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0. INTRODUCTION

G-algebra is a very important working object in the modern representation
theory of finite groups, on which Puig set up his well-known theory of pointed
groups, especially, many working objects in the representation theory of finite
groups can be regarded as G-algebras, or more explicitly, as interior G-algebras

(e.g. [11]).
Tensor product is a long story in mathematics, by which authors have
discovered so many interesting results in many branches of mathematics.

In [10], Kilshammer obtained some properties on the tensor product of
some indecomposable modules, in [5] Harris generalized [10, Proposition 2.1]
to the lattices over the complete discrete valuation ring. In [1], Aglhamdi
and Khammash studied the tensor module of G-algebras and have achieved
some important results on tensor product of Brauer homomorphism; more-
over, Khammash analyzed the points, pointed groups and their defect groups
in tensor algebra of G-algebras in [9].

In this paper, we devote to studying the (outer) tensor algebra of G-
algebras (see §2) and the (inner) tensor algebra of G-algebras (see §3), es-
pecially, we concentrate on the defect groups of them and the relationship
between block algebras and interior G-algebras under tensor product; ad-
ditionally, we have discussed the centralizer of the subalgebra consisting of
G-fixed elements in an interior G-algebra (see §4).
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1. PRELIMINARIES

In this paper, F' is always an algebraically closed field of characteristic
p, where p is a prime integer. We assume all groups are finite, all algebras
and modules are finitely dimensional ones. By a G-algebra (A, ¢) we mean
a F-algebra A with a group homomorphism ¢ : G — Aut(A), where Aut(A)
denotes the group of F-algebra automorphisms of A, hence G acts naturally
on A by 9a := ¢(g)(a), a € A. An interior G-algebra (A, p) is a F-algebra
A with a F-algebra homomorphism p : FG — A such that p(lpg) = 14,
which becomes a G-algebra with the G-action defined by 9a=p(g)ap(g)~! for
any a € A, g € G, and we also denote this G-algebra with (A, p); moreover,
it becomes a F'G-module by extending linearly this G-action, we denote this
FG-module with ¢ A. Sometimes we also simply say A is an interior G-algebra
instead of (A, p) whenever there exists no confusion; we do the same for G-
algebras.

For any H < G, we always write A for the subalgebra consisting of H-
fixed elements of G-algebra (A, ¢); moreover, Trfl(AH ), also denoted by A%,
means the relative trace ideal of A%, where Tr%(-) is the well-known relative
trace functor mapping a in A” on > gec/u(?a) (e.g. [4]). The same holds for
FG-modules (e.g. [3]).

An interior G-algebra (A4, p) is called an epimorphic one if p is epimorphic,
and is called a local one (in [11], which is also called a primitive one) if A®
is a local algebra; in the latter case, we define the minimal subgroups H of
G such that 14 € Ag as the defect groups of A, which are p-subgroups of G
and unique in the sense of G-conjugation, hence we denote any one of them
with D(A). Particularly, every p-block algebra B(= F'Gb, where b is a central
primitive idempotent of F'G.) is an epimorphic local interior G-algebra in a
canonical way.

Let V be a FG-module. For a p-subgroup P of G, the P-relative Brauer
map of V is the natural map Brg VP - v(pP)=VFP )/ ZQ<P Véj, where
Vég = T’I“S(VQ) (e.g. [3]). For some subgroup H of G, We+say V' being
H-projective if V' is a direct summand of Ind%Res%V, and then V(P) =0
unless P < H ([3, Proposition 1.3]); moreover, if V is indecomposable, we
say the minimal subgroups H such that V' is H-projective, which are mutually
conjugate p-subgroups in G, the vertices of V| and we denote any one of them
with Vtzg(V) ([11, Theorem 18.3)).

DEFINITION 1.1. Let (A4, p) be an interior G-algebra, we call (A4, p) belongs
to some block B(= FGb) of G if p(b) = 14.
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Remark 1.2. In the case of local interior G-algebras, this definition is just
the one in [8]. It is easy to see that if (A, p) belongs to some block of G, it
belongs to a unique block, and every block algebra of group algebra FG be-
longs to itself, hence this definition is reasonable; moreover, this generalization
makes sense (see §4, Proposition 4.2).

ExaMmpPLE 1.3. If M is a FG-module, then the endomorphism ring
E(M) := Endp(M) is an interior G-algebra by a natural way and hence
a G-algebra defined by 9f=g- f-g~! forall g € G and f € E(M). Obviously,
E(M) is a local interior G-algebra if and only if M is an indecomposable F'G-
module, in this case F(M) belongs to a block B of G if and only if M belongs
to B, and by Higman’s criterion D(E(M)) = Vtxg(M) under G-conjugation.

2. (OUTER) TENSOR G-ALGEBRA

(A;, ¢i) is a Gy-algebra, i = 1,2; in this paper, their (outer) tensor G1 x Ga-
algebra, which is denoted by (41 ® Az, ¢1 ® ¢2), is defined by the following
way

(61 ® $2)(91,92) = d1(91) ® P2(g2)

for any (g1, 92) € G1 X G2, where and in the sequal, ® always means ®p, that
is, the tensor product of F-algebras or that of F-modules; more generally, we
define similarly the (outer) tensor product of modules over group algebras.
Obviously, the (outer) tensor algebra of interior G;-algebra, i = 1,2, is also
an interior G1 x G9-algebra.

LEMMA 2.1. Let i, j be idempotents in F-algebras A and B, respectively.
Then i ® j is an idempotent in A ® B; furthermore, i ® j is primitive if and
only if i and j are primitive in A and B, respectively.

Proof. See [5, Corollary 3.3]. 1

LEMMA 2.2. Let (A;, p;) be an interior G;-algebra and B; a block of G,
where G is a finite group, i = 1,2. Then (A1 ® Ag, p1 ® p2) belongs to By ® By
if and only if (A;, p;) belongs to B;, i = 1,2.

Proof. First of all, we recall that By ® Bs is a block of F(G1 x G3) =
FG1® FGs. Let B; = FG;b;, where b; is the block idempotent of B;, ¢t =1, 2,
we have By ® By = (FGl & FGQ)(bl & bz) with 131®B2 = b; ® bo.
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If (A, pi) belongs to By, i = 1,2, we obtain p;(b;) = 14,, ¢ = 1,2, hence
(p1® p2)(b1 ®b2) = p(b1) ® p(b2) = 14,84,, that is, (A; ® Az, p1 ® p2) belongs
to B1 ® Bs.

Conversely, Let (A1 ® Az, p1 ® p2) belongs to By ® Bs, that is,

(p1 @ p2)(b1 @ b2) = 14,04+

hence p(bl) ® p(bg) =14, ®14,. Let lpg, = bii+bio+---+ bm’i, a finite sum
of block idempotents of F'G; with b;; = b;, i = 1,2, we have

J1 J2
p(b1) @ p(ba) = 1a, @ 1a, = p1(1rG,) @ pa(lra,) = D Y plbim) © p(b2n),

m=1n=1

hence p(b1m)®@p(bay) = 0 for all m > 1 orn > 1, and hence p(bim)@p(1ra,) =
0 for all m > 1. Since p(bim) ® a = (p(bim) ® a)(p(bim) ® p(lrg,)) for all
a € A, we obtain p(bi,;,) ® Az = 0 for all m > 1, and thus p(b;) = 14,, that
is, (A1, p1) belongs to By; similarly, (As, p2) belongs to Bs. |

THEOREM 2.3. Let (A;, p;) be a local interior G;-algebra with a defect
group D(4;), and block B;(= FG;b;) of G; with a defect group D;, i = 1,2.
Then (A1 ® Ag,p1 ® p2), which is a local interior G x Ga-algebra with a
defect group D(A1) x D(As), belongs to By ® By if and only if A; belongs
to B;, i = 1,2. Additionally, if A; is an epimorphic local interior G;-algebra
belonging to B;, i = 1,2, there exists some simple F(G1 x G2)-module V' such
that

Vtrg, xa, (V) < D(A1 ® Az) < Dy x Do,

under conjugation in Gy X G2, and moreover, for any normal p-subgroup P;
of G, i = 1,2, we have P| X P < g, xq,D(41 ® A2).

Proof. Since (A;,p;) is a local interior G;-algebra with a defect group
D(4;), i=1, 2, we know that (A; ® Az, p1 ® p2) is a local interior G; x Ga-
algebra with a defect group D(A;) x D(A3) and vice versa, by [1, Lemma 2.1],
Lemma 2.1 and [9, Corollary 4.4]; hence by Lemma 2.2 we have completed
the first part of Theorem 2.3.

Let’s go on in the case of the additional assumptions. By [8, Lemma 2.8],
there are Vj belonging to Irr(FG1), that is, the set of all irreducible FG1-
modules, and V3 belonging to Irr(FG2) such that Vtzg, (Vi) <q, D(41) <g,
Dy and Vitzg,(V2) <qg, D(A2) <@, D2; furthermore, by [7, Theorem 9.14] we
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obtain Vi ® V4 belongs to Irr(F(G1 x G3)) and by [10, Proposition 1.2] we
have
Vt$G1X02 (V1 ® VQ) = GlXGQVthl(Vi) X Vthz(‘/Q).

Then
Py x Py <Vtxg,xa,(Vi ® Va) <gyxa, D(A1 ® A2) <gyxG, D1 X Do,

since it is well known that vertices of any simple F'G-module contain any
normal p-subgroup of G. Theorem 2.3 follows. 1

THEOREM 2.4. Let (Aj;, pi) be a local interior Gj-algebra with a defect
group D;, i=1, 2. Then D1 x D4 is the maximal of vertices of indecomposable
summands of ¢, xG, A1 ® A2, up to G x Ga-conjugation.

Proof. Let ¢;A; = Aijt @ Aip @ -+ - ® A; 5, be an indecomposable decompo-
sition of A; as F'G;-module, i = 1,2. We have

ny  n2

G1><G2A1 & AQ = @ @ (Als ® A2t)
s=1 t=1
be an indecomposable decomposition of A; ® Az as F(G x G2)-module, by
[10, Proposition 1.1]. Hence

ni ng

(G1xGo A1 ® A2)(Dy x Do) = (B € (A1s ® Az) (D1 x Dy)
s=1 t=1
ni no

~ EB @ A15(D1) @ A (Do),

s=1 t=1
by [1, Theorem 2.6]. Since

(G1xGy A1 @ A2)(D1 x D) = (A1 ® A2)(D1 x Da) # 0

by Theorem 2.3 and [11, Corollary 18.6], there are A; syand Asy, such that
A1,50(D1) @ Az4,(D2) # 0, for some sg and tp; hence A;4,(D1) # 0 and
As4,(D2) # 0. Then, by [3, Proposition 1.3], we have D; <g, Vtzg, (A1)
and Dy <g, Vtrg,(Asy,). However, since A; is D;-projective by [6, Lemma
2.9], we have A;, is also Di-projective, that is, D1 >g, Vitzg, (A1) for any
s, hence Dy =¢, Vtzg, (A1s,). Similarly, Dy =g, Vtzg,(A24,), and then

D].XD2 =G1xG2 Vthl (Al,SO)XVt:EGQ (AQ,to) =G1xGo Vthl xGa (A1,50®A2,t0)7

by [10, Proposition 1.2]. we have seen that, up to G; x Ga-conjugation,
Dy x Dy is the maximal of vertices of indecomposable summands of A1 ® As
as F'(G1 x G2)-module, by Krull-Schmidt Theorem. |
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3. (INNER) TENSOR G-ALGEBRA

(A1, ¢1) and (A, ¢2) are two G-algebras, in this paper, their (inner) tensor
G-algebra means a G-algebra (4; ® Ag, ¢) with

?(g) = #1(9) ® P2(g)

for any g € G; similarly, we define the (inner) tensor product of F'G-modules.
It is clear that the (inner) tensor G-algebra of two interior G-algebras remains
to be an interior G-algebra.

Remark 3.1. Obviously, the tensor product of G-algebras in [11] is just
the (inner) tensor G-algebra of G-algebras here; generally, not like the (outer)
tensor G-algebra, the (inner) tensor G-algebra of two local interior G-algebras
does not remain to be a local one, whereas the following Proposition 3.2 gives
us a surprise.

(A, ¢) is a G/N-algebra, where N < @G, the inflated G-algebra of (A, ¢)
is a G-algebra (inf(A),inf(¢)), where inf(A) = A, (inf(4))(g) = ¢(gN) for
all g € G. Obviously, if (A, p) is an interior G/N-algebra, (inf(A),inf(p))
is also an interior G-algebra, and moreover, if (A, p) is a local one, so is

(inf(A),inf(p)).
PROPOSITION 3.2. Let G be a finite group with a normal subgroup N and

A be a G-algebra such that Res$/(A) is a local N-algebra; C' is a local G/N-
algebra. Then the (inner) tensor G-algebra A ® inf(C) is a local G-algebra.

Proof. Since (Res§(A))Y is a local algebra, we have a decomposition
AN = F. 149 J(AY)

as F-module, hence as F'G-module since N < G; furthermore, since N acts
trivially on inf(C'), we obtain

(A® inf(C’))N =(4® z'nf(C))NXN (as (outer) tensor G-algebra)
=AY ® (mf(C))N (by [1, Lemma 2.1])
= AN @ inf(C)

=F-1,®inf(C)® JAN) @ inf(C) (as FG-module)
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and J(AN) ® inf(C) is a nilpotent ideal of (A ® inf(C))N. On the other
hand, since F - 14 is a G-subalgebra of A, it is easy to see that

[:F-1a®inf(C) —inf(C)
is an isomorphism of G-algebras by the following way
flt-1la@c)=t-c
for any t € F' and any ¢ € C, hence
(F-140inf(C)° = (F-1a®inf(C)) N (A®inf(C))"
is a local algebra. Then

(A2 inf(C)% = (F-14@inf(C) & (J(AY) @ inf(C))¢

has only one idempotent since
(J(AN) @ inf(C))" = (J(AN) @ inf(C)) N (A® inf(C))©

is a nilpotent ideal in (A®inf(C))¢ and (F-14®inf(C))Y is a local algebra,
that is, we have known that A ® inf(C) is a local G-algebra. §i

By Proposition 3.2 we see that for two F-algebras A and C', A® C is a
local F-algebra if and only if both A and C' are.

THEOREM 3.3. In the case of Proposition 3.2, set D is a defect group of
the local G-algebra A ® inf(C), where D is some p-subgroup of G. Then
DN/N is a defect group of C' as a G /N-algebra.

Proof. Since A ® inf(C) is a local G-algebra with a defect group D by
Proposition 3.2, let 14ginf(c) = Tr%(d), where d € (A® inf(C))P, hence

TrEN(d) € (A inf(C))"" C (A inf(C)".
Since
(Ao inf(C))" = AN @ inf(C) = F- 14 ®inf(C) & J(AN) ® inf(C),

we have TrBN(d) = 14 ®i+ j for some i € inf(C) and j € J(AN) @ inf(C);
moreover, since N < G and F-14Qinf(C) ~ inf(C) as G-algebras, it is easy
to see that i € inf(C)PN and j € (A ® inf(C))PN. Then,

Laging(c) = Tri(d) =14 @ Trin (i) + Trin(4),
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where Tr$%\(j) € J((A ® inf(C))%) since j is a nilpotent element; hence
1a @ TrGy() ¢ J((A®inf(C))Y), and hence 14 ® Tr$ (i) is a unit in
(A®inf(0))Y since (A®inf(C))Y is a local algebra. Then TG (i) is a unit
in (inf(C))%, that is, Trgé\][\;N(i) = TrG (i) is a unit in C9/N | and it yields
that the local G/N-algebra C' is DN/N-projective; therefore DN/N > H/N,
where DN > H > N for some subgroup H of G such that H/N is a defect
group of C' as a G/N-algebra; we have that inf(C) is H-projective, and
A ®inf(C) is also H-projective, by [11, Lemma 14.3]. It follows that H
contains a defect group of A®inf(C), i.e. a conjugation of D, hence H = DN
and H/N = DN/N. we are done. I

COROLLARY 3.4. Let G be a finite group with a normal subgroup N and
A be a G-algebra such that Res$;(A) is a local N-algebra. Then, if D is a
defect group of A, DN/N is a Sylow p-subgroup of G/N.

Proof. In the case of Theorem 3.3, Let C' = F, the trivial G/N-algebra.
We have DN/N is a defect group of F' as a trivial G/N-algebra, hence DN/N
is a Sylow p-subgroup of G/N. |

Remark 3.5. In the case of Example 1.3, Let M7 be an indecomposable
FG-module such that Res§ (M) remains to be indecomposable, where N is
a normal subgroup of G, and let Ms be an indecomposable F/(G/N)-module.
Then Res§ E(M) is a local interior N-algebra and E(Ms) is a local interior
G /N-algebra. We see that E(M; ® inf(Msz)) remains to be a local interior
G-algebra by Proposition 3.2, that is, M ® inf(Ms) is an indecomposable
FG-module. Moreover, if D is a vertex of M; ® inf(Ms) as FG-module,
that is, a defect group of E(M; ® inf(Mz)), DN/N is a vertex of Ma, by
Theorem 3.3; especially, let My = F, the trivial F(G/N)-module, we have
Vitx(M;)N/N is a Sylow p-subgroup of G/N, by Corollary 3.4. Hence, we
have generalized [10, Proposition 2.1, Proposition 2.2].

4. CENTRALIZER OF THE G-FIXED ELEMENTS SUBALGEBRA

(A, p) is an interior G-algebra, the centralizer C'4(A%) of A% in A is a
subalgebra of A, with the same identity 14. It is easy to see that p(F'G) C
C(A%), hence we have an interior G-subalgebra (C4(A%), p) of (4, p) by
inheriting the structure of (A, p), with the following property

(Ca(A9)) Y = 2(A%) = Z(Ca(A%)).
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In this paper, we say that (4, p) is connected if (C4(A%), p) is a local interior
G-algebra, or equivalently, if Z(A®) is a local algebra; obviously, every local
interior G-algebra is connected and if we restrict to the epimorphic interior
G-algebras, the connected one is just the local one.

EXAMPLE 4.1. Under the notation of Example 1.3, let M be a FG-module,
which can be regarded as an E(M)-module. We have

(M) := Endpnape (M) = Cpan (B(M)Y),

which is an interior G-subalgebra of E(M). In [2], L. Barker calls M a con-
nected module if €(M) is a local interior G-algebra, that is, F(M) is a con-
nected interior G-algebra. Obviously every indecomposable F'G-module is
connected.

PROPOSITION 4.2. Every connected interior G-algebra (A, p) belongs to
some block B of G. In this case, we have D(C4(A%)) <¢ D(B).

Proof. Let B; = FGb;, i = 1,2,...,n, be block algebras of G such that
S b =1pg, n > 1. Tt is easy to see that p(b;) € Ca(AY) N AY = Z(AY),
and since Z(A%) has only one idempotent 1p¢, there is only one b;, such that
p(bi,) = 1pg for some 1 <ip < n and p(b;) = 0 for any other 7, that is, (4, p)
belongs to b;,. Since p(B;,) € Ca(AY), we have D(C4(A%)) <g D(p(By,))
by [1, Proposition 4.2], and since (p(B;,),p) is an epimorphic local interior
G-algebra belonging to B;,, we have D(p(B;,)) <¢ D(B;,) by [8, Lemma 2.8],
hence D(C4(A%)) <¢ D(B,); we are done. |

COROLLARY 4.3. Let (A;, p;) be a connected interior G;-algebra and be-
long to the block algebra B; of G;, i = 1,2. Then the (outer) tensor G x Ga-
algebra (A1 ® Ay, p1®p2) is also a connected interior Gy x Ga-algebra belonging
to By ® Bs. Moreover,

D<CA1®A2 ((Al ® A2)01XG2)) —=G1xG2 D<CA1 (AlGl)) X D(CAz (A§2))
Proof. Since

Coaraz (A1 ® Ag)T792) = Caypn, (AT @ AT?)
= CAl (Agl) ® CA2 (A§2)7
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we have
Z(Cayoa, (A1 ® Ag)C1292)) = Z(C, (AT") ® Ca,y (AS?))
= Z(Cay (A7) © Z(Cay (457)),
and since Z(CAI(A?l)) and Z(Ca, (A§2)) are local algebras,
Z(Cayoa, (A1 ® Ag)917C2))

is also a local algebra, by Lemma 2.1. Hence (A; ® Ag, p1 ® p2) is a connected
interior GG X Gio-algebra belonging to some block of G x G by Proposition 4.2,
and moreover, it is clear that (41 ® Az, p1 ® p2) belongs to By ® Bs, by
Lemma 2.2. Then

D(CA1®A2 ((Al ® A2)G1XGQ)) = D(CA1 (Agl) ® CA2 (Agz))
—G1xG2 D(CAI (AlGl)) X D(CAQ (A§2))7
by Theorem 2.3. |1
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