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1. INTRODUCTION

Since the work of Kan [11], [9] it is well known that the homotopy category
of simplicial groups is equivalent to the homotopy category of path connected
pointed spaces. The equivalence carries a simplicial group S to its classifying
space BS. For example if S, is the simplicial group freely generated by
one element in degree n then BS(,) ~ Sl s an (n + 1)-sphere, n > 0.
Now let Groups be the category of groups. We consider endofunctors 1" :
Groups — Groups which preserve reflective coequalizers and filtered colimits.
Then applying the functor 7" to S(,_;) yields a new simplicial group T'S(,, )
and hence the space

K(T, 71,) = BTS(n_l), n > 1,

associated to T'. This space, in particular, is of importance if T' is an additive
functor. In this case the functor 7' = (=) ® A is given by an abelian group A,
in the sense that T(G) = G ® A, and by the Dold-Kan theorem K ((—) ®
A, n) coincides with the Eilenberg-MacLane space K (A,n). Hence the spaces
K (T,n) are canonical generalizations of Eilenberg-MacLane spaces. As a next
step we consider quadratic functors T' = (—) ® Q), which by the classification in
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[6] are given by square groups (). We apply a variety of concepts of quadratic
algebra and quadratic homology theory in order to study the spaces K((—) ®
Q,n). Of course K((—) ® Q,n) is (n — 1)-connected and the first k-invariant
of X = K((—) ® Q,n) for n > 2 is given by a homomorphism

k:T(mg) — mg for n =2,

k:mp®Z)2Z — mpyy for n > 3.

We say that k is flat if for n = 2 the homomorphism k is trivial if restricted
to the kernel of I'(my) — 79 ® m9 and for n > 3 the group m,4; satisfies
27Tn+1 =0.

THEOREM 1. For any square group Q) the first k-invariant of X = K((—)®
Q,n) is flat, n > 2. Moreover we have m,, X = 0 for m > 2n + 2.

We conjecture that conversely all flat & are realizable by a quadratic
K((—) ® Q,n). This is true for n > 3 and for many k£ for n = 2 by the
next result.

THEOREM 2. Let k be flat and for n = 2 let w9 be in the class A of abelian
groups defined below. Then there exists a square group () such that the first
k-invariant of K((—) ® Q,n) is k.

Let A be the smallest class of abelian groups which is closed under ar-
bitrary direct sums and contains i) all cyclic groups, ii) all abelian groups
A such that 2 is invertible in A and iii) all abelian groups A such that
Ext(A, Sym?A) = 0, where Sym?A is the second symmetric power of A. It is
clear that then A contains all finitely generated abelian groups as well as all
free and all divisible abelian groups.

Theorem 1 for n = 2 is proved in Section 4.9 (see Theorem 17) and for
n > 3 in Section 5.9 (see Corollary 36). Theorem 2 for n = 2 is proved in
Section 5.8 (see Corollary 33) and for n > 3 in Section 5.9 (see Theorem 37).

Our approach is to use presquare groups. They are gadgets classifying
quadratic functors from the category of finite pointed sets to the category of
groups. If F' is such a functor, we have

BF(S') € types(2,3)

Thus one obtains a functor from the category of presquare groups to the
category of spaces. To pass from presquare groups to square groups we then
develop an appropriate obstruction theory.
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2. ON CERTAIN QUADRATIC FUNCTORS

In this section we consider few quadratic functors defined on the category
Ab of abelian groups. Let F': Ab — Ab be a functor with F'(0) = 0. Let us
recall that the functor F' is additive or linear if the natural projection

F(XeY)—>F(X)dF(Y)
is an isomorphism. Furthermore, F' is quadratic if the second cross-effect
FX|Y)=Ker(F(X®Y) = F(X)®F(Y))
as a bifunctor is linear in X and Y. In this case one has a natural decompos-
ition
FXeY)2FX)oFY)®dF(X|Y).

2.1. UNIVERSAL QUADRATIC FUNCTOR Let A and B be abelian groups.
A map f: A — B is called quadratic if the cross-effect

(a]b)s:= fla+0b)— f(a) - f(b)

is linear in a and b. It follows then that f(0) = 0. It is well known that for any
abelian group A there is a universal quadratic function p : A — P(A), meaning
that for any quadratic map f : A — B there exists a unique homomorphism
h : P(A) — B such that f = hop. In this way one obtains the functor
A — P(A), which has the following alternative description. Let I(A) be the
augmentation ideal of the group algebra of A. Then one has the isomorphism

P(A) = I(A)/I(A)?
induced by p(a) — (a — 1)(mod I(A)3) (see [14]). The following fact is well
known [13]:

LEMMA 3. For any abelian group A one has the following short exact
sequence

(1) 0 —> Sym2(4) =— P(A) L> 4 — 0

where Sym? is the second symmetric power, the homomorphisms j and q are
given by
j(ab) = (a | b)y = p(a+b) — p(a) — p(b)

q(p(a)) = a.
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It follows that the functor P commutes with filtered colimits and one has
the following natural isomorphism

P(A® B)= P(A)® P(B) ® (A® B).
Furthermore, one has isomorphisms ([12])
P(Z)~27®7,
P(2,)27) = 7.JAZ,
P(Z)2"7) = 7)2" "' 2. & 7/2" 7, n>1

and for any odd prime p, one has an isomorphism
P(Z/p"L) = Z[p" L& L[p"L
For an abelian group we let
(2) 6(A) € Ext(A, Sym?(A)),
be the element corresponding to the exact sequence (1).

LEMMA 4. The class §(A) is represented by the canonical symmetric 2-
cocycle f*, given by

f%(a,b) = ab € Sym?*(A), a,b€ A.

Proof. The homomorphism g : P(A) — A has a set-section p : A — P(A)
and the cocycle corresponding to this section is exactly f*. |

The class 6 is nontrivial in general. For example one has 0(Z/2"Z) # 0.
However one has

LEMMA 5. If2 is invertible in A, then §(A) = 0.
Proof. Let g: A — Sym?(A) be the map given by g(a) = a®. Then
(a]b)g=2ab

which shows that the coboundary of £ is f*. 11
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2.2. A FUNCTOR V¥ For an abelian group A we let W(A) be the kernel
of the natural projection A ® A — A?(A) from the second tensor power to
the second exterior power. Thus by the very definition one has the following
exact sequence

(3) 0— V(A — A A—A%(A) —0

In this way one obtains the functor ¥ : Ab — Ab. The functor ¥ commutes
with filtered colimits and one has the following natural isomorphism

V(A®B)=ZVY(A)aY(B)®(A® B).
Furthermore, one has isomorphisms

U(Z) =7, V(Z/nZ)=Z]/nZ.

2.3. WHITEHEAD ['-FUNCTOR The functor ¥ is closely related with Whi-
tehead I'-functor, which is defined as follows. Let A and B be abelian groups.
A quadratic map f : A — B is called homogeneous if f(—a) = f(a). It follows
then that

(a]a)y=—(a|—a)y = fla)+ f(—a) = 2f(a).
Based on this identity a simple induction argument shows that

f(na) = n*f(a).

It is well known [16] that for any abelian group A there is a universal homo-
geneous quadratic function v : A — I'(A), meaning that for any homogeneous
quadratic map f : A — B there exists a unique homomorphism h : I'(A) — B,
such that f = ho~y. The functor A — I'(A) is known as the Whitehead’s quad-
ratic functor. It is well known [16] that the functor I' commutes with filtered
colimits and one has the following natural isomorphism

I'AeB)=T(A)eI'(B)® (A® B).
Furthermore, one has isomorphisms
INZ) = Z,
[(Z/2"Z) = 7./2" ' 7
and for any odd prime one has an isomorphism

T(Z/p"Z) = Z./p"Z.
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It follows that if a € A is of order n, then y(a) € T'(A) is of order n if n is
odd and it is of order 2n, provided n is even.
We have a natural homomorphism 7 : I'(4) - A ® A, given by 7(y(a)) =
a ® a. It is clear that the image of 7 lies in W(A) and in this way one gets a
natural homomorphism
7 T(A) — U(A).

It is well known that 7/ is an epimorphism, moreover it is an isomorphism
provided A = Z, or A = Z/nZ with odd n. To identify the kernel of this map
we need additional notations.

For each n > 1 and each abelian group A we put ¢,(4) = {a € A | 2"a =
0}. Multiplication by 2 yields the natural transformation ¢, — t,. We
have also an inclusion t,_1 < t,. Here and elsewhere we assume that ¢y = 0.
Thus one obtains a natural transformation ¢, ® t,—1 — ¢,, whose cokernel
is denoted by ®,,. It follows that ®, : Ab — Ab is a well-defined additive
functor, which commutes with filtered colimits and

®,(2) =0, ®,(2/p"2)=0
if p is an odd prime. It is also clear that
®,(2)287) =0, if k#n

and
O,(Z)2"7) = 7] 27.

LEMMA 6. For each n > 1 there is a well-defined homomorphism t,, :
®,(A) —» T'(A) given by ty(a) = 2"y(a).

Proof. If a,b € t,(A), then one has
2"y(a +b) = 2"y(a) + 2"y(b) + 2" (a | b)y = 2"y(a) + 2"y(b)

Here we used the fact that (a | b), is linear in a, and therefore 2" (a | b), =
(2"a | b)y = 0. On the other hand if ¢ = 2b, then 2"y(a) = 2"y(2b) =
2"+2~(b) = 0, because 2""1h = 0. Similarly, if a € t,,_1, then 2""'a = 0 and
therefore 2"y(a) = 0. Thus ¢, is a well-defined homomorphism. 1

The collection ¢, n > 1, defines the natural transformation ¢ : ® — T,
where @ = @, -, .
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PROPOSITION 7. For any abelian group A the kernel of the natural map
7 T(A) = U(A)

is isomorphic to ®(A), thus one has an exact sequence:

00— ®(A) —=T(4) —= AR A——=A*(A) —=0

Proof. Let us observe that I' — ®2 induces a monomorphism on the second
cross-effect and therefore ® := Ker(I' — ®2) is an additive functor. To show
that ¢ yields an isomorphism ® — @' it suffices to evaluate on cyclic groups,
because both functors in question are additive and preserve filtered colimits.
Since both functors vanish on Z and on Z/nZ with odd n, we have to consider
only the case, when A = 7Z/2"7Z. Since I'(Z/2"Z) is the cyclic group of order
27+ generated by (1) it follows that ®'(Z/2"Z) is the cyclic group of order
two generated by 2"y(1). On the other hand ®4(Z/2"Z) = 0, provided n # k
and ©,,(Z/2"Z) = 7./27 and the result follows. |

COROLLARY 8. For any abelian group A the natural transformation I'(A)
— Z/2Z @ A induced by y(a) — a(mod 2A) factors trough V(A).

Proof. 1t suffices to note that the composite ®,(A) — A/2A is induced by
a—2"a=0,a€t,(4). 1

The functors P and I are related via the natural transformation v : P — I,
which is given by v(p(a)) = y(a). Since any homogeneous quadratic function
is quadratic it follows that this transformation is an epimorphism. To identify
the kernel, let us observe that the map f : A — P(A) given by f(a) =
p(a) — p(—a) is linear. Indeed we have

(a]b)f=(a|b)p—(—a]—=b),=0
because (— | —), is bilinear.

LEMMA 9. One has the exact sequence

0 —> 24 —> 4 — P(A) %~ T(4) —> 0

where f(a) = p(a) —p(—a) and sA = {a € A | 2a = 0}.
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Proof. 1t is clear that the transformation v : P — I yields an isomorphism
on the second cross-effects. Thus the kernel of v is linear. It is clear that f
yelds the transformation from the identity functor to the kernel of v : P — I
and since both functors Id and Ker(v) are linear and preserve filtered colimits,
it suffices to observe that the result is true for a cyclic group A. 1

3. ALGEBRAIC MODELS OF ONE-CONNECTED TWO STAGE SPACES

3.1. ONE-CONNECTED TWO STAGE SPACES For any n > 2, we let types(n,
n + 1) be the homotopy category of such pointed CW-complexes X that
mX = 0 for all i # n,n+ 1. If X is an object of types(n,n + 1), then
mi(XX) = 0if ¢ <n+ 1, thus the (n + 2)-th stage of the Postnikov tower of
¥ X belongs to types(n + 1,n + 2). This yields the functor

P, 93 : types(n,n + 1) — types(n + 1,n + 2)

which is known to be an equivalence of categories, provided n > 3.

This category is closely related to the category II(n,n + 1) of k-invariants
[1], whose objects are triples (mp,7mn+1,k), where m, and 7,4 are abelian
groups and k : I';(m,) — mp4+1 is a homomorphism. Here for an abelian group
A and a natural number n > 2, we let I';,(A) be I'(A) if n = 2 and Z/2Z® A if
n > 3. A morphism f from (7, 7,41, k) to (m,, 7,1, k') is a pair (fn, fat1),
where fy, : 1, — 7, and fny1 @ Ty — 7,4 are homomorphisms of abelian
groups such that the diagram

Ly (m) SLEN A

Pn(fn)l lfnJrl

In(m) Ve Tt
commutes. Taking the nontrivial k-invariant yields the functor
k:types(n,n+1) = (n,n+1), n>2
which fits in the following linear extension of categories [1], [3]
0 — D, — types(n,n+1) = II(n,n+ 1) = 0,
where D, is a bifunctor on II(n,n + 1), given by

Dy ((mn, Tnt1, k), (77;177741-%17]‘:/)) = EXt(WTZ?T(;l-’r]_)'
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In particular « : types(n,n + 1) — II(n,n + 1) yields a bijection on isomorph-
ism classes of objects, moreover k reflects isomorphisms and is surjective on
morphisms.

3.2. BRAIDED AND SYMMETRIC CATEGORICAL GROUPS We also need
the following well-known algebraic models for types(n,n + 1), n > 2 [8],[10],
[4].

DEFINITION 10. A braided categorical group, shortly BCG, consists of the
following data

C=(0:Cee = Ce, {—,—}:CcxCe— Chee)

where C, and C¢, are groups and 0 is a homomorphism, while {—, —} is a
map such that the following equalities hold for z,y,z € C, and a,b € Cl,.
O{z,y} =27y ay
{0a,0b} = a b tab
{0a,z}{z,0a} =1
{z,yz} = {a, 2}{=z, y}{y "o~ yz, 2}
{zy, 2} = {y oy~ y 2y Hy, 2}
A braided categorical group is called symmetric categorical group, shortly

SCa, if
(4) {z,yH{y,z} = 1.

It follows that Ker(9) is an abelian group and Im(9) is a normal subgroup of
C. and Coker(0) is an abelian group. One puts

7§ = Coker(d), =¥ :=Ker(d).

The BCG’s and SCG’s form categories in an obvious way. A morphism of
BCG’s (resp. SCG’s) is called weak equivalence if it induces an isomorphism
on m;, i = 0,1. Let Ho(BCG) (resp. Ho(SCG)) denote the localization of
Ho(BCG) (resp. Ho(SCG)) with respect to weak equivalences.

Let us note that BCG’s are termed reduced 2-modules in [4], while SCG’s
are termed stable 2-modules in [4]. Thanks to [8] one knows that the category
of braided categorical groups is equivalent to the category of such simplicial
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groups G, that N;G, = 0, if i # 1,2. Here N,G, denotes the Moore nor-
malization of G,. Similarly the category of symmetric categorical groups is
equivalent to the category of such simplicial groups G, that N;G, = 0, if
1 # n,n+ 1 for a fixed n > 1. Therefore the classifying space functor induces
the functors

by : BCG — types(2, 3)

and
b, : SCG — types(n,n + 1), n >3

such that m,b,(C) = 7§ and 7,4 1b,11(C) = 78, n > 2.
The inclusion functor SCG C BCG has the left adjoint functor A : BCG —
SCG, which is obtained by

AMC)=(0:CL, = Cey{—,—}: Ce x Ce = CL,),

where C}, is the quotient of C,. by the relation (4).
Then the functor A makes the following diagram commute:

BCG —— types(2, 3)
lA l&z
SCG — types(3,4).
According to [10],[4] one has the equivalence of categories
Ho(BCG) = types(2, 3)
and

Ho(SCG) = types(n,n+1), n > 3.

4. PRESQUARE GROUPS

4.1. QUADRATIC FUNCTORS ON POINTED FINITE SETS Let I' be the cat-
egory of finite pointed sets and let Groups be the category of groups. We
consider functors F' : I' — Groups with the property F([0]) = 0. Here and
elsewhere [n] denotes the set {0,--- ,n}, with basepoint 0. The functor F' is
linear if the map

(Fry,Fry) : F(X VY) = F(X) x F(Y)

is an isomorphism, where X VY is the sum in the category I'and r; : X VY —
X,r9g: X VY — Y are the retractions. Furthermore, F' is quadratic if the
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second cross-effect F(X | Y) = Ker(F(r1), F(r2)) as a bifunctor is linear in X
and Y.

Let HZ : I' — Groups be the functor which assigns to a pointed set S the
free abelian group generated by S modulo the relation * = 0, where * is the
basepoint of S. For any abelian group A, we let HA : I' — Groups be the
functor given by HA(S) = A® HZ(S). It is clear that H A is a linear functor.
It is easy to prove that any linear functor I' — Groups is isomorphic to one of
the form HA. Thus the assignment A — H A is an equivalence between the
category of abelian groups and the category of linear functors I' — Groups.
The category of quadratic functors I' — Groups has the following description
[15].

DEFINITION 11. A presquare group, shortly a PSG, consists of the follow-
ing diagram

{--} P
M:(MeXMe M, d Mee Me)a
where M,, is an abelian group and o is a homomorphism with ¢ = Id.
Moreover, M, is a group written additively, P is a homomorphism and {—, —}

is a bilinear map, that is {z +y,z} = {z, 2} + {y, 2} and {z,y + 2z} = {z,y} +
{z,z}, for all z,y,z € M,. One requires that

(a) Po=P,

(b) o{z,y} +{y,2} =0, z,y € M,,

() P{z,y} =z +y—x—y, z,y € M,
(d) {z,Pa} =0,z € M, a € M.

It follows from (b) that for any PSG M one has {Pa,z} = 0. It follows from (c)
and (d) that Pa lies in the centrum of M,. Thus Coker(P) is well-defined and
by (c) it is an abelian group. It follows that M, is a group of nilpotency degree
2. Tt follows from the condition (a) that o yields a well-defined involution on
Ker(P).

If M and N are two PSG, then a morphism f from M to N consists
of a pair of homomorphisms f. : M — Ng, fee : Mee — Nee such that fee
commutes with involutions and the diagrams

Mee L) M, M, x Me{i Mee
feel fel fexfel feel
P {_a_}

Nee — N, Ne X Ne —— Nee
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commute. We let PSG be the category of presquare groups.

If M is a PSG and S is a pointed set with basepoint *, we let S ® M be
the group generated by the symbols s ©® z and [s,t] ® a with s,t € S, z € M,,
a € M, subject to the relations

[s,8] ®a =s® P(a)

xOr=0=[x80a

[s,t] ® a =[t,s] ® o(a)

[s,t] ©{z,y} =—tOz—sOY+tOx+sOy

where s ® z is linear in = and where [s,t] ® a is central and linear in a.

A result similar to [6] shows that the functor S — S ® M is a quadratic
functor on I' and in this way one gets the equivalence between the category
PSG of presquare groups and the category of quadratic functors from I' to
Groups. Actually this is a very particular case of much more general results
obtained in [15].

4.2. HOMOTOPY AND k-INVARIANT OF A PRESQUARE GROUP Let M be
a PSG. We set

71'{\/[ = Ker(P : M. — M,) and 71'(1)\/[ := Coker(P : M¢e — Me).
The involution ¢ equips 7 with an involution, which is still denoted by o.
For any z € M, we let Z be the class of  in 7}!. It follows from the
condition (d) of the definition of PSG, that {—, —} factors through 7}/ and
thanks to (b) it yields the homomorphism
{——}: el - M,

ee)
where
M, :={a € Mc | a+ o(a) = 0}.

We also need the homomorphism w : A?(7{!) — M, which is induced by the
commutator map:
w@ANy) =zx+y—x—1y.

Consider the following diagram:

00— (I)(ﬂ‘o) L F(ﬂ'o) T 7T0®7T0—>A2(7T0)—>0

T

0 T M., —LZ = M, o 0
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where m; = 7rlM ,1=20,1. The diagram is commutative thanks to the property

(c) of the definition of PSG. Since the columns are exact, we see that there is
a well-defined morphism

(5) EM =k : T(mp) = m

given by k(y(z)) = {z,z}. A diagram-chase shows that ko. = 0. Furthermore,
the condition (b) of the definition of PSG shows that the image of k lies in
m, ={bem |b+o(b) =0}

4.3. STABLE HOMOTOPY AND STABLE k-INVARIANT OF A PRESQUARE
GROUP We let PSG; be the full subcategory consisting of objects M such
that the involution on M, is trivial, that is o(a) = a for all @ € M. In
this case the bracket {—, —} : mp ® myp — M., factors through A2 (m0) = Mee,
where A2(A) is the quotient of A ® A by the relation a @ b+ b® a ~ 0.

The inclusion PSG; C PSG has the left adjoint given by M — M, where

M — {--} Id P

M= (M, x Mg —> M, /(ld — 0) — M. /(ld — 0) —— M, ).
The fact that P is still well-defined follows from the property (a) of Definition
11. Moreover, the quotient map M — M is a morphism in category PSG. We
now put
M.—rM =01

T, =T

Thus g = 7w, while m; = Ker(M,./(Ild — o) — M,). In other words EM,
1 =0, 1 is the i-th homology of the following chain complex
(6) Qu(M) = (-

We define the homomorphism

Id ld— Id ld— P
Mo =8 My 8 M, =% Moo — M,)

k:72/22@ ! — oM

by
k(z) :={z,z}(mod(ld — 0)).

The homomorphism k£ fits in the following commutative diagram with exact
rows:

0 —>Z/2Z ® o — - 1~\2(7T0) 4>A2(7"0) —0

A R

0 L M,./(ld — o) £

o 0
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where the homomorphism v is induced by z — Z®z, while the homomorphism
A?(mg) = Mee/(Id — o) is induced by {—, —}. The fact that the last map is
well-defined can be checked as follows:

{{L‘,y} + {y,l‘} = —O'{y,l‘} + {yw'E} € Im(ld - 0)'

The commutative diagram

0 ! Mee M2

N

0—>T1——> M,/(d —0)"—= M,

shows that there is a natural epimorphism e : 7r{V[ — ﬁw , which is an

isomorphism provided M € PSG;.

4.4. PRODUCT OF PRESQUARE GROUPS The category PSG possesses all
limits and colimits. In the sequel we need the following explicit construction
of the product in PSG. Let M and N be two PSG. Then (M x N) is the PSG
given by

(M x N)e = M, X N,

(M X N)ee = Mee X Nee,
a(a,c) = (0(a),0(c)),
P(a,c) = (Pa, Pc),
{(z,u), (y,0)} = ({2, 4}, {u, v}),

where o € Mee,c € Nee, £,y € Mg, u,v € Ne.
It is clear that the functors 7;, ¢« = 0,1, 7 (and the morphisms k, k as well
) preserve the product.

4.5. COPRODUCT OF PRESQUARE GROUPS In the sequel we need also the
following explicit construction of the coproduct in PSG. But first we recall
few facts on the category Nil of nilpotent groups of class two. The inclusion
functor

Nil — Groups

has the left adjoint functor, which is given by the nilization functor:

G~ G =q/[G,[G, G
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Let G; and G9 be two objects in Nil, then the copruduct G; V Go in Nil is
obtained by the nilization of the free product of the groups G; and Gs. It is
well known that one has the following short exact sequence

0—)G?b®ng—>G1\/G2—)G1XG2—)O,

where G% = G/[G, G| is the abelization of G. This shows that any element of
G1V @Gy (all groups are written additively) can be written as a sum of elements
a+ b+ w, where a € G1, b € Gy and w is a sum of commutators of the form
a1+ by —ay — by, a1 € Gy and by € Gs.

LEMMA 12. Let
05 A= X -LG=0

and
053BoY 3H-0

be central extensions in Nil with abelian G and H. Define the group Z as the
quotient (X VY)/ ~, where the equivalence relation ~ is generated by

at+y~y+a

b+x~xz+0b

where a € A, b€ B, x € X and y € Y. Then one has the following central
extension of groups

0= AeBa(GeH) 1 Z = GxH—0.

Here the homomorphism j is given by j(a+b+g®h) =a+b+(x+y—z—vy),
where x € X and y € Y satisfy n(z) = g and &£(y) = h.

Proof. 1t follows from the definition of the group Z that j is a well-defined
homomorphism, whose image is a normal subgroup of Z. It is also clear that
Coker(j) = G x H. It remains to show that j is a monomorphism. To this

end let us recall that for any abelian group M which is considered as a trivial
(G x H)-module one has

H*(G x H,M) = H*(G,M) ® H*(Y, M) & Hom(G ® H,M).

We now take M = A®B®(G®H) and we let cl(Z) € H*(G x H, M) be the ele-
ment whose components in the above decompositions are i1, (cl (X)), 124 (cl(Y')),
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i3. Here cl(X) € H*(G, A) and cl(Y) € H?(H, B) are elements defined by the
given central extensions, while 4y : A - M, 4. : B—> M andis: G H - M
are standard inclusions. The class cl(Z) defines a central extension:

0-A®Bo(G®H)—>Z1 -GxH—=0

Since G and H are abelian groups, it follows that Z; € Nil. By our construc-
tion one has a commutative diagram

0 A X G 0
0 M A GxH — 0
0 B Y H —0

Thus we have a canonical morphism X VY — Z; and one easily shows that
it yields the homomorphism Z — Z; which makes the following diagram
commute

AGB®(GOH)— 7 —>G x H—>0

O

0—=A®B&(GRH)—= 7, —= G x H—>0.

It follows that j: A®@ B® (G ® H) — Z is a monomorphism and the proof is
finished. 1

Now we construct coproducts in PSG. Let
M= (M, x M, 2 a2 g, P )

N = (N. x N, 722 N, 2% N, 2% )
be presquare groups. Let us recall that M., N, € Nil. The coproduct

{

MVN = (MVN)x (MVN), =3 (MVN)ee 25 (MVN)ee 25 (MVN),)
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in the category PSG is given by
(MV N)ee = Mee ® Nee @ 7! @ 1y @ 7)) @ !
(MVN), = (MV N)/ ~
Here the equivalence relation is generated by
Py (z) + ¢ ~ ¢+ Py(z),

a+ Pyn(u) ~ Py(u) + a,

for £ € Mge, ¢ € N, u € Nee, 6 € M. Let T € 7T(])V[, U € 7T(])V be the elements
in cokernels represented by z and u respectively. The operators ¢ and P for
M V N are defined by

olx+u+a1®¢ +®az) =opy(x)+on(u)+dy®c+ ¢ ®ay

P($+u+d1 ®51+52®d2) = PM(IE)+PN (u)+(a1 +cl—a1—01)+(02+a2—02—a2)

From this definition is it clear that )?V" = 7} @ 7). Now the map {—, -} :
VN @ wVN — (M V N)ee is given by

{a+c¢,a1+ e} ={a,a1}m+{c,2}y +ta®c +c® ay.
LEMMA 13. For any M, N € PSG one has the following isomorphisms
(])V[VN ZWMGBWO , W{VIVN QW{”@WI

"N M @) @ (r)' @ ny')

Proof. We already had the first isomorphism. To get other isomorphisms,
one has to apply Lemma 12 to central extensions

0 — Im(Py) = M, =« =0

and
0 = Im(Py) = N, = 1)y =0

to conclude that ImPyyn = Im(Py) @ Im(Py) @ (7! ® 7lY) which obviously
implies the result. [
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4.6. A PUSHFORWARD CONSTRUCTION Let M be a PSG and let f :
7r{V[ — A be a homomorphism of abelian groups with involutions. We can
form the pushout diagram in the category of abelian groups with involutions

7
M ——— M.,

.
A—— fi(Mee).

It follows from the properties of the pushout construction that we have the
following commutative diagram with exact rows:

0 M M, M, M 0
lf l lld lld
(P
0—>A—>f*(Mee)f &) M, 77(])\/[ 0

It is clear that f.(M) is also a PSG, where f.(M), = M, and f.(M)ee =
f+(Mee) and the map M, x M, — f.(Mee) is the composite of the map M, x
M, — M., and the homomorphism M., — f.(M,.). Furthermore one has

fx
— 7T0 ) 71-1
and /(M) = fo M,
4.7. PRESQUARE GROUPS AND THE UNIVERSAL COEFFICIENT THEOREM
In this section we construct a collection of presquare groups using the universal

coefficient theorem in group cohomology. Let us recall that for any abelian
groups A and B there is a natural short exact sequence

0 — Ext(A, B) — H%*(A, B) —> Hom(A%(A), B) —=0

which has a splitting natural in B. Here we used the well-known isomorphism
Hy(A) = A?(A). The homomorphism c is given by the commutator map: If

0—-B—-G—A—=0

is a central extension, corresponding to an element z € H?(A, B), then c(z) :
A?(A) — B is given by (a,b) — u +v — u — v. Here u and v are liftings of a
and b to the group G which is written additively.
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Of special interest is the case when B = A?(A). We let T4 be the set of
equivalence classes of central extensions

u P

Ny A 0)

(Na) = (0—=A%(4)

such that ¢(Na) = ldj2(4). The set T4 is nonempty and the group Ext(A,
A2%(A)) acts transitively and freely on T 4.
If (Na) € Ta, then one can define the presquare group w(N4) as follows.
By definition we put
w(N4)e = Na,
C‘)(]VA)ee =A® A7
P(a®0b) = u(a Ab),
ola®b) =-b® a,
{z,y} = p(z) ® p(y),
where z,y € N4 and a,b € A. One easily checks that w(N4) is a PSG.
By our construction we have:

LEMMA 14. For any abelian group A and any (N4) € T4 one has iso-
morphisms
WOW(NA) o 147
m ) = w(a)
under which k“(N4) corresponds to the canonical homomorphism 7' : T(A) —
W (A) induced by
7:I'(A) > AR A, z—zQu.

Moreover, additionally one has
W) > 7970 A
and kN4 = Idy 1975 4.

We can apply the functor PSG — PSG;, M — M to the presquare group
w(N4). Here A is any abelian group and N4 € T 4. In this way one obtains
an object w(N4) € PSG. By definition one has

W(NA)e = Ney, W(NA)ee = AQ(A)a

the structure homomorphisms are given by o = Idz,, P(aAb) = p(a A b), and
{z,y} = p(x)Ap(y), where z,y € N4 and a,b € A, compare with the definition
of w(IN4). By our construction we have:
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LEMMA 15. For any abelian group A and any (N4) € T4 one has iso-
morphisms
WOQ(NA) o 147
a4 = 4724
which identify k“(N4) with the canonical transformation T'(A) — A/2A in-
duced by y(z) — z(mod 2A4). Moreover, additionally one has
2V ~ 797 0 A

and k2N4) = 1dy 975 4.

4.8. PRESQUARE GROUPS AND BRAIDED CATEGORICAL GROUPS Forget-
ting the involution one gets the functor

T : PSG — BCG
which is given by
{_,_} g
( M, x M, M., Mee —2> M, ) — (P : Moo — M,),{—,—}).

The same functor can be obtained in terms of functors on I' as follows.

Let us recall that there is a standard way to prolong a functor F' : I' —
Groups to a functor from the category of pointed simplicial sets to the category
of simplicial groups s.Sets, — s.Groups. First using direct limits one can
prolong F' to a functor from the category of pointed sets Sets, — Groups,
then by degreewise action one obtains a functor from the category of pointed
simplicial sets to the category of simplicial groups. By abuse of notation we
will still denote this functor by F. In particular one can use this construction
for the functor F' = (=) ® M for a PSG M. In this paper we are particularly
interested in the evaluation of F' = (—)®M on simplicial spheres and especially
on S', which is the simplicial model of the circle with two nondegenerate
simplices. Let us recall that S! is [n] in dimension n. Moreover s; : [n] — [n+1]
is the unique monotone injection whose image does not contain 7 4+ 1, while
d; : [n] = [n—1] is given by d;(j) = j if j <, di(i) =i if i < n, dp(n) =0
and d;(j) =7 —1if j > 1.

LEMMA 16. Let M be a PSG and F = (=) ® M : I" = Groups. Then the
Moore complex associated to F(S') is isomorphic to the following complex

o0 = Mee 25 M, — 0.
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Proof. The fact that the Moore complex associated to F(S!) vanishes
in dimensions > 2 is a particular case of Proposition 5.9 of [15] and the
computations in dimensions 1 and 2 are trivial (compare also with (2.6) of

(7).

Since the Moore complex of F(S1) is trivial in all dimensions except dimen-
sions one and two, it follows from [8] that it corresponds to a BCG. Thanks to
Lemma this particular BCG is nothing but Y(M). In particular BF(S') has
only two nontrivial homotopy groups moB(S') = 7} and 73 B(S') = 7M and
the unique nontrivial k-invariant is given by the map kys € Hom(I'(m!), nM)
constructed in equation (5). It follows that we have the following commutative
diagram of categories and functors:

BCG ~———— PSG — = 11%(2,3)

\ lev(Sl) lforgetful

types(2, 3) = H(27 3)

Here ev(S!) : PSG — types(2,3) is the functor which is given by
M — BF(S'), where F = (-)0® M,

while the category I1*(2,3) is defined as follows. An object of the category
I1*(2,3) is a triple (w9, 73, k), where o is an abelian group, w3 is an abelian
group with involution ¢ and k : I'(m3) — m; is a homomorphism, where as
usual we put

7y :={a €m3|a+o(a) =0}

If (mg, s, k) and (7, 74, k') are objects of I1*(2,3), then a morphism f from
(7o, 73, k) to (7, 75, k') is a pair (f2, f3), where fy : m9 — 7% is a homomorph-
ism of abelian groups, while f3 : 73 — 74 is a homomorphism of abelian
groups with involutions such that the diagram

F(7T2) k—> 7'('3_

F(fz)l lfs

['(75) k—,>7T;,_

commutes. The functor
k¥ PSQ — 117 (2, 3)
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is given by
(M) = (mg", 71 BM).

We have also the forgetful functor I1*(2,3) — II(2, 3) which forgets the invol-
ution on 73. This functor has the retraction given by the inclusion I1(2, 3) <
I1*(2,3). Under this inclusion 73 is considered as a group with involution,
given by o(a) = —a.

4.9. REALIZATION OF ONE-CONNECTED J3-TYPES VIA PRESQUARE
GROUPS In this section we characterize objects of the categories types(2,3)
and ITI*(2,3) which are isomorphic to objects of the form F(S') or x*(M),
where M € PSG and F = (—) ® M.

An object of IT1*(2, 3) (resp. II(2,3)) is called flat if the composite

B(my) —>[(my) >3

is zero, where the functor ® and the natural transformation ¢ were defined in
Section 2.3, in other words k factors trough (7). An object X € types(2,3)
is called flat provided x(X) is flat.

THEOREM 17. i) The values of k* (and therefore of k as well) are flat.

ii) Let (o, w3, k) be a flat object of the category 11*(2,3). Then there exist
M € PSG and an isomorphism k*(M) = (ma, w3, k) in I1*(2, 3).

iii) An object X € types(2,3) is isomorphic to an object of the form F(S'),
with quadratic F' : I' — Groups iff X is flat.

Proof. Part iii) is an immediate consequence of i) and ii) and properties
of linear extensions of categories [3]. The first statement follows from the

diagram chase based on the following commutative diagram:

0 —> ®(mg) ——I'(my) ——= 7o @ ™o

kl l{,}

0 1 M.,

For the second part we prove that a pushforward construction applied on
w(N4) does the job. Here Ny is any element of T 4, where A = 7. Indeed,
we already observed that

H*(w(NA)) = (Aa lI}(A)v TI)
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where the involution on W(A) is given by z — —z, z € U(A). Let us now take
a flat object (w9, 73, k) of the category I1*(2,3). It follows that one has the
commutative diagram

[(m2) —"> ()

U

Thus one can take the pushforward construction M = k! (w(Ny)), A = 7.
Then one has £*(M) = (g, w3, k) in I1*(2,3) and we are done. |

4.10. PRESQUARE GROUPS AND SYMMETRIC CATEGORICAL GROUPS It
is clear that T (M) is a symmetric categorical group provided M € PSG,. On
the other hand one can take the composite of functors T : PSG — BCG and
A : BCG — SCG to get the functor

Ao Y : PSG — SCG
It is clear that
MY (M)) = ((P: Mee/(Id —0) = Me),{—,—}).

Thus one has the following commutative diagram

PSG, ——> PSG —l> PSG,

S I N
AoY
SGC —— BCG —— SCG
where 7 and 4; are the inclusions, while j(M) = M.

Let us fix a natural number n > 2 and let S™ be a simplicial model of the
n-dimensional sphere, which has only two nondegenerate simplices. For any
functor F : T' — Groups one obtains the simplicial group F'(S™) by applying
the functor F' on S™. If F' is quadratic, then the Moore normalization of 5"
is trivial in dimensions > 2n and < n and it is isomorphic to

= 0=2Qu(M) == Qy(M)—=0---—0

where F' = (=) © M and Q.(M) is defined in (6). As we see for n > 2 the
space BF(S") in general does not belong to types(n + 1,n + 2). However
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one can take the (n + 2)-th stage of the Postnikov tower of BF(S™), which is
denoted by e, (M). It follows that one has the following commutative diagram
of categories and functors:

SCG AT PSG

| < |

types(n + 1,n +2) —1II(n,n + 1)

where x : PSG — TI(n + 1,n + 2) is given by M — (x}!, my™, EM).

THEOREM 18. Let n > 2. For any object X of the category types(n +
1,n+2) there exists an object M € PSG, and an isomorphism e, (M) = X in
types(n + 1,n + 2).

Proof. Since the functor & : types(n + 1,n +2) — II(n + 1,n + 2) induces
bijection on isomorphism classes of objects and realizes all morphisms in IT(n+
1,n+2) it suffices to prove that for any object (7,41, 712, k) of the category
II(n + 1,n + 2) there exists an object M € PSG and an isomorphism x(M) =
(Tnt1, Tnt2, k) in the category II(n + 1,n 4 2). The proof of this statement is
quite similar to the proof of Theorem 17. Let us recall that for any abelian
group A and any element N4 € T4 in Section 4.6 we constructed w(N4) €
PSG; with the property

E(w(Na)) = (A, A/24,1d 4 /24)-

Take now any object (mp+1, Tnt2,k) € II(n + 1,n + 2), where k : 7, /2m, —
Tp+1 18 a homomorphism. One can take the pushforward construction
k«(w(N4)), A = m, to get an object of expected kind. H

5. SQUARE GROUPS

5.1. QUADRATIC FUNCTORS ON THE CATEGORY OF FINITELY GENER-
ATED FREE GROUPS We now consider functors F' : Gry — Groups, where Gr¢
is the category of finitely generated free groups. For groups G'; and Ga, we let
G1 * G4 be the coproduct in Groups. The functor F' : Grf — Groups is linear

if the map
(Fri,Fr9) : F(X*Y) —» F(X) x F(Y)

is an isomorphism, where r{ : X %Y — X, r9 : X *Y — Y are the retractions.
Moreover F'is quadratic if F(X | Y) = Ker(Fry, Frg) as a bifunctor is linear
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in X and Y. The main result of [6] shows that the category of such quadratic
functors Gry — Groups is equivalent to the category of square groups. Here a
square group is a diagram

Q: (Qe i Qee i} Qe)

where Q¢ is an abelian group and @, is a group. Both groups are written
additively. Moreover P is a homomorphism and H is a map such that the
cross effect

(z|y)n:=H(z+y)— H(z)— H(y)
is linear in z,y € Q.. In addition the following properties are satisfied
(Pa|z)n =0,
Pl|yn=v+y—z—y,
PHP(a) = P(a) + P(a),

where z,y € Q. and a,b € Q.. It follows from the first two identities that P
maps to the center of Q.. The second equation shows also that Coker(P) is
abelian. Hence (). is a group of nilpotency degree 2. For square groups one
has the following additional formulas (see [6]):

(z | Pa)g =0,

Hz+y—z—y)=—(ylz)n+ (| ynu.

Now we relate the square groups with presquare groups.
LEMMA 19. Let () be a square group. Then
P(Q) = (Qe; Qee;0 = HP —1d, (=, —)u, P)
is a presquare group.

Proof. The axioms (b) and (c) of the definition of PSG hold by the defin-
ition of square group. Let us observe that, H P is a homomorphism thanks to
the identity (Pz | a)g = 0. Thus one has

0?=HPHP —2HP +1d = H2P) — 2HP +Id = Id,
which shows that ¢ is an involution. We have also

Po=P(HP —\d)=PHP —P=P
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and

o(@|y)u + (y,x)n = HP(z | y)n — (z,y)n + (y,2)n = 0.
Here we used the identity P(z | y)g = © +y — z — y and known expression
for Hz+y—z—vy). 1

We let SG be the category of square groups. The presquare group p(Q)
is called the underlying PSG of a square group ). By abuse of notations we
write w?,w?,g? and k¥ instead off Wg(Q),Wf(Q),Ef(Q) and k9(Q).

Let G be a group and let @) be a square group. We define the group G ® Q)
by the generators g ® x and [g,h] ® a with g,h € G,z € Qe and a € Qe
subject to the relations

(g+h)@r=9g@z+h®z+[g9,h]| ® H(x)
[9,9]® a=g® Pa)

where g ® z is linear in z and where [g,h] ® a is central and linear in each
variable g, h and a. In this way one gets a bifunctor

® : Grg x SG — Groups
One can prove ([6]) that in addition the following identities hold:
[g,h] ®a=[h,g]®0c(a), o0 =HP —Id
~h@z—gRy+h@r+9gQy=I[9,h]®(z|y)n.

For any @ € SG the functor (—) ® Q : Gry — Groups is quadratic and any
quadratic functor is isomorphic to (—) ® @ : Grg — Groups with appropriate
Q € SG [6].

In terms of quadratic functors the relation between (—)®Q and (—)® p(Q)
can be seen as follows. For a pointed set S we let (S) be the free group
generated by S modulo the relation * = 0, where * is the base point of S.
Then one has a natural isomorphism

Sop@) = (5.
In other words the following diagram commutes

(=)

I ——Grg

o
Groups



QUADRATIC ENDOFUNCTORS OF THE CATEGORY OF GROUPS 125

5.2. PRODUCT AND COPRODUCT OF SQUARE GROUPS In the sequel we
need the following explicit construction of the product and coproduct in SG.

Let M and N be two SG. Then (M x N) is the SG given by
(M X N)e = Mg X N,
(M X N)ee = Mee X Nee,

H(z,y) = (Hy(z), Hy (y))
P(a,c) = (Ppa, Pyc).

Thus the functor p : SG — PSG commutes with products. As our next
construction shows it commutes also with coproducts. By abuse of notation
we denote the underlying presquare groups of M and N still by M and N.
We can consider the coproduct M V N in PSG. Define

H:(MVN)e%(MVN)ee
by
H(z+u+(a1+c—ar—c))=Hu(a) + Hy(c) +a® 6 — & Q@@

One checks that in this way one really gets the coproduct in SG (see 7.11 of

[6])-

5.3. LIFTING OF PSG We are going to answer the following question.
For a given M € PSG under what conditions does there exists a square group
@ such that p(Q) = M? If such @ exists it is called a lifting of M.

It is easy to see that not all PSG have liftings. Indeed, take M, = 0 and
M., = Z. We let o be the trivial involution on M., and P =0, {—,—} = 0.
Then one obtains a PSG. This particular PSG is not of the form p(Q), because
if P =0 in a square group, then 0 = HP — Id = —Id. This show that unlike
the linear functors not any quadratic functor I' — Groups factors through Gry.

As the following easy lemma shows if a PSG M has a lifting () € SG such
a lifting in general is not unique. In fact the set of liftings is a torsor on an
appropriate group.

LEMMA 20. a) Let Q be a square group and let « : wég — Qee be a
homomorphism. We set

Q?:Q& Q?e:Qeea Pa:Pa
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and
H%(z) = H(z) + a(z)

where © € Q. and I denotes the class of = in 7r69 . Then Q* is a square

group and p(Q) = p(Q®). Conversely, if Q and P are two square groups with
p(P) = p(Q) then first of all P, = Q. and Pee = Qee, furthermore there exists
a unique homomorphism « : 71’82 — @ee such that P = Q.

b) Let Q,Q" € SG and let fo : Qe — Q. and fee : Qee — Q. be homo-
morphism of groups such that f = (fe, fee) defines the morphism p(Q) —
©(Q') in the category PSG. Then there exists a unique homomorphism «(f) :
g — Q.. such that

H'fe(z) = feeH(z) + a(f)(Z), 7 € Q..
In other words «(f) = 0 iff f is a morphism in SG.

We now consider the problem under what conditions an object M € PSG is
isomorphic to one of the form p(Q). Of course if such @) exists then Q. = M,
and Qe = M,.. Moreover the map P in @ is the same as in M. Thus
the problem is under what conditions does there exist H with appropriate
properties.

5.4. THE CATEGORY PSGy We let PSGy be the full subcategory of the
category PSG which consists of such M that

= 7.

In other words, one requires that if Pa = 0 for an element a € M., then
o(a) = —a.

LEMMA 21. Let Q € SG. Then p(Q) € PSG.

Proof. Let us recall that in p(Q) the involution o is given by o = HP —Id.
Thus, if Pa =0, then o(a) = —a. 1

LEMMA 22. Let M € PSGqy. Then there exists the unique homomorphism
h:lm(P) = Me.

such that hP(a) = a + o(a).
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Proof. Uniqueness is clear, because each element from Im(P) can be writ-
ten as P(a). To prove existence, we have to show that if Pa = Pb then
a+ o(a) = b+ o(b). If this holds, then a = b + ¢ with Pc = 0. Thus

a+o(a)=b+c+o(b)+a(c) =b+a(b).

LEMMA 23. Let M € PSGy. Then for the diagram
A= (Mee 25 Im(P) 25 M,,)

one has PhP = 2P and hPh = 2. In other words A is a quadratic Z-module
in the sense of [2].

Proof. For a € M., one has PhP(a) = P(a) + Po(a) = 2P(a). On the
other hand we have hPhP = h(2P) = 2hP. Since P : M., — Im(P) is an
epimorphism it follows that hPh = 2h. |

5.5. A COHOMOLOGICAL OBSTRUCTION FOR LIFTING To each object
M € PSG one can associate two cohomological invariants. The first one is the
class

[M,] € H?(mo,Im(P)), mo =7,

which is associated to the central extension of groups:
0— Im(P) = M, — m — 0.
The second one is the class
[Mee] € H?(mo, Mee)
which is represented by the 2-cocycle f € Z%(my, Mee), where
f(Z,9) = {z,y}.
DEFINITION 24. Let M € PSGy. Define the class
I(M) € H? (o, M)

by

V(M) := [Mee] — ha([Me]).
Here h, : H?(m,Im(P)) — H?(mg, M) is induced from the homomorphism
h defined in Lemma 22.
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THEOREM 25. If QQ € SG, then ¥(p(Q)) = 0. Conversely if M € PSGq
is an object with 9(M) = 0, then there exists a square group ) and an

~

isomorphism p(Q) = M.

Proof. Take M € PSGy. Let us choose a set section s : mg — M, of the
quotient M, — m. One can assume that s(0) = 0. For any x € M, one has

z — s(x) € Im(P). The class [M,] is represented by the 2-cocycle £, which is
defined by

s(z) +s(y) = &£(2,9) + s(z + 7).
If M = p(Q), then the map h : Im(P) — M, is the restriction of H to Im(P).
We set
g=Hos:my— Me.

One has
H(z) = H(x — ST + sT)
= h(z —sz) + g(Z) + (x — s(z) | s(z))g = h(z — sz) + g(T)
because z — sT = P(a) for some a € M, and {P(a),sz} = 0= (P(a) | sZ)q.
It follows that
Hz+y)=hlz+y—s(@+79)+g9(x+7).
Since y — s(y) lies in the center of M, one can write
WMz +y—s(Z+7) =hlz+y—sy)—s@)+£(T,7) =
h(z — s(z)) + h(y — s(7)) + h(&(z, 7)),

because h is a homomorphism. Thus one obtains

(@ [y)n = H(z+y) - H(z) - H(y)
= Wz - 5(z)) + hly — 5(7)) + h(E(7) + g(z + )
~ (e 5(2)) ~ 9(@) ~ hly ~ 5(3)) - 9(3)
— hE@ ) + @ | D).
Since (z | y)g = (Z | y)u represents the class [M,.], and the function

(z | 9)g is the coboundary of g, we see that ¥(M) = 0. Conversely assume
M € PSGq is such object that 9(M) = 0. The first condition defines the
homomorphism h : Im(P) — M., while the second condition says that there
exists a function g : my — M, such that {z,y} = (z | ), + h(£(Z,7)). Now
we can define H : M, — M, by H(z) = h(x — sZ) + g(Z). One checks easily
that M equipped with this H is indeed a square group. |1
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5.6. LIFTING PROBLEM FOR w(N4) In this section we consider the prob-
lem whether for a given abelian group A there exists an element (N4) € Ty
such that w(N4) has a lifting as a square group. The answer to this question
depends entirely on the element §(A) € Ext(A, Sym?(A)), which was defined
in (2) via the exact sequence (1), or equivalently via the canonical symmetric
2-cocycle f*, given by f*(a,b) = ab € Sym?(A), a,b € A. Let us recall that
0(A) = 0 provided 2 is invertible in A ( see Lemma 5).

As an application of Theorem 25 we obtain the following

THEOREM 26. Let A be an abelian group. If there exists an element
(N4) € Ta such that w(N4) € PSG has a lifting in SG then 6(A) = 0.
Conversely, if 0(A) = 0, then there exists an element (N4) € T4 such that
w(Ny4) € PSG has a lifting in SG. In particular such a lifting exists provided
2 is invertible in A or Ext(A, Sym?A) = 0.

Proof. First of all let us observe that for any abelian group A and any
(N4) € T4 one has w(N4) € PSGy. For w(N4) we have Im(P) = A%(A) and
the homomorphism h : A%2(A) — A® A is nothing but h(aAb) = a®b—b®a. It
follows then that the image of 9(w(N4)) € H*(A, A® A) under ¢ : H*(A,A®
A) - Hom(A, A® A) is zero. Thanks to the universal coefficient theorem one
has 3(w(N4)) € Ext(A,A ® A). On the other hand one has also the short
exact sequence

0— A?(A) - A® A — Sym?(A) — 0

where the first arrow is h. Thus one has exact sequences
Ext(A,A%(A)) — Ext(A, A ® A) — Ext(A, Sym?(A)) — 0

and
HQ(A,AQ(A)) — HQ(A,A ®A) — HQ(A, Sym2(A))

Let us recall that 9(w(N4)) = [Mee] — h«([Me]). One observes that the first
term depends only on A and does not depend on (N4) € Ty4. It follows
thus that the image of 9(w(N4)) € H*(A,A® A) in H?(A, S?(A) is the same
as the image of [M,e] in H?(A,A ® A). But [M,.] was represented by the
cocycle (a,b) — a ® b and therefore the image of [M,e] in H?(A, A ® A)
lies in Ext(A, Sym?(A)) and it coincides with 6(A). If (N4) € T4 is such
element that the presquare group w(IN4) has lifting, then 9(w(N4)) = 0 and
a fortiori §(A) = 0. Conversely, assume #(A) = 0, then the exact sequence for
ext groups shows that there is an element z € Ext(4, A?(A)) which maps to
J(w(N4)). But Ext(A4,A?(A)) acts on T 4. Therefore using z we can correct
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N to obtain another element N’ € T4 such that J(w(N;)) = 0 and we are
done. |1

COROLLARY 27. IfExt(A,A® A) = 0 then the set T 4 is a singleton and
w(N4) € PSG has a lifting in SG, where (N,) is the unique element of T 4.

Proof. Since Ext(A, —) : Ab — Ab is right exact, it follows that
Ext(A,A?(A)) = 0 = Ext(4, Sym?*(A)).
The first equation shows that T 4 is a singleton, while the second equations

shows that such lifting exists. |

5.7. LIFTING PROBLEM FOR w(N4) Let A be an abelian group. We let
0(A) € Ext(A, Sym?(A/2A)) be the image of 0(A) € Ext(A, Sym?(A)) under
the canonical map Sym?(A) — Sym?(A/2A). The following is a straightfor-
ward variation of the main result of the previous section:

LEMMA 28. Let A be an abelian group. If there exists an element (N4) €
T4 such that w(Na) € PSG has a lifting in SG then §(A) = 0. Conversely, if
0(A) = 0, then there exists an element (N4) € T4 such that w(N4) € PSG
has a lifting in SG .

Proof. The only difference is to use the exact sequence
A%(A) — A*(A) — Sym?(A/24) — 0

where the first map is induced by a A b+~ aAb — bAa = 2aAb. 1

5.8. REALIZATION OF ONE-CONNECTED 3-TYPES VIA SQUARE GROUPS
We have the functors

b
SG — > PSG — > BCG —= types(2, 3).
In this section we study the composite functor
e:SG— CW(2,3).

From the homotopy theoretic point of view the functor e is the same as @ —
B((258?) ® Q). Here Q5? is the simplicial group, which is obtained by the
degreewise action of the functor

(=) : ' — Groups
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on S'. Here S! is the standard simplicial model of the circle with two nonde-
generate simplices. The fact that this particular simplicial functor is of the ho-
motopy type of the loop space on the two-dimensional sphere .52 follows from
the classical result of Milnor. The fact that the functor Q — B((Q25?%) ® Q) is
isomorphic to the composite by o Y o p follows from the following isomorphism
of simplicial groups:

Q5 ®Q=(S")epQ).

In this section we ask the following question: is every flat object of types(2, 3)

isomorphic to one of the form B((2 S?) ® Q), where @ € SG?
An object (o, s, k) of TI(2,3) is called realizable via SG if there exists a
square group ¢ and an isomorphism

K(B((Q S?) ® Q)) = (72, 73, k).

An object X € types(2, 3) is called realizable via SG provided x(X) is realizable
via SG. In other words X is isomorphic to B((25?) ® Q) = ev(S1)(p(Q)),
where ev(S!) : PSG — CW(2,3) is the same as in Section 2.7.

LEMMA 29. If (), 75, k') and (nh, 75, k") are realizable via SG, then (mf X
wh,my X w4, k' x k") is also realizable via SG.

Proof. Indeed, if Q' and Q" realize (wh, 74, k') and (74, 74, k") respectively,
then Q' x Q" realizes (7 x 74, 7 x 7§, k' x k"). 1

An abelian group A is called realizable via SG provided (A, U(A),7’) is
realizable via SG.

LEMMA 30. If 7y is realizable via SG, then any flat object of the form
(72,73, k) Is also realizable via SG.

Proof. Let @ realize (mq, ¥(mq),7'). Since (mo,ms, k) is flat, the homo-
morphism k is the composite k = k' o 7/, where k' : U(my) — w3 is defined
uniquely. Let us recall that in Section 4.6 we defined the pushforward con-
struction for PSG’s. It is clear that pushforward construction of a square group
has a square group structure in an obvious way. It follows that k.(Q) € SG
realizes (mg, w3, k). 1

LEMMA 31. Let (A;)ier be a family of abelian groups. If each A; is real-
izable via SG, then ®;c1A; is also realizable via SG.
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Proof. Assume @); realizes A;. We claim that the coproduct of @); in the
category of square groups realizes @;crA;. Since m; respects filtered colimits,
it suffices to assume that [ is finite and therefore without loss of generality
one can assume that I consists of two elements. In this case the result follows
from the isomorphisms of Lemma 13. |

LEMMA 32. a) If 0(A) = 0, then A is realizable via SG. In particular
any free abelian group, or any divisible abelian group is realizable via SG.
Moreover, it 2 is invertible in an abelian group A, then A is realizable via SG.

b) For any n > 1 the group Z/2"Z is realizable via SG.

Proof. If §(A) = 0 there exists (N4) such that w(N4) has a square group
structure (see Theorem 26) and this SG realizes A. b) Let us consider the
following square group:

Qe =2/2"""Z = Qe

The homomorphism P is multiplication by 2". Define the quadratic map
H:7/2" - 7/ ont!

by H(x) = 2% — 2. One easily checks that in this way one obtains a SG which
realizes Z/2". I

Let A be the smallest class of abelian groups which is closed under arbit-
rary direct sums and contains i) Z/27Z, ii) all abelian groups A such that 2
is invertible in A and iii) all abelian groups A such that Ext(A, Sym?A) = 0,
where Sym?A is the second symmetric power of A. It is clear that then A
contains all cyclic groups, and hence all finitely generated abelian groups as
well as all free and all divisible abelian groups.

COROLLARY 33. Let X € types(2,3) be a flat object. Then X is realizable
via SG provided ma X € A.

5.9. REALIZATION OF STABLE TWO-STAGE SPACES VIA SQUARE GROUPS
Now we consider the corresponding stable problem. Let us fix an integer
n > 3. We let e, be the composite of the following functors:

SG —2> PSG —> types(n,n + 1).

where e, is the composite of the following functors:

PSG —> BCG —> SCG —> types(n,n + 1).
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From the homotopy theoretic point of view the functor e, is the same as
Q +— P, 12B((25™) ® Q). In this section we ask the following question: What
sort of objects of types(n,n + 1) are isomorphic to ones of the form e, (Q),
where Q) € SG?

We start with few easy observations. We let SG4 be the full subcategory
of the category SG consisting of objects () such that for any a € Q¢ one has
HP(a) = 2a.

LEMMA 34. For any @ € SG; one has p(Q) € PSG;.

Proof. The involution o on (p(M))ee = Mg, is defined by o = HP — Id.
Thus o = Id iff M € SG,. 1

LEMMA 35. Let @) be a square group. Then there exists the unique square
group structure on () such that the quotient map ) — Q is a morphism in
SG, where

(Q)e = Qea (Q)ee = Qee/(HP - 2|d)

Moreover the functor SG — SGy is the left adjoint functor to the inclusion
functor SG; C SG

Proof is immediate.

COROLLARY 36. For any Q € SG the group E? is a vector space over

7./27.

Proof. By the definition we have 1? = ng. Since p(Q) € PSG; it suffices

to show that if M € PSGy(PSG; then 2 annihilates 7). But by definition
M € PSGq implies that the involution on 7 is multiplication by (—1), while

M € PSG, implies that the involution on 7 is trivial, hence the result. N

We let types(n,n + 1), be the full subcategory of types(n,n + 1) consisting
of spaces X such that 7,1 X is a vector space over Z/27Z. Thus the values of
the functor e, lie in types(n,n + 1)..

THEOREM 37. For any object X € types(n,n + 1),, n > 3 there exists an
object Q € SG4 and an isomorphism e, (Q) = X in types(n,n + 1). Moreover,
one can assume that (). is an abelian group.
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Proof. Still it suffices to realize objects like (7, 741, k), where 7,11 is a
vector space over Z/2Z. Using pushforward construction it suffices to con-
sider the universal case (A, A/2A, k), where k : A — A/2A is the canonical
projection. We choose a basis (b;);c; of A/2A. Let B a the free Z/4Z-module,
with a basis (b;)ic;. We have canonical epimorphisms € : A — A/2A €(a) = a
and € : B — A/2A, e(b;) = b;. It follows that one has the following exact
sequence

0 —— A/2A - B c A/2A — 0

where a(b;) = 2b;. Let us consider the corresponding pullback diagram

c A
J |
B — AJ24

It follows that one has the following exact sequence

0 —= A24 > ¢ 25 4 0.

We now put
Qe:Ca Qee:Ba
P=t10e, H=hop,

where h : B — B is the quadratic map uniquely defined by the conditions:
h(b)—Oand(,|b)h—0 if i # j and (b; | b)), = 2b;. Here i,j € I.
A direct computation shows that in this way one really gets a PSG which
realizes (A, A/2A,k). 1

5.10. THE TRANSFORMATION A The homotopy groups 7riQ, 1=20,1and

the stable homotopy group EIQ of a square group ) depends only on the
underlying presquare group p(Q). In [6] a homomorphism Ag : 7rg2 — 7T1Q
was constructed, which defines the natural transformation of functors defined

on SG. Recall that

A(z)=HPH(z)+ H(z +z) —4H(z), = € Q..
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Since
AP=HPHP+2HP —4HP =2HP —2HP =0

we see that A is well-defined. Since 0 = HP — Id, one can rewrite
(7) A(z) = o(H(z)) — H(z) + (¢ | 2)n
Now it is clear that A is additive, because

@lya=c@|y)p—(|y)u+(x|y)n+@y|z)g=0.

We have also
PA=PoH—-PH+ P(z|z)g =0.

Thus A really defines the natural transformation 79 — 7.
It follows from the identity (7) that the following diagram is commutative:

71'0#)7(’1

|k

7T()/27T0 k—> US|
Let a: w[? — Qee be a homomorphism; according to Lemma 20 we have
also the square group Q% which has the same underlying presquare group as
Q@ and therefore the same homotopy groups as ). One easily sees that

A =A+o0a—«

which shows that A could not be constructed only in terms of presquare
groups.

LEMMA 38. Let A be a finitely generated abelian group and let B be any
abelian group. Furthermore let f : A — B be any homomorphism. Then
there exists a square group ) such that 71'(? = A, 71‘1Q =B and Ag = f.

Proof. Using pushforward construction it suffices to consider the universal
case B = A and f = Id4. An abelian group A is called A-realizable if there
exists a square group () such that 71'(? = A = 71'? and Ag = Idy. Since
m; : SG — Ab, 1 = 0,1 takes finite products to finite products and Ap;xny =
(Aar, An) it suffices to show that any cyclic group is A-realizable. Assume 2
is invertible in A. Then we have the following square group

Qe=A=Qe; P=0, and H(a)=—3
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which realizes A. The square group Z,; realizes Z, where
a’>—a
2
Finally the square group constructed in the proof of the part b) of Lemma 32
realizes Z/2"Z for allm > 1. 1

(Znil)e =7Z= (Znil)eea P =0 and H(a) =
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