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0. Introduction

G-algebra is a very important working object in the modern representation
theory of finite groups, on which Puig set up his well-known theory of pointed
groups, especially, many working objects in the representation theory of finite
groups can be regarded as G-algebras, or more explicitly, as interior G-algebras
(e.g. [11]).

Tensor product is a long story in mathematics, by which authors have
discovered so many interesting results in many branches of mathematics.

In [10], Külshammer obtained some properties on the tensor product of
some indecomposable modules, in [5] Harris generalized [10, Proposition 2.1]
to the lattices over the complete discrete valuation ring. In [1], Aglhamdi
and Khammash studied the tensor module of G-algebras and have achieved
some important results on tensor product of Brauer homomorphism; more-
over, Khammash analyzed the points, pointed groups and their defect groups
in tensor algebra of G-algebras in [9].

In this paper, we devote to studying the (outer) tensor algebra of G-
algebras (see §2) and the (inner) tensor algebra of G-algebras (see §3), es-
pecially, we concentrate on the defect groups of them and the relationship
between block algebras and interior G-algebras under tensor product; ad-
ditionally, we have discussed the centralizer of the subalgebra consisting of
G-fixed elements in an interior G-algebra (see §4).

211



212 w. huang

1. Preliminaries

In this paper, F is always an algebraically closed field of characteristic
p, where p is a prime integer. We assume all groups are finite, all algebras
and modules are finitely dimensional ones. By a G-algebra (A, φ) we mean
a F -algebra A with a group homomorphism φ : G → Aut(A), where Aut(A)
denotes the group of F -algebra automorphisms of A, hence G acts naturally
on A by ga := φ(g)(a), a ∈ A. An interior G-algebra (A, ρ) is a F -algebra
A with a F -algebra homomorphism ρ : FG → A such that ρ(1FG) = 1A,
which becomes a G-algebra with the G-action defined by ga=ρ(g)aρ(g)−1 for
any a ∈ A, g ∈ G, and we also denote this G-algebra with (A, ρ); moreover,
it becomes a FG-module by extending linearly this G-action, we denote this
FG-module with GA. Sometimes we also simply say A is an interior G-algebra
instead of (A, ρ) whenever there exists no confusion; we do the same for G-
algebras.

For any H ≤ G, we always write AH for the subalgebra consisting of H-
fixed elements of G-algebra (A,φ); moreover, TrG

H(AH), also denoted by AG
H ,

means the relative trace ideal of AG, where TrG
H(·) is the well-known relative

trace functor mapping a in AH on
∑

g∈G/H(ga) (e.g. [4]). The same holds for
FG-modules (e.g. [3]).

An interior G-algebra (A, ρ) is called an epimorphic one if ρ is epimorphic,
and is called a local one (in [11], which is also called a primitive one) if AG

is a local algebra; in the latter case, we define the minimal subgroups H of
G such that 1A ∈ AG

H as the defect groups of A, which are p-subgroups of G
and unique in the sense of G-conjugation, hence we denote any one of them
with D(A). Particularly, every p-block algebra B(= FGb, where b is a central
primitive idempotent of FG.) is an epimorphic local interior G-algebra in a
canonical way.

Let V be a FG-module. For a p-subgroup P of G, the P -relative Brauer
map of V is the natural map BrV

P : V P → V (P ) := V P�
∑

Q�P V P
Q , where

V P
Q = TrP

Q(V Q) (e.g. [3]). For some subgroup H of G, we say V being
H-projective if V is a direct summand of IndG

HResG
HV , and then V (P ) = 0

unless P ≤G H ([3, Proposition 1.3]); moreover, if V is indecomposable, we
say the minimal subgroups H such that V is H-projective, which are mutually
conjugate p-subgroups in G, the vertices of V , and we denote any one of them
with V txG(V ) ([11, Theorem 18.3]).

Definition 1.1. Let (A, ρ) be an interior G-algebra, we call (A, ρ) belongs
to some block B(= FGb) of G if ρ(b) = 1A.
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Remark 1.2. In the case of local interior G-algebras, this definition is just
the one in [8]. It is easy to see that if (A, ρ) belongs to some block of G, it
belongs to a unique block, and every block algebra of group algebra FG be-
longs to itself, hence this definition is reasonable; moreover, this generalization
makes sense (see §4, Proposition 4.2).

Example 1.3. If M is a FG-module, then the endomorphism ring
E(M) := EndF (M) is an interior G-algebra by a natural way and hence
a G-algebra defined by gf=g · f · g−1 for all g ∈ G and f ∈ E(M). Obviously,
E(M) is a local interior G-algebra if and only if M is an indecomposable FG-
module, in this case E(M) belongs to a block B of G if and only if M belongs
to B, and by Higman’s criterion D(E(M)) = V txG(M) under G-conjugation.

2. (Outer) tensor G-algebra

(Ai, φi) is a Gi-algebra, i = 1, 2; in this paper, their (outer) tensor G1×G2-
algebra, which is denoted by (A1 ⊗ A2, φ1 ⊗ φ2), is defined by the following
way

(φ1 ⊗ φ2)(g1, g2) = φ1(g1)⊗ φ2(g2)

for any (g1, g2) ∈ G1×G2, where and in the sequal, ⊗ always means ⊗F , that
is, the tensor product of F -algebras or that of F -modules; more generally, we
define similarly the (outer) tensor product of modules over group algebras.
Obviously, the (outer) tensor algebra of interior Gi-algebra, i = 1, 2, is also
an interior G1 ×G2-algebra.

Lemma 2.1. Let i, j be idempotents in F -algebras A and B, respectively.
Then i ⊗ j is an idempotent in A ⊗ B; furthermore, i ⊗ j is primitive if and
only if i and j are primitive in A and B, respectively.

Proof. See [5, Corollary 3.3].

Lemma 2.2. Let (Ai, ρi) be an interior Gi-algebra and Bi a block of Gi,
where Gi is a finite group, i = 1, 2. Then (A1⊗A2, ρ1⊗ρ2) belongs to B1⊗B2

if and only if (Ai, ρi) belongs to Bi, i = 1, 2.

Proof. First of all, we recall that B1 ⊗ B2 is a block of F (G1 × G2) ∼=
FG1⊗FG2. Let Bi = FGibi, where bi is the block idempotent of Bi, i = 1, 2,
we have B1 ⊗B2 = (FG1 ⊗ FG2)(b1 ⊗ b2) with 1B1⊗B2 = b1 ⊗ b2.
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If (Ai, ρi) belongs to Bi, i = 1, 2, we obtain ρi(bi) = 1Ai , i = 1, 2, hence
(ρ1⊗ρ2)(b1⊗ b2) = ρ(b1)⊗ρ(b2) = 1A1⊗A2 , that is, (A1⊗A2, ρ1⊗ρ2) belongs
to B1 ⊗B2.

Conversely, Let (A1 ⊗A2, ρ1 ⊗ ρ2) belongs to B1 ⊗B2, that is,

(ρ1 ⊗ ρ2)(b1 ⊗ b2) = 1A1⊗A2 ,

hence ρ(b1)⊗ ρ(b2) = 1A1 ⊗ 1A2 . Let 1FGi = bi1 + bi2 + · · ·+ bi,ji , a finite sum
of block idempotents of FGi with bi1 = bi, i = 1, 2, we have

ρ(b1)⊗ ρ(b2) = 1A1 ⊗ 1A2 = ρ1(1FG1)⊗ ρ2(1FG2) =
j1∑

m=1

j2∑

n=1

ρ(b1m)⊗ ρ(b2n),

hence ρ(b1m)⊗ρ(b2n) = 0 for all m > 1 or n > 1, and hence ρ(b1m)⊗ρ(1FG2) =
0 for all m > 1. Since ρ(b1m) ⊗ a = (ρ(b1m) ⊗ a)(ρ(b1m) ⊗ ρ(1FG2)) for all
a ∈ A2, we obtain ρ(b1m)⊗ A2 = 0 for all m > 1, and thus ρ(b1) = 1A1 , that
is, (A1, ρ1) belongs to B1; similarly, (A2, ρ2) belongs to B2.

Theorem 2.3. Let (Ai, ρi) be a local interior Gi-algebra with a defect
group D(Ai), and block Bi(= FGibi) of Gi with a defect group Di, i = 1, 2.
Then (A1 ⊗ A2, ρ1 ⊗ ρ2), which is a local interior G1 × G2-algebra with a
defect group D(A1) × D(A2), belongs to B1 ⊗ B2 if and only if Ai belongs
to Bi, i = 1, 2. Additionally, if Ai is an epimorphic local interior Gi-algebra
belonging to Bi, i = 1, 2, there exists some simple F (G1×G2)-module V such
that

V txG1×G2(V ) ≤ D(A1 ⊗A2) ≤ D1 ×D2,

under conjugation in G1 × G2, and moreover, for any normal p-subgroup Pi

of Gi, i = 1, 2, we have P1 × P2 ≤ G1×G2D(A1 ⊗A2).

Proof. Since (Ai, ρi) is a local interior Gi-algebra with a defect group
D(Ai), i=1, 2, we know that (A1 ⊗ A2, ρ1 ⊗ ρ2) is a local interior G1 × G2-
algebra with a defect group D(A1)×D(A2) and vice versa, by [1, Lemma 2.1],
Lemma 2.1 and [9, Corollary 4.4]; hence by Lemma 2.2 we have completed
the first part of Theorem 2.3.

Let’s go on in the case of the additional assumptions. By [8, Lemma 2.8],
there are V1 belonging to Irr(FG1), that is, the set of all irreducible FG1-
modules, and V2 belonging to Irr(FG2) such that V txG1(V1) ≤G1 D(A1) ≤G1

D1 and V txG2(V2) ≤G2 D(A2) ≤G2 D2; furthermore, by [7, Theorem 9.14] we
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obtain V1 ⊗ V2 belongs to Irr(F (G1 × G2)) and by [10, Proposition 1.2] we
have

V txG1×G2(V1 ⊗ V2) = G1×G2V txG1(V1)× V txG2(V2).

Then

P1 × P2 ≤ V txG1×G2(V1 ⊗ V2) ≤G1×G2 D(A1 ⊗A2) ≤G1×G2 D1 ×D2,

since it is well known that vertices of any simple FG-module contain any
normal p-subgroup of G. Theorem 2.3 follows.

Theorem 2.4. Let (Ai, ρi) be a local interior Gi-algebra with a defect
group Di, i=1, 2. Then D1×D2 is the maximal of vertices of indecomposable
summands of G1×G2A1 ⊗A2, up to G1 ×G2-conjugation.

Proof. Let GiAi = Ai1⊕Ai2⊕ · · · ⊕Ai,ni be an indecomposable decompo-
sition of Ai as FGi-module, i = 1, 2. We have

G1×G2A1 ⊗A2 =
n1⊕

s=1

n2⊕
t=1

(A1s ⊗A2t)

be an indecomposable decomposition of A1 ⊗ A2 as F (G1 × G2)-module, by
[10, Proposition 1.1]. Hence

(G1×G2A1 ⊗A2)(D1 ×D2) =
n1⊕

s=1

n2⊕
t=1

(A1s ⊗A2t)(D1 ×D2)

'
n1⊕

s=1

n2⊕
t=1

A1s(D1)⊗A2t(D2),

by [1, Theorem 2.6]. Since

(G1×G2A1 ⊗A2)(D1 ×D2) = (A1 ⊗A2)(D1 ×D2) 6= 0

by Theorem 2.3 and [11, Corollary 18.6], there are A1,s0and A2,t0 such that
A1,s0(D1) ⊗ A2,t0(D2) 6= 0, for some s0 and t0; hence A1,s0(D1) 6= 0 and
A2,t0(D2) 6= 0. Then, by [3, Proposition 1.3], we have D1 ≤G1 V txG1(A1,s0)
and D2 ≤G2 V txG2(A2,t0). However, since A1 is D1-projective by [6, Lemma
2.9], we have A1,s is also D1-projective, that is, D1 ≥G1 V txG1(A1,s) for any
s, hence D1 =G1 V txG1(A1,s0). Similarly, D2 =G2 V txG2(A2,t0), and then

D1×D2 =G1×G2 V txG1(A1,s0)×V txG2(A2,t0) =G1×G2 V txG1×G2(A1,s0⊗A2,t0),

by [10, Proposition 1.2]. we have seen that, up to G1 × G2-conjugation,
D1 ×D2 is the maximal of vertices of indecomposable summands of A1 ⊗A2

as F (G1 ×G2)-module, by Krull-Schmidt Theorem.



216 w. huang

3. (Inner) tensor G-algebra

(A1, φ1) and (A2, φ2) are two G-algebras, in this paper, their (inner) tensor
G-algebra means a G-algebra (A1 ⊗A2, φ) with

φ(g) := φ1(g)⊗ φ2(g)

for any g ∈ G; similarly, we define the (inner) tensor product of FG-modules.
It is clear that the (inner) tensor G-algebra of two interior G-algebras remains
to be an interior G-algebra.

Remark 3.1. Obviously, the tensor product of G-algebras in [11] is just
the (inner) tensor G-algebra of G-algebras here; generally, not like the (outer)
tensor G-algebra, the (inner) tensor G-algebra of two local interior G-algebras
does not remain to be a local one, whereas the following Proposition 3.2 gives
us a surprise.

(A,φ) is a G/N -algebra, where N E G, the inflated G-algebra of (A,φ)
is a G-algebra (inf(A), inf(φ)), where inf(A) = A, (inf(φ))(g) = φ(gN) for
all g ∈ G. Obviously, if (A, ρ) is an interior G/N -algebra, (inf(A), inf(ρ))
is also an interior G-algebra, and moreover, if (A, ρ) is a local one, so is
(inf(A), inf(ρ)).

Proposition 3.2. Let G be a finite group with a normal subgroup N and
A be a G-algebra such that ResG

N (A) is a local N -algebra; C is a local G/N -
algebra. Then the (inner) tensor G-algebra A⊗ inf(C) is a local G-algebra.

Proof. Since (ResG
N (A))N is a local algebra, we have a decomposition

AN = F · 1A ⊕ J(AN )

as F -module, hence as FG-module since N E G; furthermore, since N acts
trivially on inf(C), we obtain

(
A⊗ inf(C)

)N =
(
A⊗ inf(C)

)N×N (as (outer) tensor G-algebra)

= AN ⊗ (
inf(C)

)N (by [1, Lemma 2.1])

= AN ⊗ inf(C)

= F · 1A ⊗ inf(C)⊕ J(AN )⊗ inf(C) (as FG-module)
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and J(AN ) ⊗ inf(C) is a nilpotent ideal of (A ⊗ inf(C))N . On the other
hand, since F · 1A is a G-subalgebra of A, it is easy to see that

f : F · 1A ⊗ inf(C) → inf(C)

is an isomorphism of G-algebras by the following way

f(t · 1A ⊗ c) = t · c
for any t ∈ F and any c ∈ C, hence

(
F · 1A ⊗ inf(C)

)G =
(
F · 1A ⊗ inf(C)

) ∩ (
A⊗ inf(C)

)G

is a local algebra. Then
(
A⊗ inf(C)

)G =
(
F · 1A ⊗ inf(C)

)G ⊕ (
J(AN )⊗ inf(C)

)G

has only one idempotent since
(
J(AN )⊗ inf(C)

)G =
(
J(AN )⊗ inf(C)

) ∩ (
A⊗ inf(C)

)G

is a nilpotent ideal in (A⊗ inf(C))G and (F ·1A⊗ inf(C))G is a local algebra,
that is, we have known that A⊗ inf(C) is a local G-algebra.

By Proposition 3.2 we see that for two F -algebras A and C, A ⊗ C is a
local F -algebra if and only if both A and C are.

Theorem 3.3. In the case of Proposition 3.2, set D is a defect group of
the local G-algebra A ⊗ inf(C), where D is some p-subgroup of G. Then
DN/N is a defect group of C as a G/N -algebra.

Proof. Since A ⊗ inf(C) is a local G-algebra with a defect group D by
Proposition 3.2, let 1A⊗inf(C) = TrG

D(d), where d ∈ (A⊗ inf(C))D, hence

TrDN
D (d) ∈ (

A⊗ inf(C)
)DN ⊆ (

A⊗ inf(C)
)N

.

Since
(
A⊗ inf(C)

)N = AN ⊗ inf(C) = F · 1A ⊗ inf(C)⊕ J(AN )⊗ inf(C),

we have TrDN
D (d) = 1A ⊗ i + j for some i ∈ inf(C) and j ∈ J(AN )⊗ inf(C);

moreover, since N E G and F ·1A⊗ inf(C) ' inf(C) as G-algebras, it is easy
to see that i ∈ inf(C)DN and j ∈ (A⊗ inf(C))DN . Then,

1A⊗inf(C) = TrG
D(d) = 1A ⊗ TrG

DN (i) + TrG
DN (j),
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where TrG
DN (j) ∈ J((A ⊗ inf(C))G) since j is a nilpotent element; hence

1A ⊗ TrG
DN (i) /∈ J((A ⊗ inf(C))G), and hence 1A ⊗ TrG

DN (i) is a unit in
(A⊗ inf(C))G since (A⊗ inf(C))G is a local algebra. Then TrG

DN (i) is a unit
in (inf(C))G, that is, Tr

G/N
DN/N (i) = TrG

DN (i) is a unit in CG/N , and it yields
that the local G/N -algebra C is DN/N -projective; therefore DN/N ≥ H/N ,
where DN ≥ H ≥ N for some subgroup H of G such that H/N is a defect
group of C as a G/N -algebra; we have that inf(C) is H-projective, and
A ⊗ inf(C) is also H-projective, by [11, Lemma 14.3]. It follows that H
contains a defect group of A⊗inf(C), i.e. a conjugation of D, hence H = DN
and H/N = DN/N . we are done.

Corollary 3.4. Let G be a finite group with a normal subgroup N and
A be a G-algebra such that ResG

N (A) is a local N -algebra. Then, if D is a
defect group of A, DN/N is a Sylow p-subgroup of G/N .

Proof. In the case of Theorem 3.3, Let C = F , the trivial G/N -algebra.
We have DN/N is a defect group of F as a trivial G/N -algebra, hence DN/N
is a Sylow p-subgroup of G/N .

Remark 3.5. In the case of Example 1.3, Let M1 be an indecomposable
FG-module such that ResG

N (M1) remains to be indecomposable, where N is
a normal subgroup of G, and let M2 be an indecomposable F (G/N)-module.
Then ResG

NE(M1) is a local interior N -algebra and E(M2) is a local interior
G/N -algebra. We see that E(M1 ⊗ inf(M2)) remains to be a local interior
G-algebra by Proposition 3.2, that is, M1 ⊗ inf(M2) is an indecomposable
FG-module. Moreover, if D is a vertex of M1 ⊗ inf(M2) as FG-module,
that is, a defect group of E(M1 ⊗ inf(M2)), DN/N is a vertex of M2, by
Theorem 3.3; especially, let M2 = F , the trivial F (G/N)-module, we have
V tx(M1)N/N is a Sylow p-subgroup of G/N , by Corollary 3.4. Hence, we
have generalized [10, Proposition 2.1, Proposition 2.2].

4. Centralizer of the G-fixed elements subalgebra

(A, ρ) is an interior G-algebra, the centralizer CA(AG) of AG in A is a
subalgebra of A, with the same identity 1A. It is easy to see that ρ(FG) ⊆
CA(AG), hence we have an interior G-subalgebra (CA(AG), ρ) of (A, ρ) by
inheriting the structure of (A, ρ), with the following property

(
CA(AG)

)G = Z(AG) = Z
(
CA(AG)

)
.
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In this paper, we say that (A, ρ) is connected if (CA(AG), ρ) is a local interior
G-algebra, or equivalently, if Z(AG) is a local algebra; obviously, every local
interior G-algebra is connected and if we restrict to the epimorphic interior
G-algebras, the connected one is just the local one.

Example 4.1. Under the notation of Example 1.3, let M be a FG-module,
which can be regarded as an E(M)-module. We have

ε(M) := EndEndFG(M)(M) = CE(M)

(
E(M)G

)
,

which is an interior G-subalgebra of E(M). In [2], L. Barker calls M a con-
nected module if ε(M) is a local interior G-algebra, that is, E(M) is a con-
nected interior G-algebra. Obviously every indecomposable FG-module is
connected.

Proposition 4.2. Every connected interior G-algebra (A, ρ) belongs to
some block B of G. In this case, we have D(CA(AG)) ≤G D(B).

Proof. Let Bi = FGbi, i = 1, 2, . . . , n, be block algebras of G such that∑n
i=1 bi = 1FG, n ≥ 1. It is easy to see that ρ(bi) ∈ CA(AG) ∩ AG = Z(AG),

and since Z(AG) has only one idempotent 1FG, there is only one bi0 such that
ρ(bi0) = 1FG for some 1 ≤ i0 ≤ n and ρ(bi) = 0 for any other i, that is, (A, ρ)
belongs to bi0 . Since ρ(Bi0) ⊆ CA(AG), we have D(CA(AG)) ≤G D(ρ(Bi0))
by [1, Proposition 4.2], and since (ρ(Bi0), ρ) is an epimorphic local interior
G-algebra belonging to Bi0 , we have D(ρ(Bi0)) ≤G D(Bi0) by [8, Lemma 2.8],
hence D(CA(AG)) ≤G D(Bi0); we are done.

Corollary 4.3. Let (Ai, ρi) be a connected interior Gi-algebra and be-
long to the block algebra Bi of Gi, i = 1, 2. Then the (outer) tensor G1×G2-
algebra (A1⊗A2, ρ1⊗ρ2) is also a connected interior G1×G2-algebra belonging
to B1 ⊗B2. Moreover,

D
(
CA1⊗A2

(
(A1 ⊗A2)G1×G2

))
=G1×G2 D

(
CA1(A

G1
1 )

)×D
(
CA2(A

G2
2 )

)
.

Proof. Since

CA1⊗A2

(
(A1 ⊗A2)G1×G2

)
= CA1⊗A2(A

G1
1 ⊗AG2

2 )

= CA1(A
G1
1 )⊗ CA2(A

G2
2 ),
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we have

Z
(
CA1⊗A2

(
(A1 ⊗A2)G1×G2

))
= Z

(
CA1(A

G1
1 )⊗ CA2(A

G2
2 )

)

= Z
(
CA1(A

G1
1 )

)⊗ Z
(
CA2(A

G2
2 )

)
,

and since Z(CA1(A
G1
1 )) and Z(CA2(A

G2
2 )) are local algebras,

Z
(
CA1⊗A2

(
(A1 ⊗A2)G1×G2

))

is also a local algebra, by Lemma 2.1. Hence (A1⊗A2, ρ1⊗ρ2) is a connected
interior G1×G2-algebra belonging to some block of G1×G2 by Proposition 4.2,
and moreover, it is clear that (A1 ⊗ A2, ρ1 ⊗ ρ2) belongs to B1 ⊗ B2, by
Lemma 2.2. Then

D
(
CA1⊗A2

(
(A1 ⊗A2)G1×G2

))
= D

(
CA1(A

G1
1 )⊗ CA2(A

G2
2 )

)

=G1×G2 D
(
CA1(A

G1
1 )

)×D
(
CA2(A

G2
2 )

)
,

by Theorem 2.3.
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