2s, 0≤s≤n. Then M̃n
s (c)

has constant totally real bisectional curvature c/2. In fact, if Span{u, v} is a
totally real plane, then B(u, v) = g(R(u,Ju)Jv,v)

g(u,u)g(v,v) = c/2 easily follows from the

algebraic form of the curvature tensor of M̃n
s (c).

In order to show a Kaehler manifold, with special interest for us, which is
not of constant totally real bisectional curvature we will consider the complex
quadric CQ′n in the indefinite complex hyperbolic space CHn+1

1 (c′), c′ < 0
(Example 3.2.3).
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Example 2.3.2. Let CQn
s be the indefinite complex quadric in the indef-

inite complex projective space (Example 3.2.3). Then it can be identified to
the Hermitian symmetric space SOs(n + 2)/(SOs(n)×SO(2)). The canonical
decomposition of the Lie algebra Os(n + 2) of the Lie group SOs(n + 2) is
given by

Os(n + 2) = H⊕M,

where H = O(2)⊕Os(n) and

M =

{



0
(

ξ1 · · · ξs −ξs+1 . . . −ξn

η1 · · · ηs −ηs+1 · · · −ηn

)




ξ1 η1

· ·
· ·

ξn ηn


 0




∣∣∣∣∣ ξj , ηj∈R
}

.

which can be naturally identified to the tangent space at a point of CQn
s . It is

classical (see [25, Example XI.10.6]) that several interesting geometric objects
on CQn

s can be described as suitable multilinear maps on the subspace M of
Os(n + 2), in particular, the curvature tensor and, therefore, the totally real
bisectional curvature [24].

By changing the metric tensor g of CQn
s in CPn+1

s (c) to its negative, we
can also consider (CQn

n−s,−g) as a complex hypersurface of the indefinite
complex hyperbolic space CHn+1

n+1−s(c
′), c′ = −c < 0. Denote by CQ′n

n−s this
complex hypersurface of CHn+1

n+1−s(c
′). Making use of the Lagrange multi-

plier rule the totally real bisectional curvature B(u, v) of CQn
n = SOn(n +

2)/(SOn(n)×SO(2)) in CPn+1
n (c) is computed in [24]. Hence, the totally real

bisectional curvature B′(u, v) of CQ′n in CHn+1
1 (c′), c′ = −c < 0. In fact, we

have
c′

2
≤B′(u, v)≤ − 3

2
c′.

On the other hand, from (2.3.27) it follows that

2B′(u′, v′) + c′≤ 2B′(u′, v′) + 2B′(u′′, v′′) = H ′(u) + H ′(v)≤ c′.

Thus B′(u′, v′)≤0. Consequently we get

c′

2
≤B′(u, v)≤ 0.

Let us finally note that the totally real bisectional curvature B of the
classical complex quadric CQn in CPn+1(c) satisfies 0 ≤ B ≤ c

2 .
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Chapter 3. Complex hypersurfaces

3.1. Preliminaries. The Ricci tensor has been a fundamental tool in
the study of complex hypersurfaces of (positive definite) complex space forms.
Smyth, in his important paper [53], studied complete complex hypersurfaces
in a complex space form whose induced Kaehler metric is Einstein. He was
motivated by the well known results of Thomas, Cartan and Fialkow on Ein-
stein hypersurfaces of Riemannian manifolds of constant sectional curvature
(i.e. of real space forms). He proved that these hypersurfaces are either totally
geodesic or a certain hyperquadric of the complex projective space. On the
other hand, the quoted results on Einstein hypersurfaces in real space forms,
were extended by Magid to the indefinite real case [29], [30] and [31]. Now,
we are going to study complex Einstein hypersurfaces in indefinite complex
space forms.

Let Mn
s be a (non degenerate) complex hypersurface of (complex) dimen-

sion n and index 2s, 0 ≤ s ≤ n, of an (n + 1)-dimensional indefinite complex
space form M̃n+1

s+t (c), with holomorphic sectional curvature c∈R and index
2s + 2t, where t = 0 or t = 1 according as the normal bundle is positive def-
inite or negative definite, respectively. As we asserted in the last section, we
can identify M̃n+1

s+t (c) with the indefinite complex projective space CPn+1
s+t (c)

if c > 0, with the indefinite complex hyperbolic space CHn+1
s+t (c) if c < 0, or

with the indefinite complex flat space Cn+1
s+t if c = 0. The Ricci tensor of a

non-degenerate complex hypersurface Mn
s of M̃n+1

s+t (c) is given by (2.3.19) or
in real notation, [35], [36], by

S(X, Y ) =
1
2
(n + 1)cg(X,Y )− 2ag(A2X, Y ) (3.1.1)

for any vector fields X, Y on M , where a = g′(ξ, ξ) = +1 or −1 and A is
the shape operator (also called Weingarten operator) associated to the (local)
unit normal vector field ξ. Suppose that Mn

s is an Einstein space, that is,
S = λg, with λ ∈ R. Thus, previous (3.1.1) (or formula (2.3.19)) implies that
A satisfies the following polynomial equation

x2 + β = 0, (3.1.2)

where β = 1
2a(λ − 1

2(n + 1)c). At this point, Smyth [53], used a simple but
important algebraic fact, namely, the shape operator A is (in the definite
case) diagonalizable. From this and (2.3.21) it can be proved that a complex
hypersurface of a (definite) complex space form is locally symmetric whenever
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it is assumed to be an Einstein space. Here, we cannot always diagonalize A
and, consequently, we must use the well known classification for self-adjoint
operators of a scalar product vector space (see for instance Maltsev [32]). So,
we have

(i) A is diagonalizable, or

(ii) A is not, but either A2 = −b2I, with b ∈ R, b6=0, or A2 = 0 and A 6= 0.

Except for the last case in (ii) we can also obtain [35] the following result,

Theorem 3.1.1. Let Mn
s be a complex Einstein hypersurface of an indef-

inite complex space form. If the shape operator A associated to a unit normal
vector field satisfies A2 6=0 or A = 0, then Mn

s is locally symmetric.

Examples 3.3.6 and 3.3.7 below will show that this result is the best pos-
sible in that direction.

3.2. Proper complex Einstein hypersurfaces. In order to do a
classification, it is suitable to call a complex Einstein hypersurface proper if
the shape operator A associated to a unit normal vector field is diagonalizable.
Note that if this holds for a concrete unit normal vector field, the same is also
true for any normal vector field, so that it is a property of the holomorphic
immersion of Mn

s in the indefinite complex space form as a complex hyper-
surface. Clearly, if A satisfies A2 = b2I, b∈R, b6=0, then Mn

s is proper (as
usual, we will refer to the immersion of Mn

s to M̃n+1
s+t (c) only by saying Mn

s ,
whenever there is no possible confusion).

We first consider several examples of proper complex Einstein hypersur-
faces.

Example 3.2.1. The indefinite complex flat space Cn
s is a totally geodesic

(hence Einstein) complex hypersurface of Cn+1
s+t , t = 0, 1, in a natural way.

Example 3.2.2. For an indefinite complex projective space CPn+1
s (c), if

z1, . . . , zs, zs+1, . . . , zn+2 is its usual homogeneous coordinate system, then for
each j fixed, the equation zj = 0 defines a totally geodesic (hence Einstein)
complex hypersurface identifiable with CPn

s (c) or CPn
s−1(c) according as s +

1 ≤ j ≤ n+2 or 1 ≤ j ≤ s, respectively. Taking into account that the indefinite
complex hyperbolic space CHn

s (−c), c > 0, is obtained from CPn
n−s(c) by

taking the opposite of its Kaehler metric, the previous discussion shows that
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CHn
s (−c) is a totally geodesic complex hypersurface of both CHn+1

s (−c) and
CHn+1

s+1 (−c).

Example 3.2.3. Let CQn
s be the complex hypersurface of CPn+1

s (c) de-
fined by the equation

−
s∑

i=1

z2
i +

n+2∑

j=s+1

z2
j = 0 (3.2.1)

in the homogeneous coordinate system of CPn+1
s (c). Then CQn

s is a non-
degenerate complex hypersurface, has index 2s and satisfies A2 = c

4I, where
I denotes the identity transformation. Therefore, by comparing (2.1.1) and
(2.3.19), we have for the second fundamental form

h2
ij̄ =

c

2
εiδij .

Now, also by using again (2.1.1) or (2.3.19) we achieve that CQn
s is an Ein-

stein space with S = nc
2 g. CQn

s is called the indefinite complex quadric in
CPn+1

s (c). As in Kobayashi and Nomizu [25, Example XI.10.6], CQn
s is glob-

ally holomorphically isometric to the Hermitian symmetric space SOs(n +
2)/(SOs(n) × SO(2)) endowed with a negative multiple of the Killing form
of SOs(n + 2); in particular, [44, Lemma 8.20] gives that CQn

s is geodesic-
ally complete. Now consider CQn

n−s as a complex hypersurface of CPn+1
n−s (c),

c > 0. If we change the Kaehler metric of CPn+1
n−s (c) by its opposite, we have

that CQn
n−s endowed with its opposite metric is also an Einstein hypersurface

of CHn+1
s+1 (−c). Denote this complex hypersurface by CQ′n

s . As the Ricci
tensor is invariant by an homothetical change of the metric we have that
CQ′n

s and CQn
n−s have the same Ricci tensor. Thus CQ′n

s is Einstein with
S = n(−c)

2 g′, where g′ is the Kaehler metric of CQ′n
s . A reasoning as above

permits us to identify CQ′n
s to the Hermitian symmetric space SOn−s(n +

2)/(SOn−s(n) × SO(2)) = SOs+2(n + 2)/(SOs(n) × SO(2)). In particular,
the spacelike (i.e. positive definite) complex hypersurface CQ′n of CHn+1

1 (−c)
is the non-compact Hermitian symmetric space SO2(n+2)/(SO(n)×SO(2)).

Finally, note that CQn
s can be contemplated as the Grassmannian manifold

of all oriented 2-dimensional spacelike subspaces of the indefinite flat Rieman-
nian space Rn+2

s . This extends a well-known fact in the positive definite case
(i.e. when s = 0).

These examples are shown to be the only proper complex Einstein hyper-
surfaces. In fact, following the idea of Smyth [53] and [54], we can investigate
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the restricted holonomy group of such a hypersurface of an indefinite complex
space form. Then, we use the Berger list of symmetric spaces [9] to obtain
the following classification result,

Theorem 3.2.4. (i) The only proper complete indefinite complex Ein-
stein hypersurfaces of CPn+1

s+t (c), c > 0, n > 2 are CPn
s (c) with t = 0, 1 and

CQn
s with t = 0.

(ii) The only proper complete indefinite complex Einstein hypersurfaces of
CHn+1

s+t (−c), c > 0, n > 2 are CHn
s (−c) with t = 0, 1 and CQ′n

s with t = 1.

(iii) The only proper complete indefinite complex Einstein hypersurface of
Cn+1

s+t n > 2 is Cn
s (c) with t = 0, 1.

This result was obtained by Montiel and the first author in [35] with an
extra assumption. In fact, it was assumed that the complex hypersurface is
simply connected. However, we can prove that this condition can be dropped.
In order to do this, let M be the complex Einstein hypersurface and let ϕ be
the holomorphic immersion of M to M̃(c). We denote by M̂ the universal
semi-Riemannian covering manifold of M and by π : M̂ −→ M the cor-
responding covering map. Clearly, M̂ is an indefinite Kaehler manifold and
π : M̂ −→ M is a holomorphic local isometry. Thus, M̂ is a simply connec-
ted complete indefinite complex Einstein hypersurface, immersed in M̃(c) by
ϕ◦π. Now, we can use [35, Theorem 4.4] to conclude that if M̃(c) = CPn+1

s+t (c)
then M̂ is holomorphically isometric either to CPn

s (c) or to CQn
s . By rigidity,

the first author [48], Umehara [59] (see also Montiel and the first author [35,
pp. 502–503] for a direct proof of the rigidity for our setting) M̂ immerses
either onto an indefinite complex projective hyperplane or onto an indefinite
complex quadric in CPn+1

s+t (c). In either case, (ϕ◦π)(M̂) is a simply connected
manifold (recall that CPn

s (c) and CQn
s are simply connected manifolds) and,

therefore, the covering map ϕ ◦ π must be one-to-one. Thus, π is one-to-one
and M is holomorphically isometric to CPn

s (c) or to CQn
s , according to the

case. The same argument can be also applied when M̃(−c) = CHn+1
s+t (−c),

c > 0, or Cn+1
s+t . Thus, Theorem 3.2.4 is an improved form of [35, Theorem

4.4].
The following local version of Theorem 3.2.4 has been proved by Aiyama,

Nakagawa and the second author [3],

Theorem 3.2.5. Let M be an indefinite complex Einstein hypersurface
of an indefinite complex space form M̃n+1

s+t (c). If M is proper, then M is totally
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geodesic or S = nc
2 g, the latter arising only when c > 0 and t = 0 or c < 0

and t = 1.

3.3. Non-proper complex Einstein hypersurfaces. The non-proper
indefinite complex Einstein hypersurfaces present a more irregular geometric
behavior. We begin this section with several examples.

Example 3.3.1. Let us consider the complex hypersurface of CP 2n+1
n+1 (c)

defined by the equation
n+1∑

j=1

zjzn+1+j = 0 (3.3.1)

in the usual homogeneous coordinate system of CP 2n+1
n+1 (c). This complex

hypersurface is non-degenerate, has index 2n and satisfies A2 = − c
4I, where

I denotes the identity transformation. Therefore, from (3.1.1), we get for the
second fundamental form

h2
ij̄ = − c

2
εiδij .

Now by using (2.3.19) we have that this complex hypersurface is an Einstein
space with S = (n+2)c

2 g. This hypersurface is represented by CQ∗
n in Montiel

and the first author [35] and it is called the 2n-dimensional special quadric.
As in Example 3.2.3, CQ∗

n is holomorphically isometric to the non-compact
Hermitian symmetric space SO∗(2n + 2)/(SO∗(2n) × SO(2)) endowed with
a negative multiple of the Killing form of the Lie group SO∗(2n + 2) (see
Berger [9, p. 113], for a description of this Lie group and the corresponding
symmetric space). Again, using O’Neill [44, Lemma 8.20], we have that CQ∗

n

is geodesically complete. As in the previous examples, we can also obtain
an indefinite complex Einstein hypersurface of CH2n+1

n (−c), c > 0, such that
A2 = − c

4I.

Remark 3.3.2. If we write the same equation in Example 3.3.1 as defining
a complex hypersurface of the (definite) complex projective space CP 2n+1(c)
(recall that CPm

s (c) is, as a complex manifold, an open subset of CPm(c) for
all s) we obtain a complex hypersurface congruent with the usual complex
quadric (see Kobayashi and Nomizu [25, Example XI.10.6] or Example 3.2.3
above with s = 0).
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Example 3.3.3. Let M be the complex hypersurface of C2n+1
n , n ≥ 2,

given by
n∑

j=1

(zj − zn+j)2 = 2z2n+1. (3.3.2)

As it is shown in Romero [47], this non-degenerate complex hypersurface
M is holomorphically diffeomorphic to C2n, is geodesically complete, has in-
dex 2n and its shape operator satisfies A2 = 0 but A6=0; that is, M is Ricci
flat but non flat. Moreover M is locally symmetric [47]. Thus M is a semi-
Riemannian symmetric space; in fact, it has been studied from an intrinsic
point of view in Cahen and Parker [11, p. 346]. The change of the Kaehler
metric of the ambient space C2n+1

n by its opposite, permits us to have a com-
plex hypersurface of C2n+1

n+1 , with A2 = 0 and A6=0. Therefore we get (both
cases) for the second fundamental form

h2
ij̄ = 0.

Note that the rank of A is maximum at any point of M and, thus, we have
Im(A) = Ker(A) on all M . If we think on the same equation (3.3.2) as defining
a complex hypersurface in Cm

s with s > n and m > 2n + 1, then we have a
complex Einstein hypersurface of Cm

s satisfying A2 = 0 and A6=0 and, clearly,
with Im(A)6=Ker(A).

Remark 3.3.4. In the definite case, we know by a classical result of Aleek-
sevski and Kimenfeld (see Berard-Bergery [8, p. 553]) that a Ricci-flat homo-
geneous Riemannian metric must be flat. Note that the indefinite complex
hypersurface M given in Example 3.3.3 is homogeneous and Ricci-flat, but M
is not flat.

Example 3.3.5. Let M ′
p, p ∈ Z, p ≥ 3, be the non-degenerate complex

hypersurface of C2n+1
n given by

n∑

j=1

(zj − zn+j)p = pz2n+1. (3.3.3)

Then, [47], each M ′
p is holomorphically diffeomorphic to C2n, is geodesically

complete, has index 2n and satisfies A2 = 0 but A6=0. Therefore we get for
the second fundamental form

h2
ij̄ = 0.
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Now, using again (2.3.19) we have that M ′
p is Ricci-flat (but non flat). As

in previous example, the rank of A is maximum at any point and, thus, we
have Im(A) = Ker(A) on all M ′

p. As it is shown in Romero [47], the curvature
tensor R of M ′

p satisfies ∇2(p−2)+1R = 0 and ∇2(p−2)R 6=0, for any p, where
∇kR denotes the k-th covariant derivative of R. Therefore, M ′

p and M ′
p′

cannot be (locally) isometric if p 6=p′.
On the other hand, if z ∈ M ′

p satisfies zj = zn+j for all j = 1, 2, ..., n,
z2n+1 = 0, then R = 0 at this point z. If M ′

p would be homogeneous this
fact would imply R ≡ 0, which is not clearly true. Observe that this example
provides us with a complex hypersurface of C2n+1

n+1 with the same properties.
If we think on the equation (3.3.3) as defining a complex hypersurface in Cm

s

with s > n and m > 2n + 1, then we have a complex Einstein hypersurface of
Cm

s satisfying A2 = 0 and A6=0 and, clearly, with Im(A)6=Ker(A).

Example 3.3.6. Let M2n
s (hj ; cj) be the complex hypersurface of C2n+1

s

given by
n∑

j=1

hj

(
zj + cjzn+j

)
= z2n+1, (3.3.4)

where hj , 1 ≤ j ≤ n, are holomorphic functions on C, and cj , 1 ≤ j ≤ n,
complex numbers. Note that M2n

n (1
pzp;−1), p ≥ 2, are the complex hypersur-

faces in Examples 3.3.3 and 3.3.5. In Aiyama, Ikawa, Kwon and Nakagawa
[1] are constructed and studied these hypersurfaces. Among other geometric
properties, it is shown that M2n

s (hj ; cj) is a complete complex hypersurface
of index 2s in C2n+1

s if | ck |≥ 1 for any k such that 1 ≤ k ≤ s, and it is holo-
morphically diffeomorphic to C2n. Moreover, if all functions hq, s+1 ≤ q ≤ n,
are linear and | ck |= 1 for any k such that 1 ≤ k ≤ s, then M2n

s (hj ; cj) is
Ricci-flat and it is not flat provided there is a function hk, 1 ≤ k ≤ s, which
is not linear.

Example 3.3.7. Let M ′′
p , p ∈ Z, p ≥ 2, be the complex hypersurface of

CP 2n
n (c), c > 0, defined by

n∑

j=1

(zj − zn+j)p = zp
2n+1, z2n+1 6= 0. (3.3.5)

in the usual homogeneous coordinate system of CP 2n
n (c). As it is shown in

Romero [46], each M ′′
p is non-degenerate, has index 2n and satisfies A2 = 0
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but A6=0. Therefore also we get for the second fundamental form

h2
ij̄ = 0.

Now, by using (2.3.19) we have that M ′′
p is an Einstein space with S = ncg.

So that, the scalar curvature of M ′′
p is 2cn2, for all p. Moreover, [46], M ′′

p

is not locally symmetric; Ker(A) is an autoparallel (non parallel) complex
differentiable distribution on M ′′

p ; M ′′
p is not geodesically complete but it is

not extendible (as a semi-Riemannian manifold). Finally, if p6=p′ then M ′′
p

and M ′′
p′ do not have the same homotopy type. By using once again that the

indefinite complex hyperbolic space CHn+1
s (−c), c > 0, can be obtained from

CPn+1
n−s+1(c) by replacing the Kaehler metric of CPn+1

n−s+1(c) by its opposite, we
can obtain a family M ′′′

p , p ∈ Z, p ≥ 2, of complex hypersurfaces of CH2n
n (−c),

n > 1, defined by

n∑

j=1

(zj − zn+j+1)p = zp
n+1, zn+1 6=0. (3.3.6)

with analogous properties to previous family of complex hypersurfaces in
CP 2n

n (c). These examples have positive definite (resp. negative definite) nor-
mal bundle in CP 2n

n (c) (resp. in CH2n
n (−c)). In a similar way, we can obtain

another family of complex Einstein hypersurfaces with negative definite (resp.
positive definite) normal bundle in CP 2n

n+1(c) (resp. in CH2n
n−1(−c)).

Remark 3.3.8. The last five examples do not have parallel ones in Smyth’s
work [53]. That is, they do belong specifically to the area of indefinite hyper-
surfaces. Examples 3.3.6 and 3.3.7 show us that there exist indefinite complex
Einstein hypersurfaces which are not locally symmetric. Recall that in the
definite case, Smyth proved in [53] that a complex Einstein hypersurface is
always locally symmetric and this is the key of his classification in [53]. On
the other hand, it was shown by Smyth in [54] that a complex hypersurface
of a (definite) complex space form is homogeneous if and only if it is Einstein.
We know from Example 3.3.5 that the same assertion is not true here.

Observe that a lot of complex hypersurfaces in Example 3.3.6, in partic-
ular, all the complex hypersurfaces in Example 3.3.5, have the same scalar
curvature zero. Also, every complex hypersurface in Example 3.3.7 have the
same scalar curvature 2cn2. Thus, the scalar curvature does not distinguish
among indefinite complex Einstein hypersurfaces of indefinite complex space
forms.
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On the other hand, if a complex hypersurface of Cm
s satisfies A2 = 0,

then, for its curvature tensor R, we have R(X, Y )AZ = AR(X, Y )Z = 0
which implies that these hypersurfaces are semi-symmetric in the sense of
Szabó [55]; or alternatively, they satisfy the Nomizu condition R.R = 0, [39].
However, we know that there are a lot of complex hypersurfaces in certain Cm

s

satisfying A2 = 0 and which are not locally symmetric. In the next section,
indefinite complex hypersurfaces which satisfy the Nomizu condition will be
studied, following Aiyama, Nakagawa and the second author [3].

According to the previous examples, we have that any indefinite complex
space form M̃(c) always admits some proper complex Einstein hypersurface,
independently of the sign of the holomomorphic sectional curvature c. How-
ever, for the case of non-proper complex Einstein hypersurfaces we have, Mon-
tiel and the first author [35],

Theorem 3.3.9. Let M be an indefinite complex Einstein hypersurface
of M̃(c) such that the shape operator A associated to a unit normal vector
field ξ satisfies A2 = −b2I, b 6= 0. Then c = −4b2g(ξ, ξ).

As a consequence, if M̃(c) admits a complex hypersurface M under the
assumptions in Theorem 3.3.9 then c6=0 and c > 0 (resp. c < 0) if and only if
the normal bundle is negative definite (resp. positive definite). For the other
non-proper case we have (see Romero [46]),

Theorem 3.3.10. Let M be an indefinite complex hypersurface of a (n+
1)-dimensional, n ≥ 2, indefinite complex space form M̃(c). Assume M is
Einstein with A2 = 0 and not totally geodesic. If M is locally symmetric then
c = 0.

Consequently, we get

Corollary 3.3.11. If c6=0 then there exists no indefinite complex hy-
persurface in M̃(c) with A2 = 0 and not totally geodesic which is locally
symmetric.

Remark 3.3.12. Observe that the assumption locally symmetric in The-
orem 3.3.10 can be replaced by Ker(A) is a parallel differentiable distribution
and the same conclusion holds. Thus, Montiel and Romero [35, Theorem 6.2]
is actually a particular case of Corollary 3.3.11 and, therefore, [35, Theorem
6.2] also holds when the index of the hypersurface is equal to 2 (compare with
the real case Graves and Nomizu [16] and Magid [31, p. 133]).



indefinite complex submanifolds 371

Examples 3.3.5, 3.3.6 and 3.3.7 show that Theorem 3.3.10 is the best result
in that direction. Moreover, it follows that a full classification is not possible
for the non-proper case in which the shape operators are nilpotent and non-
zero.

When the ambient space is flat, we have shown complex Einstein hypersur-
faces with A2 = 0 and maximal rank at any point, which are locally symmetric
(Example 3.3.3), and a lot of such complex Einstein hypersurfaces which are
not locally symmetric (Example 3.3.5). It should be pointed out that for such
complex Einstein hypersurfaces in C2n+1

n (or in C2n+1
n+1 ), a local characteriza-

tion, similar to the obtained one by Magid in the real case [31, Theorem 4.2],
may be obtained.

For the non-proper case where A2 = −b2I, b 6=0, holds, it is possible to
achieve a classification as the following result shows,

Theorem 3.3.13. CQ∗
n is the only indefinite complete complex Einstein

hypersurface of CP 2n+1
n+1 (c) (and of CH2n+1

n (−c)), c > 0, which satisfies A2 =
−b2I, b 6= 0. Moreover, if m 6=2n or t 6=1 (resp. if m 6=2n or t6=0) there do not
exist complex hypersurfaces satisfying these conditions in CPm+1

n+t (c) (resp. in
CHm+1

n+t (−c)).

This result is an improved form of Montiel and the first author [35, The-
orem 5.5] where the complex hypersurface was assumed to be simply connec-
ted. In order to remove this assumption, let M̂ be the semi-Riemannian uni-
versal covering of M . Then M̂ is a complex Einstein hypersurface which also
satisfies A2 = −b2I, b6=0. Taking into account that A is not diagonalizable,
we need a different strategy to that previous Theorem 3.2.4. The key fact is
that condition A2 = −b2I, b6=0, implies (see Theorem 3.1.1) that M is locally
symmetric, and hence M̂ is also locally symmetric. Moreover, b is determ-
ined from c (Theorem 3.3.9). Thus, M̂ is holomorphically isometric to CQ∗

n,
where n is the dimension of M . By rigidity, the first author [48], Umehara
[59], M̂ holomorphically immerses onto CQ∗

n, in CP 2n+1
n+1 (c) or CH2n+1

n (−c).
Therefore, the covering map must be one-to-one and M = M̂ = CQ∗

n.
For the non-proper case where A2 = 0, A6=0, holds, it is possible to give

a characterization in terms of the normal connection. In fact, in Montiel and
the first author [35] the following result is proved,

Theorem 3.3.14. Let M be an n-dimensional, n > 2, complex subman-
ifold of an indefinite complex space form M̃(c). Assume M is geodesically



372 a. romero, y.j. suh

complete and simply connected and c6=0. Then, there exist no unit normal
vector fields to M which are parallel with respect to the normal connection.

As a consequence we obtain,

Corollary 3.3.15. Let M be a complex submanifold as in Theorem
3.3.14. Then the normal curvature tensor vanishes identically if and only
if c = 0 and A2

ξ = 0 for any vector field ξ normal to M .

Remark 3.3.16. In the definite case, Nomizu and Smyth proved [41, The-
orem 7] that for a complex hypersurface M in Cn+1, the normal curvature
tensor is identically zero if and only if M is totally geodesic. Now, from Ex-
amples 3.3.5, 3.3.6 and Corollary 3.3.15, we can assert that the situation here
is quite different. We refer the reader to [23] for other results on the normal
connection.

After the geometric behavior previously exposed for indefinite complex
hypersurfaces which satisfy A2 = 0, it is clear that some extra assumption
should be imposed to study this family of complex hypersurfaces. The follow-
ing result uses a natural assumption, we are going to introduce now. Recall
that each indefinite complex projective space CPm

s (c) is topologically an open
subset of the (ordinary) complex projective space CPm(c). On the other
hand, the complex hypersurfaces M ′′

p in Example 3.3.7 are obtained by tak-
ing M ′′

p = CP 2n
n (c) ∩ M̃p where M̃p is a non-singular and non-closed complex

hypersurface of CP 2n(c). Now assume that

M = CPn+1
s (c) ∩ M̃,

where M̃ is a non-singular closed complex hypersurface of CPn+1(c). In this
case as proved in Romero [46] we have,

Theorem 3.3.17. Let M be an indefinite complex hypersurface embed-
ded in an indefinite complex projective space CPn+1

s (c), n ≥ 2, which is
obtained as above. If M is Einstein and satisfies A2 = 0 at any point, then M
is totally geodesic and hence an indefinite complex projective space CPn

s (c)
or CPn

s−1(c) according the index of M is 2s or 2s− 2, respectively.

The following sketch of proof is inspired from Nomizu [40]. We introduce
the complex submanifold of CPm

s (c) given by

z1 = zs+1, . . . , zt = zs+t (3.3.7)
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where t is a fixed integer with 1 ≤ t ≤ min{s,m− s+1} and (z1, . . . , zm+1) is
the usual complex homogeneous coordinate system of CPm

s (c). This complex
submanifold has dimension m − t and inherits from CPm

s (c) a degenerate
metric with constant rank 2(m − 2t) and index 2(s − t). Moreover, it is
autoparallel and geodesically complete (with respect to the induced connection
from the metric connection of CPm

s (c)). We call it as the degenerate complex
projective space CPm−t

s−t;t(c). The key of the proof is to show that, under the
assumptions in Theorem 3.3.17, if the rank of A is not zero everywhere and
2r denotes the maximum of rank (A) then M contains (after a rigid motion
of the ambient space) CPm−r

s−r;r(c). Form this fact, we can conclude that the
homogeneous polynomial defining M is of degree 1 and, therefore, M equals
CPn

s (c) or CPn
s−1(c), according its index.

Remark 3.3.18. The assumption A2 = 0, at any point, in Theorem 3.3.17
can be changed by rank of M is ≤ n− 1 everywhere, and the same conclusion
remains true. In particular, if M is a complex hypersurface of CPn+1

s (c), n≥3,
satisfying A2 = 0 at any point, its rank cannot be equal to 2 (compare with
Nomizu and Smyth [41, Theorem 6]).

On the other hand, note that each complex hypersurface M ′′
p in Example

3.3.7 contains the complex submanifold given by

z1 = zn+1, . . . , zn−1 = z2n−1, zn − zn+1 = z2n+1, z2n+1 6=0 (3.3.8)

which is an open proper subset of CPn
1;n−1(c). Thus, the topological assump-

tion in Theorem 3.3.17 cannot be removed.
Finally, note that an analogous result to Theorem 3.3.17 can be stated for

the indefinite complex hyperbolic space CHn+1
s (−c), c > 0, n≥2.

3.4. Complex hypersurfaces with parallel Ricci tensor. We
now consider several geometric assumptions on complex hypersurfaces weaker
than to be Einstein. In fact, a natural extension to the condition to be Einstein
on indefinite Kaehler manifolds is to have parallel Ricci tensor. Last condition,
on indefinite Kaehler manifolds, is weaker than to be Einstein. However, if
we pay attention only to complex hypersurfaces we have,

Theorem 3.4.1. Let M be a complex hypersurface of an indefinite com-
plex space form M̃(c) with c6=0. If M satisfies

R(X,Y )S = 0 (3.4.1)
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where R denotes the curvature tensor, S is the Ricci tensor and R(X,Y )
operates on the tensor algebra as a derivation, then M is Einstein.

This result was proved by Aiyama, Ikawa, Kwon and Nakagawa in [1]
as an extension of an unpublished previous result by the first author, which
stated the same conclusion assuming that the hypersurface has parallel Ricci
tensor, clearly a stronger assumption than (3.4.1). Under the assumption
of Ricci parallel tensor, we can give an easy proof of this result. In fact, if
the Ricci tensor is parallel, then the same fact holds for the operator A2,
being A the shape operator associated to a unit normal vector field on M .
Therefore, R(X, Y )A2Z = A2R(X, Y )Z holds for all tangent vector fields
X, Y, Z. By contracting this formula we obtain c(A2 − trace(A2)

2n I) = 0, which
gives the desired result when c6=0. Properly speaking, last argument proves
an extension to the indefinite case of a well-known result by Nomizu and
Smyth [41] and by Takahashi [56], now using a slightly different method to
the Takahashi’s one (Nomizu and Smyth use that the shape operator can be
diagonalized, but in our case this is not always possible).

On the other hand, Takahashi proves in [57] that a complex hypersurface
with parallel Ricci tensor in Cn+1 is totally geodesic. From Examples 3.3.5
and 3.3.6, we know that the same assertion is not true now. In the special
case of the ambient space is Cn+1

1 , it is proved by Aiyama, Ikawa, Kwon
and Nakagawa [1] that a spacelike (i.e. with positive definite induced metric)
complex hypersurface with parallel Ricci tensor must be totally geodesic.

3.5. Semi-symmetric complex hypersurfaces. The section which
ends this chapter is concerned with semi-symmetric complex hypersurfaces in
the sense of Szabó [55] (or alternatively, which satisfy the Nomizu condition
[39]) of an indefinite complex flat space Cn+1

s+t . Namely, they satisfy

R(X, Y )R = 0,

for any vector fields X and Y tangent to M . It turns out that the Nomizu con-
dition implies R.S = 0 and moreover it has been shown in Theorem 3.4.1 that
if an indefinite hypersurface of an indefinite complex space form M̃n+1

s+t (c′),
c′ 6=0, satisfies R.S = 0, then M is Einstein. So, it is natural to think about
this condition when the ambient indefinite complex space form is flat.

Now, suppose that M is an indefinite complex hypersurface satisfying the
condition R.S = 0 of M̃n+p

s+t (c′). It is seen that the condition R.S = 0 is
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equivalent to
Sij̄;kl̄ − Sij̄;l̄k = 0,

and, combining (2.3.7) together with (2.3.21) and (2.3.22), we have for an
indefinite complex hypersurface M of Cn+1

s+t ,

hikh̄
3
jl − h̄jlh

3
ik = 0, (3.5.1)

where we put h3
jk = ε

∑
rs εrεshjrh̄rshsk, where ε = −1 or +1, which implies

that
h3

jk = fhjk for a function f on M,

whenever the set consisting of points of M at which the function h2

(=
∑

k εkh
2
kk̄

) vanishes is of zero measure.
Now, let us recall the notion of cylindrical hypersurface. A complex hy-

persurface M of index 2s of Cn+1
s+t is said to be cylindrical, if M is a (semi-

Riemannian) product manifold of Cn−1
a and a complex curve in C2

b orthogonal
to Cn−1

a in Cn+1
s+t (a + b = s + t). It is clear that a cylindrical complex hy-

persurface M , with index 2s, of Cn+1
s+t satisfies (3.4.1), but it is not necessary

Einstein. In the definite case, Takahashi [57] proved that cylindrical complex
hypersurfaces are the only complete complex hypersurfaces of Cn+1 satisfying
the condition (3.4.1), except for Cn. However, this property cannot be exten-
ded to an indefinite complex flat space. In fact, we can find counter-examples
among the complex hypersurfaces in Examples 3.3.6.

In connection with cylindrical complex hypersurfaces, it is natural to state
the following question:

Do there exist indefinite complex hypersurfaces satisfying R.S = 0 of Cn+1
s+t

which are not Einstein and not cylindrical?

In order to settle this problem affirmatively, an indefinite complex hyper-
surface M of Cn+1

s+t satisfying the Nomizu condition is considered. By the
twice exterior differentiation of the Riemannian curvature tensor R of M (see
section 2.3) the Ricci formula for R is as follows:

Rījkl̄;mn̄ −Rījkl;n̄m =
∑

r

εr

(
−Rn̄mrī Rr̄jkl̄ + Rn̄mjr̄ Rīrkl̄

+ Rn̄mkr̄ Rījrl̄ −Rn̄mrl̄ Rījkr̄

)
.

Taking into account the Gauss equation (2.3.18), we have
(
h2

ml̄h̄ni + h2
mīh̄nl

)
hjk −

(
h2

kn̄hmj + h2
jn̄hmk

)
h̄il = 0, (3.5.2)
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which implies the following two equations

hikh̄
3
jl = h3

ikh̄jl, (3.5.3)

h2h
3
ij = h4hij . (3.5.4)

where we set h4 =
∑

ij εiεjh
2
ij̄
h2

jī
. Making use of these results, we give the

following,

Proposition 3.5.1. Let M be an indefinite complex hypersurface of
Cn+1

s+t . Then M satisfies R(X,Y )R = 0, for any vector fields X and Y, if
and only if

hilhkl = hikhjl or h2
ij̄ = 0. (3.5.5)

Now we come back to the family of complex hypersurfaces M2n
s (hj ; cj) of

C2n+1
s given in Example 3.3.6. As it is shown by Aiyama, Ikawa, Kwon and

Nakagawa in [1], at any point z of M2n
s (hj ; cj) the vector ξz defined by

ξz = (h̄′a, −h̄′x, −c̄ah̄
′
a∗ , −c̄xh̄′x∗ , 1),

where 1 ≤ a ≤ s, s + 1 ≤ x ≤ n, a∗ = a + n, x∗ = x + n and h′j = ∂hj/∂zj

is spacelike and normal. By setting ξ′ = ξ/ | ξ |, we have a unit spacelike
normal vector field ξ′ on M2n

s (hj ; cj).
The components of the second fundamental form derived from ξ′ relative

to the tangent frame {fA} defined by

fA = (0, . . . , 1, . . . , 0, 0, . . . , 0, h′A),

where 1 ≤ A ≤ 2n, are given by

hij = δijh
′′
i /|ξ|, hij∗ = ciδijh

′′
i /|ξ|,

hi∗j = ciδijh
′′
i /|ξ|, hi∗j∗ = c2

i δijh
′′
i /|ξ|,

where h′′i = ∂h′i/∂zi. This means that it turns out that the first equation of
(3.5.5) holds true, which implies that M2n

s (hj ; cj) satisfies the Nomizu condi-
tion R.R = 0. Thus one finds,

Theorem 3.5.2. There exist many indefinite complex hypersurfaces of
C2n+1

s , for any s as above, with R.R = 0 which are not Einstein and not
cylindrical.
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Chapter 4. Complex submanifolds

4.1. Examples of indefinite complex submanifolds. Before going
to give several classification results, we will explain several relevant examples
of complex submanifolds of indefinite complex space forms.

Example 4.1.1. Let f : M→M̃N
S (c′) be a holomorphic isometric immer-

sion of an indefinite Kaehler manifold M into a complete and simply connected
indefinite complex space form M̃N

S (c′). Then f is said to be full if f(M) is
not contained in a proper totally geodesic (degenerate or not) complex sub-
manifold of M̃N

S (c′). It is seen in [48] that
CPn

s (c) admits a full holomorphic isometric immersion into CPN
S (c′) if and

only if
c′ = kc for some positive integer k,

N =
(

n + k

k

)
− 1,

and

S =
[(k+1)/2]−1∑

j=0

(
s + 2j

2j + 1

)(
n− s + k − 2j − 1

k − 2j − 1

)

if s > 0, [(k+1)/2] denoting the greatest integer less than or equal to (k+1)/2,
and

S = 0 if s = 0.

Changing the (negative definite) Kaehler metric of CPn
n (c) by its opposite,

we conclude that:
There is a full holomorphic isometric immersion of the (classical) com-

plex hyperbolic space CHn(−c) into the indefinite complex hyperbolic space
CH

N(n,k)
S′(n,k)(−kc), where S′(n, k) = N(n, k)− S(n, n, k) and

S(n, n, k) =
[(k+1)/2]−1∑

j=0

(
n + 2j

2j + 1

)
.

It is seen that N(n, 2)−n = S′(n, 2) = n(n + 1)/2 and N(n, k)−n > S′(n, k)
if k > 2.

Example 4.1.2. For the homogeneous coordinate systems z1, . . . , zs, zs+1,
. . . , zn+1 of CPn

s (c) and w1, . . . , wt, wt+1, . . . , wm+1 of CPm
t (c), a mapping Ψ

of
CPn

s (c)×CPm
t (c) into CP

N(n,m)
R(n,m,s,t)(c),
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with N(n,m) = n + m + nm and R(n,m, s, t) = s(m− t) + t(n− s) + s + t,
is defined by

Ψ[(z, w)] = [(zawu, zrwx, zbwy, zswv)],

where

a, b, . . . = 1, . . ., s; r, s, . . . = s + 1, . . ., n + 1,

x, y, . . . = 1, . . ., t; u, v, . . . = t + 1, . . ., m + 1.

Then Ψ is a well defined holomorphic mapping and it is seen by Ikawa, Nak-
agawa and the first author [20] that Ψ is also a full isometric embedding, which
is called the indefinite Segre embedding. In particular, if s = t = 0, then Ψ is
the classical Segre embedding (Nakagawa and Takagi [37]). Recall that, in the
definite case, CP 1(c)× CP 1(c) is the usual complex quadric CQ2 in CP 3(c).
However, CQ2

2 and CQ∗
1 are two different quadrics in CP 3

2 (c), namely, the
indefinite complex quadrics of Examples 3.2.3 and 3.3.1, respectively.

Using once again how CHn
s (−c) is obtained from the indefinite complex

projective space CPn
n−s(c), another indefinite Segre embedding

Ψ : CHn
s (−c)×CHm

t (−c)→CH
N(n,m)
S(n,m,s,t)(−c)

is given, where S(n, m, s, t) = (n − s)(m − t) + st + s + t. In particular, for
s = t = 0 we have a holomorphic isometric embedding

Ψ : CHn(−c)×CHm(−c)→CHN(n,m)
nm (−c)

which permits to see a Riemannian product of two complex hyperbolic spaces
as a spacelike complex submanifold of certain indefinite complex hyperbolic
space. Moreover, this submanifold has negative definite normal bundle and
parallel second fundamental form [20]. Recall that, Nakagawa and Takagi [37],
an analogue to the Segre embedding for complex hyperbolic spaces cannot
be stated. In fact, they proved that if there exists a holomorphic isometric
immersion of a product of two Kaehler manifolds into a complex space form
M̃(c), then its holomorphic sectional curvature satisfies c ≥ 0. The fact of the
metric on each normal space is, of course, positive definite is a crucial point
for the proof of this result. Thus, last indefinite Segre embedding gives an
alternative answer to the negative Nakagawa and Takagi’s result in the area
of indefinite Riemannian geometry.
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4.2. Rigidity of holomorphic isometric immersions. Extending
classical Calabi’s rigidity theorem [12] for full holomorphic isometric immer-
sions into complete and simply connected complex space forms, the first author
[48] and Umehara [59] independently proved the following result,

Theorem 4.2.1. Let f : M → M̃N
S (c) and f ′ : M → M̃N ′

S′ (c) be two full
holomorphic isometric immersions of the same indefinite Kaehler manifold M
into simply connected complete indefinite complex space forms of holomorphic
sectional curvature c ∈ R, M̃N

S (c) and M̃N ′
S′ (c), where N , N ′ denote the

complex dimensions and 2S, 2S′ are the respective index. Then

N = N ′, S = S′

and there exists a unique holomorphic rigid motion Φ of M̃N
S (c) such that

Φ ◦ f = f ′.

Recall that the assumption of being full is an affine notion; i.e. only
depends on the Levi-Civita connection of the ambient space. It should be
pointed out that the assumption: f(M) is not contained in a non-degenerate
proper totally geodesic complex submanifold of M̃N

S (c), which is weaker to
the previously given one, does not get to the rigidity. For a counter example
let us consider f, f ′ : C → C3

1 given by f(z) = (z2 + 1, z2 + 2, z) and f ′(z) =
(z3 + 1, z3 + 2, z). Both are holomorphic isometric immersions. Clearly, there
exists no holomorphic rigid motion Φ of C3

1 such that Φ ◦ f = f ′. Note
that f(C) and f ′(C) are contained in the degenerate complex hyperplane
z1 − z2 + 1 = 0 of C3

1, but f(C) and f ′(C) are not contained in a proper
non-degenerate complex affine subspace of C3

1.
On the other hand, Aiyama, Nakagawa and the second author proved in

[3] the following two results,

Theorem 4.2.2. Let Mn
s (c) be an n-dimensional indefinite complex

space form which admits a holomorphic isometric immersion in another one
M̃n+p

s+t (c′).
(1) If c′ 6= 0, then c′ = kc and n+ p ≥ (

n+k
k

)− 1 for some positive integer k.

(2) c′ = 0 if and only if c = 0.

Proposition 4.2.3. Let Mn
s (c) be an n-dimensional indefinite complex

space form which admits a holomorphic isometric immersion in M̃n+p
s+t (c′), c′ 6=0

and t = p.
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(1) If c′ > 0, then c′ = c ( and Mn
s is totally geodesic).

(2) If c′ < 0, then c′ = c or 2c, the first case arising only when Mn
s is totally

geodesic and the other one arising only when s = 0.

The indefinite Segre embedding described in Example 4.1.2 can be character-
ized as follows [20],

Theorem 4.2.4. Let Mn
s and M ′m

t be complete indefinite Kaehler man-
ifolds with complex dimensions n and m and index 2s and 2t, respectively.
Assume there exists a holomorphic isometric immersion ϕ : Mn

s × M ′m
t →

CPN
R (c). Then

(1) N ≥ N(n,m) and R ≥ R(n,m, s, t).

(2) If N = N(n,m) then R = R(n,m, s, t), Mn
s is holomorphically isomet-

ric to CPn
s (c), M ′m

t is holomorphically isometric to CPm
t (c) and, by identifying

Mn
s ×M ′m

t with CPn
s (c)×CPm

t (c), the immersion ϕ is an embedding obtained
by the composition of the indefinite Segre embedding Ψ given in Example 4.1.2
and a rigid motion of CP

N(n,m)
R(n,m,s,t)(c).

This result can be considered as an answer to the “converse” problem for
the statement of the indefinite Segre embedding. Moreover, it extends to the
indefinite case a well known theorem by Chen in [13]. As a consequence, we
have [20],

Corollary 4.2.5. Let Mn and M ′m be complete Kaehler manifolds.
Assume there exists a holomorphic isometric immersion ϕ : Mn × M ′m →
CHN

S (−c), c > 0. Then

(1) N ≥ n + m + nm and S ≥ nm,

(2) If N = n + m + nm, then S = nm, Mn is holomorphically iso-
metric to CHn(−c), M ′m is holomorphically isometric to CHn(−c) and, by
identifying Mn × M ′m with CHn(−c) × CHm(−c), the immersion ϕ is an
embedding obtained by the composition of the indefinite Segre embedding
Ψ : CHn(−c) × CHm(−c) → CHn+m+nm

nm (−c) in Example 4.1.2 and a rigid
motion of CHn+m+nm

nm (−c).

Now let us note that the second fundamental form h of the indefinite Segre
embedding Ψ is parallel; i.e. it is invariant by parallel translation with respect
to the normal connection, or equivalently, it satisfies

∇h = 0.
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In the definite case, this property gives a well known characterization of the
classical) Segre embedding (see Nakagawa and Takagi [37], for instance). Now,
this fact also characterizes Ψ and gives, as a consequence, the following result
of particular interest [20],

Theorem 4.2.6. Let Mn and M ′m be complete Kaehler manifolds. As-
sume there exists a holomorphic isometric immersion ϕ : Mn × M ′n →
CHN

nm(−c), c > 0. If the second fundamental form of ϕ is parallel, then
ϕ is obtained from the Segre embedding

Ψ : CHn(−c)× CHm(−c) → CHn+m+nm
nm (−c) ⊂ CHN

nm(−c)

and a rigid motion of CHn+m+nm
nm (−c).

Finally, following the same idea as in [13] for the definite case, it is given
in [20] another characterization of the indefinite Segre embedding

Ψ : CHn(−c)×CHm(−c)→CHn+m+nm
nm (−c),

now in terms of the square of the length of its second fundamental form, which
is given by h2 = −cnm < 0.

4.3. Spacelike complex submanifolds. We begin this section with
the statement of a uniqueness result due to Aiyama, Kwon and Nakagawa [2].
In fact, they proved the following Bernstein-type result,

Theorem 4.3.1. Let Mn be a complete spacelike complex submanifold of
an indefinite complex space form M̃n+s

s (c). If c ≥ 0 then Mn must be totally
geodesic.

Remark 4.3.2. (1) Note that, in this result, the index of the ambient space
agrees with the real codimension of the submanifold; i.e., the normal bundle is
assumed to be negative definite. Clearly, this assumption cannot be removed
(consider, for instance, the classical complex quadric CQn as a spacelike com-
plex submanifold of CPn+s+1

s (c), s > 0).
(2) In particular, Theorem 4.3.1 classifies complete spacelike complex hy-

persurfaces of CPn+1
1 (c) and of Cn+1

1 , without the assumption of being Ein-
stein.

(3) Theorem 4.3.1 cannot be extended to the case c < 0. In fact, the
complex quadric CQ′n of Example 3.3.3 is a complete spacelike complex hy-
persurface of CHn+1

1 (−k), k > 0, which is not totally geodesic. Even more, the
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indefinite Segre embedding, which we have given in Example 4.1.2, provides
us with (n + m)−dimensional, n 6= m, complete spacelike complex subman-
ifolds of CHn+m+nm

nm (−k), k > 0, which are not Einstein. Finally, we refer
the reader to [23] for another related Bernstein-type result obtained using the
same technique as in [2].

Next, we will focus our attention in the proof of Theorem 4.3.1. Let us
consider the function h2 on M ; i.e., the square length of the second funda-
mental form. Clearly, it satisfies h2 ≤ 0 from the assumption on the normal
bundle, and h2 = 0 if and only if M is totally geodesic. In [2] an adapted ver-
sion for indefinite metrics of classical Simon’s formula, [42, Proposition 3.1],
is used. In fact, for a complex submanifold Mn

s of an indefinite complex space
form Mn+p

s+t (c), by means of (2.3.22), the Laplacian of the function h2 can be
computed as follows

4h2 = (n + 2)
c

2
h2 − (2h4 + A2) +

∑

xijk

εxεiεjεkh
x
ijkh̄

x
ijk (4.3.1)

where h4 =
∑

ij εiεjh
2
ij̄
h2

jī
, and A2 =

∑
xy εxεyA

x
yAy

x, with Ax
y =

∑
ij εiεjh

x
ij h̄

y
ij .

Now let M be an n-dimensional spacelike complex submanifold of an in-
definite complex space form M̃n+p

p (c). From the fact that M is spacelike we
know that the Hermitian matrix (h2

jk̄
) is, at any point, negative semi-definite,

and hence its eigenvalues λj are non-positive real valued functions. On the
other hand, the Hermitian matrix (Ax

y) is by definition, at any point, positive
semi-definite, whose eigenvalues are denoted by λx. Then λx are non-negative
and, making use of the Cauchy-Schwarz inequality, we have

(−h2)2≥h4 =
∑

x

λ2
x≥ (−h2)2/n,

h2
2≥A2 =

∑
x

λ2
x≥ (

∑
x

λx)2/p = h2
2/p.

(4.3.2)

From (4.3.1), we get

4h2≤{np(n + 2)ch2 − 2(n + 2p)h2
2}/2np,

where the equality holds true if and only if

λj = λ, λx = µ for any indices j and x,

and the second fundamental form h is parallel.
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This means for the non-negative function f = −h2 the following inequality

4f ≥{np(n + 2)cf + 2(n + 2p)f2}/2np. (4.3.3)

And therefore, using c ≥ 0 we get

4f ≥ n + 2p

np
f2 (4.3.4)

Next, we can use the following result proved by Nishikawa in [38],

Theorem 4.3.3. Let M be a complete Riemannian manifold whose Ricci
curvature is bounded from below, and let f be a non-negative smooth function
on M . If f satisfies

4f ≥ kf2

where k is a positive constant, then f = 0.

In order to end this sketch for the proof of Theorem 4.3.1, we only have
to note that the Ricci curvature of a spacelike complex submanifold Mn of
M̃n+p

p (c) is bounded from below by (n + 1)c/2, as a consequence of (2.3.19).
It should be pointed out that Theorem 4.3.3 is in fact a nice consequence

of the well known maximum principle by Omori [43] and Yau [62]. Following
[3], we will state here this result in a slightly different form to the original one.

Theorem 4.3.4. Let M be a complete Riemannian manifold whose Ricci
curvature is bounded from below and let F be a function of class C2 on M .
If F is bounded from below, then for any point p and any ε > 0 there exists
a point q ∈ M such that

| ∇F (q) |< ε, 4F (q) > −ε and F (q) ≤ F (p).

Now, we will explain a new proof of Theorem 4.3.1 for the case c > 0.
It is inspired on the arguments in the paper by A. Ros [49]. First note that
Mn must be compact when c > 0. In fact, in this case the Ricci curvature
is bounded from below by the positive constant (n + 1)c/2. This fact and
completeness imply compactness, because of the classical Myers theorem.

As in A. Ros [49], take c = 1 and let UM be the unitary tangent bundle to
M ; i.e. the hypersurface of the tangent bundle TM consisting of all tangent
vectors u which satisfy 〈u, u〉 = 1, where we are denoting by 〈 , 〉 both the
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metric of M̃n+p
p (c) and M . Now consider the smooth function f : UM → R,

given by
f(u) = 〈h(u, u), h(u, u)〉,

where h is the second fundamental form of the submanifold. Clearly, this
function satisfies f(u) ≤ 0 and f = 0 if and only if M is totally geodesic.

Note that UM is compact because M is assumed to be compact and the
fiber of the unitary tangent bundle UM is always compact. Therefore f
attains its minimum at some point v∈UM . If we prove that f(v) = 0 then
f = 0, as desired.

The formula (2.8) in Ros’s paper [49] (which is obtained from the Hessian
of f at v) remains true here if v is the minimum (Ros arguments in his proof on
the unitary tangent vector where f attains its maximum). Now, because the
normal bundle is negative definite, the right hand side of the quoted formula
(2.8) is ≤ 0. But from our assumption (v is minimum) the same right member
is ≥ 0. Hence

f(v)
(
1− 4f(v)

)
= 0,

which implies f(v) = 0.

We would like point out now that Theorem 4.3.1 can be seen as the com-
plex version of another Bernstein-type result, but now in the real case, which
was obtained by Ishihara in [21]. The main tool used by Ishihara was also the
classical approach using Simon’s formula for the square of the length of the
second fundamental form. In the case c > 0, a new proof to Ishihara’s the-
orem can be performed with a slight modification of the previously explained
method. On the other hand, by means of certain integral formulas introduced
by Alias and the first author [4], see also [5], it is proved the following result,

Theorem 4.3.5. Let M be an n-dimensional complete spacelike subman-
ifold with zero mean curvature in the indefinite sphere Sn+p

q (1), 1 ≤ q ≤ p. If
the Ricci tensor S of M satisfies

S(u, u) ≥ (n− 1)g(u, u)

for all tangent vector u, then M must be totally geodesic.

Note that in the case p = q the inequality in Theorem 4.3.5 is automatic-
ally satisfied. Thus, this result generalizes Ishihara’s theorem [21] when the
ambient space is Sn+p

p (1). From previous results, it arises in a natural way to
decide if the following assertion is true,
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Conjecture. Let Mn be a complete spacelike complex submanifold of
an indefinite complex space form M̃n+p

q (c), 1 ≤ q ≤ p, c > 0. If the Ricci
tensor S of M satisfies

S(u, u) ≥ (n + 1)c
2

g(u, u)

for all tangent vector u, then M must be totally geodesic.

Of course, without the restriction on the Ricci tensor, the conclusion M is
totally geodesic, in previous conjecture, cannot be achieved (consider, for in-
stance, the classical complex quadric CQn as a spacelike complex submanifold
of CPn+s+1

s (c), s > 0).
Now we come back to comment Theorem 4.3.1. From Remark 4.3.2 we

know that it cannot be extended to the case M̃n+p
p (c), c < 0. Thus, a new

assumption is necessary to impose on some curvature of the complex subman-
ifold. Therefore, consider next, following Aiyama, Nakagawa and the second
author [3], spacelike complex submanifolds with constant scalar curvature of
an indefinite complex space form M̃n+p

p (c), c < 0.
The square of the norm of the tensor field (locally) defined by

∑
{εxhx

jkh
x
il − h2(δijδkl + δikδjl)/n(n + 1)}

gives rise to the inequality

A2 ≥ 2h2
2/n(n + 1),

where the equality holds true if and only if M is of constant holomorphic
sectional curvature. From this it follows that

4f ≥ (n + 2){n(n + 1)cf + 4f2}/2n(n + 1). (4.3.5)

As a direct consequence of these estimates, one finds without any assumption
on completeness the following (see [3])

Proposition 4.3.6. Let M be a spacelike complex submanifold of
M̃n+p

p (c) with constant scalar curvature r.

(1) If c≥0, then M is totally geodesic.

(2) If c < 0 and r≥n2(n + p + 1)c/(n + 2p), then M is Einstein, r = n2(n +
p + 1)c/(n + 2p) and the second fundamental form is parallel.
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(3) If c < 0 and r≥n(n + 1)c/2, then M is a complex space form M̃n(c/2)
and p≥n(n + 1)/2.

As we pointed out in previous Remark 4.3.2(2), in the case where c < 0,
there are many complete spacelike complex submanifolds which are not Ein-
stein. However, it is proved in [3] the following,

Theorem 4.3.7. Let M be an n(≥3)-dimensional complete spacelike com-
plex submanifold of CHn+p

p (c), p > 0, c < 0.
(1) If r ≥ n2(n+p+1)/(n+2p), then M is Einstein, r = n2(n+p+1)c/(n+

2p) and the second fundamental form is parallel.

(2) If r ≥ n(n + 1)c/2, then M = CHn(c/2), p ≥ n(n + 1)/2.

Corollary 4.3.8. Let M be a complete spacelike complete complex sub-
manifold of M̃n+p

p (c), c < 0.
(1) If every Ricci curvature of M is greater than or equal to n(n + p +

1)c/2(n + 2p), then M is Einstein.

(2) If every Ricci curvature of M is greater than or equal to (n+1)c/4, then
M is a complex space form Mn(c/2).

4.4. Complex submanifolds of definite complex space forms.
In the last section of this chapter, motivate from previous results, let us
study complete complex submanifolds with constant scalar curvature of a
(definite) complex space form M̃n+p(c). Let M be an n-dimensional complex
submanifold of M̃n+p(c). First, recall that the components Sij̄;kl and Sij̄;kl̄

of the second covariant derivative of the Ricci tensor S of M are expressed
by (2.3.6). On the other hand, the Ricci formula for S is given by (2.3.7),
(primes in both formulas should be forgotten here). Assume now that the
scalar curvature r of M is constant. Since we have

∑
j Sjj̄;k = 0, for all k, it

follows that

4Skj̄ =
∑

l

(Skl̄Slj̄ −Rīklj̄Sil̄)

= c(2nSkj̄ − rδkj)/4

−
∑

ls

{
h2

kl̄Slj̄ − hx
klh̄

x
jsSsl̄

}
.

On the other hand, by combining the relation
∑

jk

Sjk̄Skj̄ − r2/4n = h4 − h2
2/n
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together with the above equation, the following one

4(h4 − h2
2/n) = nc(h4 − h2

2/n) + 2
∑

hx
ls;ih̄

y
ls;jh

y
jth̄

x
ti

−
∑

iljx

(hx
ilSl̄j − Sil̄h

x
lj)(hx

isSs̄j − Sis̄hx
sj)

(4.4.1)

is derived. Then by using Theorem 4.3.7 next result is proved (see [3]),

Theorem 4.4.1. Let M be a complete complex submanifold with con-
stant scalar curvature of a complex space form M̃n+p(c), c > 0. If the Ricci
tensor of M and any shape operator are commutative, then M is Einstein.

Recall that in the case where M is compact, this result was proved by Kon
in [26]. A complex hypersurface M of M̃n+1(c) are next considered. Assume
that the scalar curvature r of M is constant. Then (4.4.1) is simplified to give

4h4 = nc(h4 − h2
2/n) + 2

∑

ijls

h2
ij̄hjl;sh̄il;s.

On the other hand, since we have
∑

ls

hls;ih̄ls;j = −c{h2δij + 2h2
ij̄}/2 + {2h4

ij̄ + h2h
2
ij̄},

because of the constant scalar curvature and (2.3.22), the above equation is
reduced to

4h4 = c{(n− 2)h4 − 2h2
2}+ 2(2h6 + h2h4),

where h6 =
∑

jrs h2
jr̄h

2
rs̄h

2
sj̄

. For the eigenvalues λj of the Hermitian matrix
(h2

jk̄
), the function h6 equals to

∑
j λ3

j and hence we have

h6 ≥ h2h4/n.

Thus we achieve

4h4≥ c(n− 4)h4 + 2(n + 2)h2h4/n, (4.4.2)

provided that c≤0. By means of this inequality, the following theorem for
complex hypersurfaces is proved,

Theorem 4.4.2. Let M be a complete complex hypersurface of M̃n+1(c).
If the scalar curvature of M is constant, then the following statements hold
true:
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(1) If c≥ 0, then M is totally geodesic or S = nc
2 g, the later case arising

only when c > 0.

(2) If c < 0 and n≤ 4, then M is totally geodesic.

Remark 4.4.3. As recalled previously, B. Smyth, [53], [54], classified com-
plete Einstein Kaehler hypersurfaces in a simply connected complete complex
space form M̃n+1(c), and asserted that they are totally geodesic for c≤ 0,
and they are either totally geodesic or the complex quadric CQn for c > 0.
For higher codimension the situation seems to be more complicated. Let us
remark that Smyth’s theorem was generalized by Y. Matsuyama [34] in case
of complete Einstein complex surfaces M2 in a complex space form M̃n+2(c),
and by K. Tsukada [58] for codimension 2, i.e., in the case of complete Einstein
Kaehler manifolds Mn in a complex space form M̃n+2(c). More generally, M.
Umehara [59] proved that every complete Einstein Kaehler n-submanifold of
Cn+p or CHn+p, n ≥ 1, (i.e. with arbitrary codimension) must be always
totally geodesic. It should noted that his proof is based on several properties
of the diastasis of Einstein Kaehler submanifolds (the diastasis of a Kaehler
manifold was introduced by E. Calabi [12] and used by the first author [48] to
prove rigidity, in the indefinite setting, of full holomorphic isometric immer-
sions, Theorem 4.2.1).

Chapter 5. Totally real bisectional curvature

5.1. Motivations. In Chapter 2, we recalled the notion of totally real
bisectional curvature defined on a Kaehler manifold M̃ . Concerning sev-
eral results with such a kind of curvature, in section 5.2 we will show that
a complete Kaehler manifold M̃ with positively lower bounded totally real
bisectional curvature B(u, v)≥ b > 0 and constant scalar curvature is holo-
morphically isometric to a complex projective space CPn(c). Before obtain-
ing this result we should verify that a complete Kaehler manifold M̃ with
B(u, v)≥ b > 0 must be Einstein. Moreover we also show that the positive
constant b in the above estimation is the best possible. This means that the
condition of a positive lower bound for the totally real bisectional curvature
cannot be replaced by the non-negativity of this curvature; in fact, it is not
difficult to show an example of complete Kaehler manifold with non-negative
totally real bisectional curvature B(u, v)≥ 0 but not Einstein (see Remark
5.2.3).
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S.I. Goldberg and S. Kobayashi [17] showed that a complete Kaehler man-
ifold M̃ with positive holomorphic bisectional curvature H(u, v) > 0 must be
Einstein. In order to get this result they should verified that, under their as-
sumptions, the Ricci tensor of M̃ is positive definite. In the proof they used the
fact that the holomorphic sectional curvature H(u) is positive, which neces-
sarily follows from the condition H(u, v) > 0. But the condition of B(u, v) > 0
carries less information than the condition of H(u, v) > 0, and it gives us no
meaning to use the S.I. Goldberg and S. Kobayashi method to derive the fact
that M is Einstein. That is, we cannot use the condition of H(u) > 0. How-
ever, in spite of this weaker condition B(u, v)≥ b > 0 by making use of the
maximum principle due to Omori [43] and Yau [62], Theorem 4.3.4, we can
also obtain the desired result.

As mentioned at the end of section 2.3, the totally real bisectional curvature
B(u, v) can be also considered for non degenerate totally real planes Span{u, v}
in any indefinite Kaehler manifold. In [7], M. Barros and the first author asser-
ted that the above mentioned Houh’s result [18] can be extended to indefinite
Kaehler manifolds.

We show in section 4.3, Aiyama, Nakagawa and the second author [3],
the classification problem of spacelike complex submanifolds, with bounded
scalar curvature, of the indefinite complex hyperbolic space CHn+p

p (c), c < 0.
Being motivated by this result, in section 5.3 we also study those classification
problems with bounded totally real bisectional curvature. Finally in section
5.4, we will deal with the classification of complex submanifolds Mn, with
bounded totally real bisectional curvature, of the complex projective space
CPn+p(c), c > 0.

5.2. Complete Kaehler manifolds with positive totally real
bisectional curvature Let (M̃, g, J) be an n-dimensional Kaehler mani-
fold. It is well known that its Ricci 2-form is harmonic if and only the scalar
curvature of M̃ is constant. In order to prove that the second Betti number
of a compact connected Kaehler manifold M̃ with positive holomorphic bisec-
tional curvature H(u, v) > 0 is one, S.I. Golberg and S. Kobayashi [17] used
the fact that H(u) > 0. Thus the Ricci 2-form is proportional to the Kaehler
2-form, so that M̃ becomes an Einstein manifold.

But, as mentioned, the assumption B(u, v) > 0 is weaker than H(u, v) > 0.
Thus in order to get the previous result it is impossible for us to use H(u) >
0 with the condition B(u, v) > 0. From this point of view, the maximum
principle due to Omori [43] and Yau [62], Theorem 4.3.4, has been used by Ki
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and the second author in [24] to obtain the following result.

Theorem 5.2.1. Let M̃ be an n-dimensional complete Kaehler mani-
fold with constant scalar curvature. Assume that the totally real bisectional
curvature is lower bounded for some positive constant b. Then M̃ is Einstein.

In order to prove this theorem, we need the following result [24],

Lemma 5.2.2. Under the same assumption as stated in Theorem 5.2.1,
the Ricci curvature of M̃ is bounded from below.

Next by using Lemma 5.2.2, we will complete the proof of Theorem 5.2.1.
In order to do that, we fix a constant a > 0, and consider the smooth positive
function

F = (f + a)−
1
2 ,

where we put f = S2 − r2

4n , with S2 =
∑

BC SBC̄SCB̄ (see section 2.3). Note
that f ≥ 0 and f = 0 if and only if the manifold is Einstein.

We may assume that SBC̄ = λBδBC locally, where λB is a real valued
function. Since r is constant, from (2.3.5) it follows that

∑

B

SBB̄;C =
∑

C

SCB̄;B = 0.

This fact, together (2.3.5) and (2.3.7), and taking into account (2.3.3), permit
us to compute the Laplacian of the function S2 to get

1
2
4S2 =

1
2
| ∇S |2 +

∑

BC

SC̄B

(
λBSBC̄ −

∑

A

λARĀABC̄

)
,

where | ∇S |2= 2
∑

SAB̄;C S̄AB̄;C . Therefore

4S2 ≥
∑

AB

(λA − λB)2RĀABB̄, (5.2.1)

and the equality holds if and only if ∇S = 0.
According to our assumptions and the above definition of f , from (5.2.1)

we get the following differential inequality

4f ≥ 2nbf, (5.2.2)

and the equality holds if and only if ∇S = 0.
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Now, Lemma 5.3.2 is claimed in order to apply Theorem 4.3.4 (Omori
[43] and Yau [62]) to the function F = (f + a)−

1
2 which has been previously

constructed. Thus, for each positive number ε > 0, there exists a point pε

such that

|∇F |(pε) < ε, 4F (pε) > −ε, F (pε) < InfF + ε. (5.2.3)

It follows from these inequalities that

ε (3ε + 2F (pε)) > F (pε)44f(pε) ≥ 0. (5.2.4)

Thus for a convergent sequence {εm}, εm ∈ R, such that εm > 0, and εm→0
as m→∞, there is a point sequence {pm} in M so that the sequence {F (pm)}
satisfies (5.2.3) and converges to F0, by taking a subsequence if necessary,
because the sequence {F (pm)} is bounded. Making use of (5.2.3) we have
F0 = InfF and hence f(pm)→f0 = Supf. It follows from (5.2.4) that we have

εm{3εm + 2F (pm)} > F (pm)44f(pm) ≥ 0, (5.2.5)

and the left hand side converges to 0 because the function F is bounded. Thus
we get

F (pm)44f(pm)→0

as m→∞. As is already seen, the Ricci curvature is bounded from below
i.e., so is any λB. Since r = 2

∑
B λB is constant, λB is bounded from above.

Hence F = (f + a)−
1
2 is bounded from below by a positive constant. From

(5.2.5) it follows that
4f(pm)→0

as m→∞. But, from (5.2.2) we have that

4f(pm)≥ 2nb f(pm)≥ 0.

Thus we get f(pm)→0 = Inff . Since f(pm)→Supf , Supf = Inff = 0. Hence
f = 0 on M . That is, M is Einstein. This ends the sketch of proof for
Theorem 5.2.1.

Remark 5.2.3. The assumption of the constant bound b > 0 in Theorem
5.2.1 is the best possible. This means that the condition of the existence of
a positive lower bound for the totally real bisectional curvature cannot be
replaced by the non-negativity of this curvature. In fact, there is a com-
plete Kaehler manifold with non-negative totally real bisectional curvature
B(u, v)≥ 0 but not Einstein constructed as follows.
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Consider the Riemannian product manifold CPn1(c1)×CPn2(c2). It is not
difficult to see that the totally real bisectional curvature of this Kaehler man-
ifold is given by

RĀABB̄ =





Rāabb̄ = c1
2 if A = a, B = b,

0 if A = a, B = s,
Rr̄rss̄ = c2

2 if A = r, B = s,

where A,B (A 6=B), ... = 1, ..., n1, n1 + 1, ..., n1 + n2; a, b, ... = 1, ..., n1, and
r, s, ... = n1 + 1, ..., n1 + n2.

Taking now into account the form of the curvature tensor of a Riemannian
product, its Ricci tensor satisfies

SAB̄ =
∑

C

RB̄ACC̄ =
∑

a

RB̄Aaā +
∑

r

RB̄Arr̄

=





n1+1
2 c1δbc if B = c, A = b,

0 if B = s, A = b,
n2+1

2 c2δts if B = s, A = t.

Thus for the case where (n1 + 1)c1 6=(n2 + 1)c2, CPn1(c1)×CPn2(c2) is not
Einstein.

Now we come back to Theorem 5.2.1. Since a complete Kaehler manifold
M̃ under the assumptions of that result, is known to be Einstein and its scalar
curvature r is a positive constant, its Ricci tensor is clearly positive definite.
Thus by using the classical Myers theorem we can assert that M̃ must be
compact. Next let us recall a result of S.I. Goldberg and S. Kobayashi [17],
stated in a slight different form to the original one.

Theorem 5.2.4. An n-dimensional compact connected Kaehler manifold
with an Einstein metric and of positive totally real bisectional curvature must
be globally isometric to the complex projective space CPn with its Fubini-
Study metric.

Though in the original result in [17] was assumed positive holomorphic
bisectional curvature, it can be easily checked that the conclusion in Theorem
5.2.4 also holds if we assume positive totally real bisectional curvature. Thus
combining Theorems 5.2.1 and 5.2.4 we can state the following result [24],

Theorem 5.2.5. Let M̃ be an n(≥3)-dimensional complete Kaehler man-
ifold with constant scalar curvature. Assume that its totally real bisectional
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curvature is lower bounded for some positive constant b. Then M̃ is globally
isometric to CPn with its Fubini-Study metric.

5.3. Spacelike complex submanifolds with lower bounded to-
tally real bisectional curvature. Let CHn+p

p (c), c < 0, be the (n+p)-
dimensional indefinite complex hyperbolic space of index 2p(> 0), and let M
be an n(≥3)-dimensional spacelike complex submanifold of CHn+p

p (c). Then,
from the Gauss equation (2.3.23) we get

Rīijj̄ =
c

2
−

∑
x

εxhx
ij h̄

x
ij ≥

c

2
, (5.3.1)

where we have used the fact that εx = −1, for all x, because the normal space
of M is negative definite.

Now we will give here some remarks on the totally real bisectional curvature
for complex submanifolds of indefinite complex space forms.

Remark 5.3.1. (a) For a complex submanifold M of a (positive definite)
complex space form M̃n+p(c), from (2.3.23) we have

Rīijj̄ =
c

2
−

∑
x

hx
ij h̄

x
ij ≤

c

2
.

As it was shown in Example 2.3.3, the totally real bisectional curvature B
of the complex quadric CQn in CPn+1(c) satisfies 0≤B≤ c

2 . Moreover, the
holomorphic sectional curvature H of CQn is holomorphically pinched as
c
2 ≤H ≤ c, [42].

(b) From Theorem 4.3.1 we know that if M is a complete spacelike complex
submanifold of an indefinite complex space form M̃n+p

p (c) with c≥0, then, M
is totally geodesic. Thus, its totally real bisectional curvature satisfies B = c

2 .
(c) Suppose that an n-dimensional indefinite complex space form Mn

s (c)
admits a holomorphic isometric immersion into an indefinite complex space
form M̃n+p

s+p (c′), c′ 6=0. Making use of Proposition 4.2.3, we can assert that if
c′ > 0, then c′ = c. Thus M is totally geodesic and B = c′

2 . On the other
hand, if c′ < 0, then c′ = c or 2c, the first case arising only when M is totally
geodesic, and the other arising only when s = 0 and thus B = c′

4 .
(d) Let CQ′n be the spacelike complex quadric of the complex hyperbolic

space CHn+1
1 (c), c < 0. Recall that CQ′n is Einstein, and that (see Example

2.3.32) its totally real bisectional curvature satisfies c
2≤B≤0.
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Therefore, there is no meaning to consider complete spacelike submanifolds
of M̃n+p

p (c), c≥0, with lower bounded totally real bisectional curvature. Thus,
we are focusing now on

The classification problem of the complete spacelike submanifolds of
CHn+p

p (c), c < 0, with lower bounded totally real bisectional curvature.

So, suppose that there exists b∈R such that

Rīijj̄ ≥ b for any i, j (i 6=j). (5.3.2)

From this assumption and (5.3.1) it follows that

2
∑

x

εxhx
ij h̄

x
ij ≤ c− 2b for any i, j (i 6= j), (5.3.3)

where recall that now and in the following reasoning εx = −1, for all x.
Making use of (2.3.20), the above formulas and Lemma 5.2.2, we deduce

2nb ≤
∑

j

Rj̄jjj̄ ≤ n(n + 1)
c

2
− h2 − n(n− 1)b.

Thus we have
2h2 ≤ n(n + 1)(c− 2b), (5.3.4)

where the above equality holds if and only if Rj̄jjj̄ = 2b for any j. That is,
M is of constant holomorphic sectional curvature 2b.

On the other hand, by using Lemma 5.3.2 and (2.3.20), we have that

(n− 2)Rj̄jjj̄ ≥ (n− 1)(n + 4)b− n(n + 1)
c

2
+ h2. (5.3.5)

Using (2.3.19), the holomorphic sectional curvature Rj̄jjj̄ equals to c +∑
x hx

jj h̄
x
jj , from which it follows that

−
∑

x

hx
jj h̄

x
jj = c−Rj̄jjj̄ ≤

(n− 1)(n + 4)(c− 2b)− 2h2

2(n− 2)
· (5.3.6)

With these estimates previously given, it is shown in [24] the following,

Theorem 5.3.2. Let M be an n(≥3)-dimensional complete complex sub-
manifold of CHn+p

p (c), p > 0, with totally real bisectional curvature ≥b. Then
the following assertions hold:

(1) b is smaller than or equal to c/4.
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(2) If b = c/4, then M is a complex space form of holomorphic sectional
curvature c/2, p ≥ n(n + 1)/2.

(3) If b = n(n + p + 1)c/2(n + 2p)(n + 1), then M is a complex space form
of holomorphic sectional curvature c/2, p = n(n + 1)/2.

5.4. Complex submanifolds with lower bounded totally real
bisectional curvature of definite complex space forms. In this
last section, as an application to the previous development, we will study n-
dimensional complex submanifolds M of an (n+ p)-dimensional complex pro-
jective space CPn+p(c), c > 0, with bounded totally real bisectional curvature.
Of course, in this case all the signs εi and εx in formulas (2.3.18) and (2.3.19)
are just +1.

Let us recall that, as in Chapter 2, h2 denotes the function h2 =∑
i,j,x hx

ij h̄
x
ij . Thus by using (2.3.21) and (2.3.22) we have

(h2)kl̄ =
∑

hx
ij;kh̄

x
ij;l +

∑{ c

2
(
hx

ijδkl + hx
jkδil + hx

kiδjl

)
h̄x

ij

− (
hx

rih
y
jk + hx

rjh
y
ki + hx

rkh
y
ij

)
h̄y

rlh̄
x
ij

}
.

(5.4.1)

As in section 3.5, we consider now the function h4 =
∑

h2
ij̄
h2

jī
=∑

hx
ij h̄

x
jkh

y
klh̄

y
il. Now, from (5.4.1) and using again (2.3.22), we can compute

the Laplacian of h4 (see [24]) as follows

4h4 =2
∑{n + 2

2
chx

ij − (hx
irh

2
jr̄ + hx

jrh
2
ir̄ + Az

xhz
ij)

}
h̄x

jkh
y
klh̄

y
li

+
∑(

hx
ij;mh̄x

jk;mh2
kī + hx

ij;mh̄x
jkh

y
klh̄

y
li;m

)
.

By using these formulas we have the following result (see Ki and the second
author [24]).

Theorem 5.4.1. Let M be an n(≥3)-dimensional complete complex sub-
manifold of a complex projective space CPn+p(c). If there exists a posit-

ive constant b such that b > n3+2n2+2n−2
2n(n2+2n+3)

c and the totally real bisectional

curvature of M is greater than or equal to b, then M is totally geodesic, hence
a complex projective space CPn(c).
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