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1. PRELIMINARIES AND MAIN RESULTS

1.1. INTRODUCTION. A normed space E is said to be reflexive if the
canonical mapping jg from E to the second continuous dual E” is onto. We
say that F is sup-reflexive if every f in the continuous dual E’ reaches its upper
bound on the closed unit ball Bg of E. It is an immediate consequence of the
Tychonov-Alaoglu Theorem that reflexivity implies sup-reflexivity. That, con-
versely, every sup-reflexive Banach space is reflexive is the famous James’ sup
Theorem (see [12], [13]). James’ original proof was rather long and involved
but there exist simpler proofs (see [19], [21], [22], [5], and [3, Theorem 3.2] in
the separable case).

We say that E is J-reflexive (James-reflexive) if By does not contain any
sequence (an)nen satisfying

in}{; dist(span{a; : 1 <n},conv{a;:i>n}) >0
ne

Indeed James proves that every sup-reflexive normed space is J-reflexive,
and that every J-reflexive Banach space is reflexive. The second implication
has short proofs (see for example [18] and [15, Theorem 3.9]). In this paper,
we provide a new proof of the first implication. Notice that, along the way, we
give a short proof of the J-reflexivity of sup-reflexive separable normed spaces
(Corollary 2 of Section 2).

The key point in the general case is the following dichotomy result (see
Theorem 2 below), which extends a result due to Hagler and Johnson (see [6]):
given a normed space E, either £ contains an asymptotically isometric copy of
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¢} (N), or every bounded sequence of the continuous dual E’ admits a sequence
of normalized blocks pointwise converging to 0.

1.2. PRESENTATION OF THE RESULTS. Given a real vector space E and
a sequence (Z,)nen in E, a sequence (b, )nen in E is a block sequence of (z,),
if there exists a sequence (F),),cn of pairwise disjoint finite subsets of N and a
sequence (A;)ijen of real numbers such that for every n € N, b, =, 7, Nili.
If for each n € N, >, |Ai| = 1, the block sequence (by)nen is said to be
normalized. If in addition, for every ¢ € UpenFyn, A\ > 0, we say that the
block sequence is convex. In particular, every infinite subsequence is a convex
block sequence. The sequence (F),), is called a sequence of supports of the
block sequence (b, ),. We say that a topological space is sequentially compact
if every sequence of this space has an infinite subsequence which converges.
We say that a subset C' of a topological vector space E is block compact if
every sequence of C has a normalized block sequence (b, ),en which converges
in E; notice that without loss of generality one may assume that it converges
to 0: consider the normalized block sequence (%)%N. We say that C'
is convex block compact if every sequence of C' has a convex block sequence
which converges in F.

Using Simons’ inequality and Rosenthal’s #'-theorem, we prove the follow-
ing result (see Section 2):

THEOREM 1. Given a sup-reflexive normed space F, if its dual ball B is
weak* block compact, then E is J-reflexive.

We then prove (Section 3):

THEOREM 2. If a normed space E does not contain any asymptotically
isometric copy of £'(N), then its dual ball By is weak* block compact.

Here, we say that E contains an asymptotically isometric copy of ¢£!(N) if
there exists a sequence (ap)nen in Bg, and some sequence (0, )nen in ]0, 1]
converging to 1 satisfying the following inequality, for every finite sequence
(Ai)o<i<n in R:

DTl < | DD Na
0<i<n 0<i<n

Our Theorem 2 generalizes a result due to Hagler and Johnson ([6] or [16]),
where the normed space E contains no isomorphic copy of £'(N).
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Remark 1. Notice that (see [4]) there is an equivalent norm N on ¢}(N)
forbidding any asymptotically isometric copy of #!(N) in the renormed space
(¢*(N), N). Thus, there are normed spaces having isomorphic copies of #!(N),
but having no asymptotically isometric copies of £!(N).

We finally prove (Section 4):

THEOREM 3. A sup-reflexive normed space does not contain any asymp-
totically isometric copy of £*(N).

This result is a straightforward generalization of a short theorem due to James
(see [11, Theorem 2 p. 209]), which asserts that there is a linear continuous
functional f : ¢'(N) — R such that, for every normed space E containing
?'(N), there is a norm-preserving linear extension of f that does not attain
its norm on Bp.

Thus we get the following result that yields a new proof of James’ sup
theorem:

COROLLARY 1. Every sup-reflexive normed space is J-reflexive.

Proof. Let E be a sup-reflexive normed space. According to Theorem 3,
the space E does not contain any asymptotically isometric copy of £!(N); so,
with Theorem 2, B is weak* block compact; whence, by Theorem 1, FE is
J-reflexive. 1

Remark 2. James (see [10]) gave an example of a sup-reflexive normed
space which is not complete (hence which is not reflexive).

2. SPACES WITH A WEAK* BLOCK COMPACT DUAL BALL

2.1. SPACES WITH A WEAK* CONVEX BLOCK COMPACT DUAL BALL.

THEOREM. (Simons’ inequality [20]) Let S be a set and (fn)nen be a
bounded sequence of £>°(S). Denote by A the set of sequences (Ap)nen €
[0,1]N satisfying >, cnAn = 1. Assume that for every (An)nen € A, the
infinite convex combination )y Anfn reaches its upper bound on S. Then

inf{sup Z Anfn t (An)neny € A} <suplimsup f,
neN S neN
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Given a normed space E, and a real number ¢ > 0, we say that a se-
quence (an)nen in E is a ¥-sequence if inf,eyd(span{a; : i < n},conv{a; :
i > n}) > 9. Given a J-sequence (a,)nen in Bg, the Hahn-Banach theo-
rem implies a sequence (f,)nen in Bpr satisfying f,(a;) = 0 if i < n and
fnla;) > 9 if n < 4. Indeed, since the distance between the convex sets
span{a; : 1 < n} and conv({a; : i > n}) is > 9, there exists some f € I'p
satistying supgpanga;:i<n} [ +9 < Infeonya;i>ny f- Since the linear functional f
is bounded on the vector subspace span{a; : i < n}, f is null on this subspace.
Call such a sequence (ay, fn)nen in Bg X Bpr a ¥-triangular sequence of E.
Thus, a normed space F is J-reflexive if and only if it has no ¥-triangular
sequence for any 9 > 0.

LEMMA 1. Given a sup-reflexive space E, ¥ > 0, and a J-triangular se-
quence (an, fn)nen of E, no convex block sequence of (fy)nen pointwise con-
verges.

Proof. Seeking for a contradiction, assume that some convex block se-
quence (b, )nen pointwise converges to some f. Without loss of generality, we
may assume that the sequence of supports (F,),en satisfies Fy < Fy < -+ <
F, < .... Observe that for every n € N, f(a,) = 0. Then denoting by h,, the
mapping 6”2_ L and by d, the last element of F,, the sequence (ad,, hn)nen
is g—triangular. Using Simons’ inequality and the sup-reflexivity of F, there
exists some finite convex combination g := ) Aphy of (hy)nen such that

supg, g < %; but for any integer N > max F, g(an) = ) ;cp Mihilan) > g:
contradiction! 1§

COROLLARY 2. A sup-reflexive normed space with a weak* convex block
compact dual ball is J-reflexive. In particular, a sup-reflexive separable normed
space is J-reflexive.

Proof. Indeed, given a separable normed space F, the closed unit ball of
E', being homeomorphic with a closed subset of [—1, 1]V, is weak* sequentially
compact. N

2.2. SPACES WITH WEAK* BLOCK COMPACT DUAL BALL. Recall that a
bounded sequence (f,)nen in a normed space E is equivalent to the canonical
basis of ¢! (N) if there exists some real number m > 0 satisfying m >, oy [An| <
|3 nen Anfnl| for every (An)n € £1(N): if in addition, for every n € N, || f,]| <
1, we say that (f,)nen is m-equivalent to the canonical basis of £!(N).
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THEOREM. (Rosenthal’s ¢!-theorem) Given a set X and a bounded se-
quence (fp)nen in £2°(X), there exists a subsequence of (fy)nen which point-
wise converges, or there exists a subsequence which is equivalent to the canon-

ical basis of £*(N).

Proof. (of Theorem 1) Seeking for a contradiction, assume that some sup-
reflexive normed space E is not J-reflexive, though Bp: is weak™ block com-
pact. Non J-reflexivity of E yields some J-triangular sequence (an, fn)nen
of E, with ¥ > 0. Then, with Lemma 1, no infinite subsequence of (f,,)nen
pointwise converges, so, using Rosenthal’s #!-theorem, there exists some infi-
nite subsequence (f,)ne4 and some m > 0 such that the bounded sequence
(fn)nea is m-equivalent to the canonical basis of £!(N). Now, by the weak*
block compactness of Bgr, (fn)nca has a normalized block sequence (by)nen
weak* converging to 0. Using Simons’ inequality, there exists some finite con-
vex combination g := ), - Aib; of (bp)nen such that ||g|| = supg, g < F; but,
since the block sequence (b, ),en is normalized, it is also m-equivalent to the
canonical basis of £!(N), hence ||g|| > m > ;. |Ai| = m: the contradiction! 1

3. EXTENSION OF A THEOREM BY HAGLER AND JOHNSON

Notation 1. ([6]) If (by)nen is a normalized block sequence of a sequence
(Zn)nen of a real vector space, we write (by)n < (T )n-
Given a set X, for every bounded sequence (fy,)nen of £°(X), and every subset
K of X, let

Ok (fn)n = Sup lim sup f,,

5K(fn)n = inf{éK(hn)n : (hn)n < (fn)n}

If (hn)nen is a bounded sequence in ¢°°(X), and if for some ng € N,
(hn)n>ne is a normalized block sequence of (fp)n, then 0k (hn)n < Ik (fn)n
and ex (fn)n < €k (hn)n. When K is a symmetric subset of a real vector space
X, and when each f, is linear, then (f,), pointwise converges to 0 on K if
and only if 0x (frn)n = 0.

Given a metric space (X, d), for every x € X and every real number 7 > 0
we denote by B(z,r) the open ball {y € X : d(z,y) < r}.

LEMMA 2. (Quantifier permuting) Let (K, d) be a precompact metric spa-
ce, A\ > 0, and (fn)nen be a sequence of \-Lipschitz real mappings on K. If
Ok (fn)n < 1 then, for every € > 0, there exists N € N satisfying for every
n>N,supg fn<1l+e.
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Proof. Let n €]0,¢[. Given z € K, there exists some finite subset Fj
of N satisfying for every n € N\F,, f,(z) < 1+ n; thus, denoting by p
the positive number =, for every n € N\F, and for every y € B(z,p),
fn(y) < 1+4e. Now the precompact set K is contained in a finite union of the
form (Jy <<y B(2k,p). Let F' be the finite set |J; ;< Fz,- Then, for every
y € K, and for every n € N\F, f,(y) <1l+e. B

LEMMA 3. ([6, Proof of Theorem 1]) Given a set X and a bounded se-

quence (fp)nen in £°°(X), there exists a normalized block sequence (by,)nen
of (fn)n such that ex(by)n = 0x (bn)n-

Proof. Diagonalization. Choose some normalized block sequence (h))nen
of (fn)n such that dx (h%)n < ex(fa)n + 30, and then, for every i € N, in-
ductively choose some normalized block sequence (hit!),en of (h%), such
that dx(hi™), < ex(hé)n + 7. For every n € N, let b, := hl: then
(bn)n < (fn)n; moreover, given a normalized block sequence (ky)nen of (by)n,
for every i € N, dx(bn)n < x (Bt )n < ex(hi)n + g2 < Sx(kn)n + 3o
whence 0x (bp)n < ex(bn)n- 1

Notation 2. We denote by S be the set of all finite sequences in {0, 1}.

We say that a family (A,)ses of infinite subsets of N is a tree (of subsets
of N) if for every 0 € S, A, and A, are disjoint subsets of A,, where
Ay~ € S is the sequence obtained from ¢ by adding a last term equal to 3.

Notation 3. Given an infinite subset A of N, we denote by i — i4 the
increasing mapping from N onto A.

Proof. (of Theorem 2) We essentially follow the proof of Hagler and John-
son, extending it with the help of Lemma 2. Assuming that F is a normed
space, and that (g, )nen is a bounded sequence in E' without any normalized
block sequence pointwise converging to 0, we have to show that £ contains an
asymptotically isometric copy of ¢}(N). Using Lemma 3, the sequence (g, )nen
has a normalized block sequence (f,)nen satisfying e, (fn)n = 0B, (fn)n > 0.
We may assume that ep, (fn)n = 0B, (fn)n = 1. Let (un)nen be a sequence in
10, 1/3[ decreasing to 0; for every n € N, let €, := 52 and let 6, := 1 —¢,. We
build a tree (4,)scs with Az = N, and a sequence (a,)n>1 in B satisfying,
for every n > 1, 0 = (a1,...,ap) € {—1,1}", and i € A,

il span{aq,...,a,}|| <1+¢, and
|77 epantes H {fz-(an)g—l—i-?)un T
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Then, with

P,:={f€FE: f(ay,) >1—3u, and || f]span{ay,...,an}|| <1+ep}
Qn:={f€FE: flay) <=1+ 3u, and ||f]spanf{ai,...,an}|| <1+e,}
it will follow that (P, @y )n>1 is independent (for every disjoint finite subsets
F,G of N\{0}, N,er Pn N Nyeq @n is non-empty). This will imply that the
sequence (ap),>1 in Bg is asymptotically isometric to the canonical basis
of /(N): indeed, given real numbers \i,...,\,, letting f € Nginisoy i N
ﬂ{iz,\i<0} Qi

1T span{a, ... an} | | D Naif| > (D Nias)

1<i<n 1<i<n
> (D M=)+ > N(=1+3u)) > >0 [Nl(L - 3u)
{@:X;>0} {i:\; <0} 1<i<n
whence HZgign )\iaiH > ﬁ Doi<icn [Nl =3wi) > 30 i [Nl 11;3;:1" with

the sequence (11_4_3;? )ien in ]0, 1[ converging to 1.

Building a,,41 and (AU)UG{,M}”H from (Aa)ae{—l,l}" and (a;)1<i<n. For
every o € { —1,1}", we consider two infinite disjoint subsets L, and R, of
A,, and we define the following normalized block sequence (h]')ien of (fn)n:

1 fiRa - fiLa_
=g 2L T
oe{-1,1}"

Since 0p,, (hl'); > 1, there is some a,,1 € Bp satisfying limsup; A (ap4+1) >
dn+1 and in particular, the set J := {i € N : hl'(ap41) > dy41} is infinite.
Since the closed unit ball K of the finite dimensional space span{ai,...,ap4+1}
is compact and dx (fi)i < 0B, (fi)i < 1, Lemma 2 implies the existence of some
N € N satisfying for every i > N, || fi] span{ai,...,ap41}|| < 14 ept1. Let
J':={ieJ: i>N}. Now, given any o € {—1,1}", for every i € J', since
every 7 € {—1,1}" satisfies ip_,ir. > > N,

fiR(, (an-i-l) - fiLo. (an—l—l)
2

Z fiRT (an—i—l) - fiLT (an—l—l)

— 2" (ans1) — ;

Te{-1,1}"
T#0

> 276,41 — (2" — 1)(1 + ens1)
=2"1—¢epy1) — 2" =11 +€p41)
=1-(2"" = Dep1 > 1-2"epy =1 —up
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Thus, fip (ant1) 2 2(1 — upy1) + fip, (ans1) = 2(1 —upi1) — (L + ent1) =
1—up1(2+ #) > 1—3upq1. Likewise, f;; (any1) < —1+3uyy1. For every
o€ {—1,1}", we define Ay~ :={ir, :1€ J'} and As1 :={ig, i€ J'}. 1

4. NO ASYMPTOTICALLY ISOMETRIC COPY OF /!(N)
IN SUP-REFLEXIVE SPACES

Proof. (of Theorem 3) Assume the existence of some sequence (an,)nen in
B, asymptotically isometric with the canonical basis of £!(N), witnessed by
a sequence of coefficients (J;)ien in ]0, 1] converging to 1. Let V' := span{a,, :
n € N}. For every n € N, consider the linear mapping g, : V — R such
that gy (a;) = —6; if i < n and g,(a;) = 6; if n < i; then, for every sequence
(Ai)ien € R with \; = 0 for all but finitely many 4’s, |gn(z;i0 Ajaj)| =
| 2 jen =305 + Ljon Xi0j| < 205250 14105 < ‘Z;‘io Aja; ‘
tinuous and ||g,|| < 1; also for every integer i > n, gn(a;) = 0;, whence

lim; 400 gn(ai) = 1; so ||gn|| = 1. With Hahn-Banach, for each n € N, ex-
tend g, to some g, € Sgr. Let W be the vector subspace of elements x € F

whence g, is con-

such that (gn(x))neN converges. Then the linear functional ¢ := lim, g,
is continuous with norm < 1 on W; extend it to some element ¢ € Bpr.
Now consider some sequence (c;)ien in ]0,1[ such that 7, ya; = 1 and

let h = Y, cnowgr — G- Clearly, ||h|| < 2. Moreover, for every n € N,
h(ay,) = Zkgn QkOp = D o CkOn + 0y = 20, Zkgn ay, thus lim, h(a,) = 2.
So ||h|| = 2. By sup-reflexivity of E, let v € Bg be such that h(u) = 2.
Observe that g(u) = —1, and for every k € N, gx(u) = 1 (notice that for
each k, ap # 0); now u € W therefore g(u) = limy, g (u) = 1, contradicting
Gw) = —1! 1

5. SET-THEORETICAL COMMENTS

5.1. SET-THEORY WITHOUT CHOICE ZF. Rosenthal’s Theorem is a choi-
celess consequence (see [14, p.135-136]) of the following choiceless result (see
for example [1]):

THEOREM. (Cohen, Ehrenfeucht, Galvin (1967)) Every open subset of
[N]N (the set of infinite subsets of N endowed with the topology induced by
the product topology on {0,1}") is Ramsey.

The proof of Simons’ inequality given in [20] (see also [17]) is choiceless: use
convex combinations with finite supports and rational coefficients. Our proofs
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of Theorems 1 and 3 rely on the Hahn-Banach axiom HB, while our proof of
Theorem 2 relies on the axiom of Dependent Choices DC (see [9]), thus
our proof of Corollary 1 relies on HB 4+ DC. More generally, for a given
Banach space, J-reflexivity, reflexivity, “weak compactness of the unit ball”,
sup-reflexivity, Smulian-reflexivity, and convex-reflexivity (see [15]) are equiv-
alent in ZF + DC + HB.

QUESTION 1. Is there some “usual” notion of reflexivity which, for Banach
spaces, is not equivalent to “sup-reflexivity” in ZF 4+ DC + HB? Is there some
“usual” notion of reflexivity which, for separable Banach spaces, is equivalent
in ZF, neither to J-reflexivity nor to reflexivity?

5.2. BLOCK COMPACTNESS. Given a normed space F, obviously,

Bp weak* sequentially compact =

Bp weak™ convex block compact = Bpr weak™ block compact

The first implication is not reversible in set-theory with choice ZFC (see [7]):
notice that the construction of the space built there depends on a well-order
on R.

Remark 3. The dual ball of a normed space containing an isomorphic copy
of £*(R) is not weak* block compact.

Proof. Using the Hahn-Banach Theorem, it is sufficient to prove that the
dual ball of £!(R) is not weak* block compact. Let F := £1({0,1}"). We have
to show that the closed unit ball of F’ = £>°({0,1}) is weak* block compact.
For every n € N, denote by p, : {0, 1} — {0,1} the canonical projection. Of
course, (pn)n is a bounded sequence in F’, but no normalized block sequence
of (pn)n converges to 0. Indeed, let (b,)nen be a normalized block sequence
of (pn)nen. For every n € N, b, is of the form Zian A;p; where the finite
subsets F), of N are pairwise disjoint and the coefficients \; are real. For every
neN let Ff :={i € F,: )\ >0} and F, := {i € F, : \; < 0}. Consider
the subsets A := Upen(Fy, U Fy, 1) and B = Upen(Fy, U Fy ) of N If
(b (A))nen converges, then its limit is 0 whence (boy, (B))nen converges to —1
and (bap,+1(B))nen converges to 1, thus (b, (B))nen does not converge. 1

Remark 4. Using Theorem 2, it follows that any space isomorphic with
?'(R) contains an asymptotically isometric copy of £!(N).
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Recall that CH denotes the Continuum Hypothesis and that MA denotes
Martin’s Axiom.

Remark 5. In ZFC + MA + —~CH, the following conditions are equivalent
for a given normed space E:

1. E does not contain any isomorphic copy of £!(R);
2. the ball Bg is weak* convex block compact;

3. the ball Bp is weak* block compact.

Proof. The implication (1) = (2) is due to Haydon, Levy and Odell (see
[8]). The implication (2) = (3) is trivial and the implication (3) = (1) is
Remark 3. 1

QUESTION 2. Is the implication (3) = (2) provable in ZFC?

QUESTION 3. According to a theorem due to Bourgain ([2]), “The dual
ball of a normed space not containing any isomorphic copy of #!(N) is weak*
convex block compact”. Does this result persist in ZFC for normed spaces
which do not contain asymptotically isometric copies of /!(N)? (Using Re-
marks 4 and 5, the answer is positive in ZFC + MA + —-CH.)
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