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1. Introduction

Throughout this paper, L(X ) denotes the algebra of all linear bounded
operators on an in�nite-dimensional complex Banach space X and K(X) its
ideal of compact operators. For an operator T ∈ L(X ), write T for its adjoint;
N(T ) for its kernel; R(T ) for its range; σ(T ) for its spectrum; σap(T ) for its
approximate point spectrum; σsu(T ) for its surjective spectrum and σp(T ) for
its point spectrum.

For an operator T ∈ L(X ), the ascent a(T ) and the descent d(T ) are
given by a(T ) = inf{n ≥ 0 : N(Tn) = N(Tn+1)} and d(T ) = inf{n ≥ 0 :
R(Tn) = R(Tn+1)}, respectively; the in�mum over the empty set is taken to
be in�nite. If the ascent and the descent of T ∈ L(X ) are both �nite, then
a(T ) = d(T ) = p, X = N(T p)⊕ R(T p) and R(T p) is closed, [24].

Also, an operator T ∈ L(X ) is called semi-Fredholm if R(T ) is closed
and either dimN(T ) or codimR(T ) is �nite. For such an operator the index
is de�ned by ind(T ) = dim N(T ) − codimR(T ), and if the index is �nite,
T is said to be Fredholm. Let T ∈ L(X ), the essential spectrum σe(T ),
the semi-Fredholm spectrum σSF(T ), the Weyl spectrum σw(T ), the Browder
spectrum σb(T ), the essential approximate point spectrum σea(T ) and the
Browder essential approximate point spectrum σab(T ) are given respectively
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by

σe(T ) = {λ ∈ C : T − λ is not Fredholm},
σSF(T ) = {λ ∈ C : T − λ is not semi-Fredholm},
σw(T ) = {λ ∈ C : T − λ is not Fredholm of index 0},
σb(T ) = {λ ∈ C : T − λ is not Fredholm of �nite ascent and descent},
σea(T ) = {λ ∈ C : T − λ is not semi-Fredholm of non-positive index},
σab(T ) = {λ ∈ C : T − λ is not semi-Fredholm of �nite ascent}.

It is well known that
σea(T ) ⊆ σw(T ) ⊆ σb(T )

and
σea(T ) ⊆ σab(T ) ⊆ σb(T ).

For a subset K of C, we shall write isoK for its isolated points and accK
for its accumulation points. A complex number λ is said to be Riesz point of
T ∈ L(X ) if λ ∈ isoσ(T ) and the spectral projection corresponding to the set
{λ} has �nite-dimensional range. The set of all Riesz points of T is denoted
by Πo(T ).

The set of isolated points λ in the spectrum (resp. approximate point
spectrum) for which ker(T − λ) is non-zero and �nite-dimensional is denoted
by Πoo(T ) (resp. Πa

oo(T )).

Definition. Let T be a bounded operator on X, we will say that
(i) Weyl's theorem holds for T if σw(T ) = σ(T ) \Πoo(T ).
(ii) a-Weyl's theorem holds for T if σea(T ) = σap(T ) \Πa

oo(T ).
(iii) Browder's theorem holds for T if σw(T ) = σb(T ).
(iv) a-Browder's theorem holds for T if σea(T )σab(T ).

The investigation of operators obeying Weyl's theorem was initiated by
Hermann Weyl, who proved that for every hermitian operator on a complex
Hilbert space H we have σw(T ) = σ(T )\Πo(T ), [25]. This remarkable descrip-
tion of the largest subset of the spectrum remaining invariant under arbitrary
compact perturbation, [23], was extended to several classes of operators in-
cluding p-hyponormal [3], M -hyponormal and log-hyponormal operators, see
[6] and [17]. Analogously, to conduct a similar study where the spectrum is
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replaced by the approximate point spectrum, the concept of a-Weyl's and a-
Browder's theorem were introduced by V. Rako£evi¢ in [19]. Now it is well
known that the following implications hold ([1], [19]):

a-Weyl's theorem ⇒ Weyl's theorem ⇒ Browder's theorem;

a-Weyl's theorem ⇒ a-Browder's theorem ⇒ Browder's theorem.

Also, it was shown by Y.M. Han and S.V. Djordjevi¢ [7] that if T ∗ is p-
hyponormal, M -Hyponormal or log-hyponormal, then a-Weyl's theorem holds
for f(T ) for every f ∈ H(σ(T )), where H(σ(T )) denotes the space of all
analytic functions on an open neighbourhood of σ(T ).

Let us introduce one of the basic notions of local spectral theory. An
operator T ∈ L(X ) is said to enjoy the single valued extension property,
SVEP for brevity, if for every non-empty open set U ⊆ C, the only analytic
solution of the equation (T − λ)f(λ) = 0 for λ ∈ U is the zero function. It
is well known that every p-hyponormal, M -hyponormal and log-hyponormal
operator satis�es the SVEP, see for instance [17].

In the present paper, we study a-Weyl's and a-Browder's theorem for an
operator T such that T or T ∗ satis�es the SVEP. We establish that if T ∗ has the
SVEP, then T obeys a-Weyl's theorem if and only if it obeys Weyl's theorem.
Further, if T or T ∗ has the SVEP, we show that the spectral mapping theorem
holds for the essential approximative point spectrum, and that a-Browder's
theorem is satis�ed by f(T ) whenever f ∈ H(σ(T )). We also provide several
conditions that force an operator with the SVEP to obey a-Weyl's theorem.

The author woulde like to precise that this paper constitute a part of his
thesis [16].

2. Main results

We shall say that an operator T ∈ L(X ) is semi-regular if R(T ) is closed
and N(T ) ⊆ R(Tn) for every n ∈ N. The semi-regular resolvent set is the open
set given by s-reg(T ) = {λ ∈ C : T − λ is semi-regular}, [13].

Let T be a bounded operator on X. The quasi-nilpotent part of T is de�ned
by

Ho(T ) := {x ∈ X : lim
n→∞ ‖T

nx‖ 1
n = 0},

and the analytic core of T by
K(T ) := {x ∈ X : there exists {xn}n≥0 ⊆ X and c > 0 such that x = x0,

Txn+1 = xn and ‖xn‖ ≤ cn‖x‖ for all n ≥ 0}.
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These subspaces are T -invariant, and generally not closed. However if Ho(T ) is
closed then T|Ho(T ) is quasi-nilpotent, also if Y is a T -invariant closed subspace
of X such that TY = Y then Y ⊆ K(T ). It is straightforward to see that
T (K(T )) = K(T ) and N(Tn) ⊆ Ho(T ) for all n ∈ N. For more detail on these
subspaces we refer the reader to [13], [14], and [12].

Let T ∈ L(X ), we denote by σf
p(T ) the set of all eigenvalues of T of �nite

multiplicity.
Proposition 2.1. Let T be a bounded operator on X. If Ho(T − λ) is

closed for every λ ∈ σf
p(T ), then T satis�es a-Browder's theorem.

The proof of this proposition requires the following elementary lemma:

Lemma 2.2. Let T be a semi-Fredholm operator, then
T has �nite ascent ⇔ Ho(T ) is �nite-dimensional .

Moreover, 0 is an isolated point of σap(T ) if and only if Ho(T ) is a non-zero
closed subspace.

Proof. First, since T is semi-Fredholm, then the Kato decomposition, [8,
Theorem 4], provides two closed T -invariant subspaces X1, X2 such that X =
X1 ⊕ X2, X1 is �nite-dimensional, T1 := T|X1

is nilpotent and T2 := T|X2
is

semi-regular. Therefore X1 ⊆ Ho(T ) and Ho(T ) = X1 ⊕Ho(T ) ∩X2.
For the �rst part, suppose that T has �nite ascent p = a(T2). Because T2

is semi-regular, Lemma 1.1 of [14] ensures that Ho(T2) = ∪nN(Tn
2 ). Therefore

Ho(T2) ⊆ N(T p
2 ) and consequently Ho(T2) = N(T p

2 ) is closed. But T2 is semi-
regular, hence Ho(T ) ∩X2 = Ho(T2) = {0}, [11]. Thus Ho(T ) = X1 is �nite-
dimensional. The other implication is obvious.

For the second part suppose that Ho(T ) is a non-zero closed subspace. It
follows easily from the above argument that 0 is an isolated point of σap(T ).
Reciprocally, if 0 ∈ isoσap(T ), and because R(T ) is closed, we obtain that
N(T ), and consequently Ho(T ), is non-zero. Let λ in a deleted connected
neighborhood of 0 such that T−λ is injective with closed range. Then T2−λ is
injective with closed range and Ho(T2−λ) = {0}, which implies that Ho(T2) =
{0} by Lemma 1.3 of [14]. Finally Ho(T ) = X1 is �nite-diemnsional.

It is interesting to note that, in the literature, the Browder essential approx-
imate point spectrum is de�ned to be the complementary in C of the complex
numbers λ for which T − λ is semi-Fredholm, dimN(T − λ) and a(T − λ)
are �nite. However, by the preceding lemma, the condition of �niteness of
dimN(T − λ) is redundant.
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For an operator T , we denote by Πa
o(T ) the set of all isolated points λ

of σap(T ) for which T − λ is semi-Fredholm. It is clear by Lemma 2.2 that
Πa

o(T ) ⊆ Πa
oo(T ).

Remark. Let T be a bounded operator on X, as immediate consequences
of Lemma 2.2, we derive the following assertions:

(i) σab(T ) = σap(T ) \Πa
o(T )accσap(T ) ∪ σSF(T ) .

(ii) if T satis�es a-Browder's theorem, then a-Weyl's theorem holds for T if
and only if Πa

o(T ) = Πa
oo(T ).

(iii) if a-Weyl's theorem holds for T then so does a-Browder's theorem. In-
deed, if we assume that T satis�es a-Weyl's theorem, we have Πa

oo(T ) ∩
σSF(T ) ⊆ Πa

oo(T ) ∩ σea(T ) = ∅, and so Πa
oo(T ) ⊆ Πa

o(T ) = isoσap(T ) ∩
ρSF(T ). Thus, Πa

o(T ) = Πa
oo(T ) and σea(T ) = σab(T ).

Proof of Proposition 2.1. Let us show that σea(T ) = σab(T ). Suppose λ /∈
σea(T ). If T − λ is injective then it has a �nite ascent, and hence λ /∈ σab(T ).
Suppose that N(T − λ) is a non-zero subspace. Since T − λ is semi-Fredholm
with non-positive index, N(T − λ) is of �nite dimension. Consequently λ ∈
σf

p(T ), and so Ho(T−λ) is closed, by hypothesis. Therefore Lemma 2.2 implies
that T − λ has �nite ascent and λ /∈ σab(T ). The other inclusion is clear.

Proposition 2.3. Let T be a bounded operator on X.
(i) If T ∗ has the SVEP, then T satis�es a-Weyl's theorem if and only if it

satis�es Weyl's theorem.
(ii) If T has the SVEP, then T ∗ satis�es a-Weyl's theorem if and only if it

satis�es Weyl's theorem.

Proof. (i) Suppose that T ∗ has the SVEP, then Proposition 1.3.2 of [9]
implies that σ(T ) = σap(T ), and consequently Πoo(T ) = Πa

oo(T ). Therefore
it su�ces to show that σw(T ) = σea(T ). Let λ /∈ σea(T ), then T − λ is
semi-Fredholm and ind(T − λ) ≤ 0, hence, by Proposition 2.2 of [17], we get
that ind(T − λ) = 0. Thus λ /∈ σw(T ). The other inclusion is clear and the
equivalence between Weyl's theorem and a-Weyl's theorem is proved for T .
(ii) Outlines the proof of the �rst statement.

Theorem 2.4. Let T be a bounded operator on X. If T , or its adjoint
T ∗, satis�es the SVEP, then a-Browder's theorem holds for f(T ) for every
f ∈ H(σ(T )).
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Proof. Let us show �rst that a-Browder's theorem holds for T . Suppose
that T ∗ has the SVEP, then by [17, Theorem 2.7] it follows that Browder's
theorem holds for T , i.e. σw(T ) = σb(T ). Also from the proof of the previous
Proposition we have σea(T ) = σw(T ). Therefore, to show that a-Browder's
theorem holds for T , it su�ces to establish that σab(T ) = σb(T ). Let λ /∈
σab(T ) then ind(T−λ) ≤ 0. But the SVEP for T ∗ implies that ind(T−λ) ≥ 0,
[17, Proposition 2.2], therefore ind(T − λ) = 0 and so λ /∈ σw(T ) = σb(T ).
The other inclusion is obvious.

Now assume that T satis�es the SVEP and let λ ∈ σap(T ) \ σea(T ). Then
T − λ is semi-Fredholm and consequently, by the Kato decomposition, there
exists a δ > 0 for which {µ ∈ C : 0 < |µ − λ| < δ} ⊆ s-reg(T ). On the
other hand s-reg(T ) = ρap(T ) because T has the SVEP, [17, Lemma 2.1],
and consequently λ ∈ isoσap(T )∩ρSF(T ) = Πa

o(T ); which proves that σap(T )\
σea(T ) ⊆ Πa

o(T ). The other inclusion is clear, hence σea(T ) = σap(T )\Πa
o(T ) =

σb(T ) and a-Browder's theorem holds for T .
Finally, if f ∈ H(σ(T )), then by Theorem 3.3.6 of [9], f(T ), or f(T )∗,

satis�es the SVEP, and the above argument implies that a-Browder's theorem
holds for f(T ).

For an operator satisfying the SVEP, the conclusion of the preceding The-
orem was recently established by R. Curto and Y. Han in [4]. However, the
arguments used here are di�erent from the ones given in [4].

As immediate consequence of Theorem 2.4, we have:
Corollary 2.5. Let T be a bounded operator on X. If T or T ∗ has the

SVEP, then a-Weyl's theorem holds for T if and only if Πa
o(T ) = Πa

oo(T ).

From [20], we recall that for T ∈ L(X ), the spectral mapping theorem
holds for σab(T ), but may fail to hold for σea(T ).

Theorem 2.6. If T ∈ L(X ), or its adjoint T ∗, satis�es the SVEP, then
f(σea(T )) = σea(f(T )) for every f ∈ H(σ(T )).

Proof. Since by the preceding Theorem, a-Browder's theorem holds for
both T and f(T ), we have

f(σea(T )) = f(σab(T )) = σab(f(T )) = σea(f(T )).

This completes the proof.
In [12], the class of the operators T ∈ L(X ) for which K(T ) = {0} was

studied. It was shown that for such operators, the spectrum is connected and
the SVEP holds.



a-weyl's theorem 47

Proposition 2.7. Let T ∈ L(X ), if there exists a complex number λ
for which K(T − λ) = {0}, then f(T ) satis�es a-Browder's theorem for every
f ∈ H(σ(T )). Moreover, if in addition, N(T−λ) = {0}, then a-Weyl's theorem
holds for f(T ) for every f ∈ H(σ(T )).

Proof. Let f ∈ H(σ(T )), without loss of generality we can suppose that f
is a non-constant analytic function on an open neighbourhood Ω of σ(T ). Since
T has the SVEP, then so does f(T ), and hence, by Theorem 2.4, a-Browder's
theorem holds for f(T ).

Now suppose that N(T − λ) = {0}, we claim that σp(f(T )) = ∅. Let
α ∈ σ(f(T )) and write f(z) − α = p(z)g(z), where g is analytic on Ω and
without zeros in σ(T ), while p is a polynomial of the form p(z) = Πn

i=1(z−λi)di

with distinct roots λ1, λ2, . . . , λn ∈ σ(T ). Because g(T ) is invertible, we have

N(f(T )− α) = N(p(T ))⊕n
i=1 N(T − λi)di .

On the other hand, from the fact that ker(T−λ) = {0} and ker(T−µ) ⊆ K(T−
λ) for all complex number µ 6= λ, we obtain that σp(T ) = ∅. Consequently
N(f(T ) − α) = {0}; which proves that σp(f(T )) = ∅. Thus Πa

o(f(T )) =
Πa

oo(f(T ))∅ and a-Weyl's theorem holds for f(T ).

If T ∈ L(X ) is a semi-shift, i.e. T is an isometry such that ∩∞n=1R(T )n =
{0}, then by the preceding proposition, a-Weyl's theorem holds for T .

For an operator T ∈ L(X ), the reduced minimum modulus is de�ned by

γ(T ) = inf{‖Tx‖ : x ∈ X and d(x,N(T )) = 1};

obviously γ(T ) > 0 if and only if R(T ) is closed, and γ(T ) = ‖T−1‖−1 if T is
invertible, see [8].

The next result was established in [4], we provide here a short proof for it.

Theorem 2.8. let T be a bounded operator on X satisfying the SVEP,
the following assertions are equivalent:
(i) T obeys a-Weyl's theorem,
(ii) R(T − λ) is closed for every λ ∈ Πa

oo(T ),
(iii) γ is discontinuous at every point of Πa

oo(T ).

Proof. (i) ⇔ (ii). It is straightforward to see that Πa
oo(T ) = Πa

o(T ) if and
only if R(T−λ) is closed for every λ ∈ Πa

oo(T ). Hence the equivalence between
(i) and (ii) follows immediately from Corollary 2.5.
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(ii) ⇒ (iii). Let λ ∈ Πa
oo(T ) be such that R(T − λ) is closed. Since T has

the SVEP, σap = C \ s− reg(T ) and consequently T − λ is not semi-regular.
Therefore, by Theorem 4.1 of [13], γ is discontinuous at λ.
(iii)⇒ (ii). Let λ ∈ Πa

oo(T ) and choose a non-zero element x in N(T −λ). For
µ in a small deleted neighbourhood of λ, we have

γ(T − µ)‖x‖ ≤ ‖(T − µ)x‖ = |λ− µ|‖x‖,

and so γ(T − µ) ≤ |λ − µ|. Therefore, limµ→λ γ(T − µ) = 0, and since γ is
discontinuous at λ, we get that γ(T − λ) > 0, that is, R(T − λ) is closed.

Proposition 2.9. let T be a bounded operator on X satisfying the SVEP.
If T−λ has �nite descent at every λ ∈ Πa

00(T ), then T obeys a-Weyl's theorem.

Proof. Let λ ∈ Πa
oo(T ). Since d = d(T − λ) is �nite, it follows that X =

N(T − λ)d + R(T − λ). Moreover, N(T − λ) is �nite-dimensional, then by an
inductive argument we get that also N(T −λ)d is �nite-dimensional. Therefore
R(T − λ) is �nite-codimensional and hence is closed. Now to conclude that
a-Weyl's theorem holds for T , we use part (ii) of Theorem 2.8.

Now let us consider the class P(X ) de�ned as those operators T ∈ L(X )
such that for every complex number λ there exists a positive integer dλ for
which Ho(T − λ) = N(T − λ)dλ . This class has been introduced and studied
in [17], it was shown that it contains every M -hyponormal, log-hyponormal,
p-hyponormal and totally paranormal operator. Also, it was established that
the SVEP is shared by all the operators of P(X ) and that Weyl's theorem
holds for f(T ) whenever T ∈ P(X ) and f ∈ H(σ(T )).

Theorem 2.10. Let T be a bounded operator on X. If there exists a
function h ∈ H(σ(T )) non-constant in any connected component of its domain,
and such that h(T ∗) ∈ P(X∗), then a-Weyl's theorem holds for f(T ) for every
f ∈ H(σ(T )).

Proof. By Theorem 3.4 of [17] it follows that T ∗ ∈ P(X∗). Let us show
�rst that a-Weyl's theorem holds for T . Since T ∗ has the SVEP, then by
Proposition 2.3 it su�ces to prove that Weyl's theorem holds for T , that is,
by [17, Corollary 2.10], Πoo(T ) = Πo(T ). To this aim, suppose λ ∈ Πoo(T ),
then λ is an isolated point of σ(T ∗), and hence by Theorem 1.6 of [11], we
have X∗ = Ho(T ∗ − λ) ⊕ K(T ∗ − λ) where the direct sum is topological.
On the other hand, T ∗ ∈ P(X∗) implies that Ho(T ∗ − λ) = N(T ∗ − λ)d for
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some integer d, therefore X∗ = N(T ∗ − λ)d ⊕ K(T ∗ − λ), and R(T ∗ − λ)d =
(T ∗ − λ)dK(T ∗ − λ) = K(T ∗ − λ) is closed. Moreover, since dimN(T − λ)
is �nite, we get that N(T − λ)d is also �nite-dimensional, and so R(T ∗ − λ)d

is �nite-codimensional. Consequently (T ∗ − λ)d is Fredholm and hence so is
T − λ. Thus λ ∈ isoσ(T ) ∩ ρe(T ) = Πo(T ). The other inclusion is clear and
Weyl's theorem holds for T .

Now if f ∈ H(σ(T )), [17, Theorem 3.4] ensures that f(T )∗ ∈ P(X∗), and
from the above argument we conclude that a-Weyl's theorem holds for f(T ).

Corollary 2.11. If T ∗ ∈ P(X∗), then a-Weyl's theorem holds for f(T )
for every f ∈ H(σ(T )).

Proposition 2.12. Let T ∈ P(X ) be such that σ(T ) = σap(T ), then
a-Weyl's theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. By the spectral mapping theorem for the spectrum and the approx-
imate point spectrum, and the fact that f(T ) ∈ P(X ), it su�ces to estab-
lish a-Weyl's theorem for T . Also, because Weyl's theorem holds for T and
σ(T ) = σap(T ), we have only to prove that σea(T ) = σw(T ). Let λ /∈ σea(T ), it
follows that Ho(T −λ) = N(T −λ)d is �nite-dimensional, where d is a positive
integer. If T −λ is invertible then λ /∈ σw(T ). Therefore we may suppose that
λ ∈ σ(T ) = σap(T ). Since T −λ is semi-Fredholm, Ho(T −λ) is non-zero, and
hence Lemma 2.2 implies that 0 ∈ isoσap(T ) = isoσ(T ). Consequently, [11,
Theorem 1.6],

X = N(T − λ)d ⊕K(T − λ)

= N(T − λ)d ⊕ R(T − λ)d.

This shows that (T −λ)d, and so T −λ, is Fredholm of indice 0. Thus σw(T ) ⊆
σea(T ). The other inclusion is trivial, then σw(T ) = σea(T ) and a-Weyl's
theorem holds for T .

References

[1] Barnes, B.A., Riesz points and Weyl's theorem, Integral Equation Operator
Theory, 34 (1999), 187 � 196.

[2] Caradus, S.R., Pfaffenberger, W.E., Bertram, Y. , �Calkin Al-
gebras and Algebras of Operators on Banach Spaces�, Marcel Dekker, New
York, 1974.

[3] Ch	o, M., Itoh, M., 	Oshiro, S., Weyl's theorem holds for p-hyponormal
operators, Glasgow Math. Jour., 39 (1997), 217 � 220.



50 m. oudghiri

[4] Curto, R.E., Han, Y.M., Weyl's theorem, a-Weyl's theorem, and local
spectral theory, J. London Math. Soc., 67 (2) (2003), 499 � 509.

[5] Djordjevi¢, D.S., Operators obeying a-Weyl's theorem, Publ. Math. De-
bercen, 55 (1999), 283 � 298.

[6] Duggal, B.P., Djordjevi¢, S.V., Dunford's property and Weyl's theo-
rems, Integral Equations Operator Theory, 43 (2002), 290 � 297.

[7] Han, Y.M., Djordjevi¢, S.V., A Note on a-Weyl's theorem, J. Math.
Anal. Appl., 260 (2001), 200 � 213.

[8] Kato, T., Perturbation theory for nullity, de�ciency, and other quantities of
linear operators, J. Analyse Math., 6 (1958), 261 � 322.

[9] Laursen, K.B., Neumann, M.M., �An Introduction to Local Spectral The-
ory�, London Mathematical Society Monographs New Series 20, Clarendon
Press, Oxford, 2000.

[10] Lay, D., Characterization of the essential spectrum of F.E. Browder, Bull.
Amer. Math. Soc., 74 (1968), 87 � 97.

[11] Mbekhta, M., Généralisations de la décomposition de Kato aux opérateurs
paranormaux et specraux, Glasgow Math. J., 29 (1987), 159 � 175.

[12] Mbekhta, M., Sur la thérie spectrale locale et limite des nilpotents, Proc.
Amer. Math. Soc., 3 (1990), 621 � 631.

[13] Mbekhta, M., Ouahab, A., Opérateur s-régulier dans un un espace de
Banach et théorie spectrale, Acta Sci. Math. (Szeged), 59 (1994), 525 � 543.

[14] Mbekhta, M., Ouahab, A., Perturbation des opérateurs s-réguliers, Topics
in operator theory, operator algebras and applications (Timi³oara, 1994),
239 � 249, Rom. Acad., Bucharest, 1995.

[15] Mbekhta, M., Müller, V., On the axiomatic theory of spectrum II, Studia
Math., 119 (1996), 129 � 147.

[16] Oudghiri, M., Sur le théorème de Weyl, Thèse de doctorat, Université de
Lille 1, 2004.

[17] Oudghiri, M., Weyl's and Browder's theorem for operators satisfying the
SVEP, Studia Math., 163 (2004), 85 � 101.

[18] Rako£evi¢, V., On one subset of M. Schechter's essential spectrum, Mat.
Vesnik, 33 (1981), 389 � 391.

[19] Rako£evi¢, V., On the essential approximate point spectrum II,Mat. Vesnik,
36 (1984), 89 � 97.

[20] Rako£evi¢, V., Approximate point spectrum and commuting compact per-
turbations, Glasgow Math. J., 28 (1986), 193 � 198.

[21] Rako£evi¢, V., Semi-Browder operators and perturbations, Studia. Math.,
122 (1997), 131 � 137.

[22] Schechter, M., Whitley, R., Best Fredholm perturbation theorems, Stu-
dia Math., 90 (1988), 175 � 190.

[23] Schechter, M., Invariance of the essential spectrum, Bull. Amer. Math.
Soc., 71 (1965), 365 � 367.

[24] Taylor, A., Lay, D., �Introduction to Functional Analysis�, 2nd ed., John
Wiley & Sons, New York-Chichester-Brisbane, 1980.

[25] Weyl, H., Über beschränkte quadratische Formen, deren Di�erenz vollsteig
ist, Rend. Circ. Mat. Palermo, 27 (1909), 373 � 392.


