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0. INTRODUCTION

A linear semibasic tangent valued p-form on a vector bundle £ — M is a
section ¢ : B — APT*M @ T'E such that ¢(Xi,..., X)) is a linear vector field
on E for any vector fields Xi,..., X, on M. (We recall that a vector field
X : E — TFE on a vector bundle p : E — M is linear if it is a vector bundle
map between vector bundles p: £ — M and Tp : TE — T M. Equivalently,
the flow FaptX is formed by vector bundle (local) isomorphisms.)

A very important example of a semibasic linear tangent valued 1-form is
a linear general connection I' on a vector bundle F — M. (We recall that
a general linear connection on a vector bundle £ — M is a semibasic linear
tangent valued 1-formI' : E — T*M®TFE on E — M such that I'(X) projects
onto X for any vector field X on M, [3].) Connections play important roles in
differential geometry, field theories of mathematical physics, and differential
equations, [3], [2], [6].

Let A be a Weil algebra and T4 : M f — FM be the corresponding Weil
functors on the category M f of all manifolds and maps. Let £ — M be a
vector bundle. Then TAE — TAM is a vector bundle, too. Restricting the
well know facts of lifting of tangent values forms on manifolds to Weil bundles,
we obtain.

ProPOSITION A. ([1]) For any linear semibasic tangent valued p-form
p: E— APT*M @ TFE there exists an unique linear semibasic tangent valued
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p-form TAp : TAE — NPT*TAM @ TTAE on TAE — TAM such that
T4(af(a1) o TAX1,...,af(ay) 0 TAX,)

(%)
=af(ar---ap) OTA(SO(Xl""’Xp))

for any vector fields X1, ..., X, on M and any a1, ...,a, € A, where we denote
the flow lift of a field Z on N to TAN by T4Z and where af(a) : TTAN —
TTAN is the canonical affinor on TAN corresponding to a € A.

The Frolicher-Nijenhuis bracket [[p,1]] of linear semibasic tangent valued
p- and ¢- forms on £ — M is again a linear semibasic tangent valued (p + q)-
form on £ — M.

ProprosITION B. ([1]) We have

(%) (T4, T49] = T4([lp, 1)

for any linear semibasic tangent valued p- and g-forms ¢ and ¢ on E — M.

The gauge bundle functor T4 : VB — FM (on the category VB of all
vector bundles and vector bundle maps) obtained from T4 : Mf — FM
is an example of product preserving gauge bundle functors F' : VB — FM.
In [5], for any Weil algebra A and any A-module V' with dimg (V) < oo we
constructed a product preserving gauge bundle functor T4V : VB — FM,
and we proved.

ProprosITION C. ([5]) Any product preserving gauge bundle functor F :
VB — FM is isomorphic to TV for some (A, V) in question.

In [5], we also observed that TAE = TAVE for V = A, and that T4Vp :
TAVE — TAYM = TAM (M is treated as the zero vector bundle over M)
is a vector bundle (even A-module bundle) for any vector bundle p: E — M.
Thus we have the following natural problems.

PROBLEM 1. For a product preserving gauge bundle functor F' : VB —
FM to construct canonically a linear semibasic tangent valued p-form F :
FE - NPT*FM Q@ TFE on Fp: FE — FM from a linear semibasic tangent
valued p-form ¢ : E — APT*M ® TE on a vector bundle p : E — M such
that a formula similar to (x) holds.
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PROBLEM 2. For a product preserving gauge bundle functor F' : VB —
FM to prove a formula similar to (xx).

The purpose of the present paper is to solve the above problems for all
fiber product preserving gauge bundle functors F' : VB — FM. We may of
course assume F' = TV, Given a € A we have a canonical affinor af(a) :
TTAVE — TTAVE on T4V E. Given a linear vector field Z on E its flow
ExptZ is formed by (local) vector bundle isomorphisms and we have the flow

prolongation 74V Z = %lt:O(TA’V(ExptZ)) of Z to T*V E. We prove

THEOREM A. Given a linear semibasic tangent valued p-form ¢ : £ —
ANPT*M @ TE on a vector bundle E — M there is an unique linear semibasic
tangent valued p-form T4V ¢ : TAVE — APT*TAM @ TTV E on the vector
bundle T4V E — TAM satisfying

TA’VSO(af(a) oTAXy,...,af(cy) o ’Z'AXp)
=af(c1--¢p) o T4 (p(X,..., XP))
for any vector fields X1,...,X, on M and any ci,...,c, € A.

In the proof of Theorem A, the linear semibasic p-form 74V ¢ will be
explicitly constructed. Next, for the Frolicher-Nijenhuis bracket we prove.

THEOREM B. We have

(T4 o, TAVY] = TV ([, ¢]))

for any linear semibasic tangent valued p- and q- forms ¢ and ¢ on E — M.

In the last section we apply the above results to linear general connections
on vector bundles.
All manifolds and maps are assumed to be of class C'*.

1. WEIL BUNDLES

Let A be a Weil algebra, see [3]. Given a manifold M we have the Weil
bundle
T4M = | ) Hom(C* (M), A)
zeM
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over M corresponding to A, where Hom(CZ°(M), A) is the set of all algebra
homomorphisms ¢ from the (unital) algebra C3°(M) = {germ.(g)| g : M —
R} into A. Given amap f : M — N we have the induced (via pull-back) map
TAf : TAM — TAN. The correspondence T4 : Mf — FM is a product
preserving bundle functor on the category M f of all manifolds and maps, [3].

It is well-known that any product preserving bundle functor F' : Mf —
F M is isomorphic to T4 for some Weil algebra A, [3].

2. GENERALIZED WEIL BUNDLES

Let A be a Weil algebra and V' be an A-module with dimg (V) < co. In

[5], similarly to Weil bundles, given a vector bundle E = (E % M) we defined
an A-module bundle

TAYE = {(p,9)| ¢ € Hom(CX(M), A), 1 € Homy,(C2HH(E), V), 2 € M}

over TAM, where 111’0771‘;,(6’2’0’]01'(E)7 V) is the A-module of all module homo-
morphisms 1 over ¢ from the C2°(M)-module > (E) = {germ,(h) | h :
E — R is fibre linear} into V. Given another vector bundle G = (G % N)
and a vector bundle homomorphism f : E — G over f : M — N we
have the induced A-module bundle map T4V f : TAVE — TAVG over
TAf:TAM — TAN by
T f(p,0) = (po 10 f2),

(p,v) € T2V E, 2 € M, where f7: C%, (N) — C2*(M) and f2 : C73"(G) —
[ Z(E) are given by the pull-back with respect to f and f. The correspon-
dence T4V : VB — FM is a product preserving gauge bundle functor, see [5]
(see also [4] for examples of modules over Weil algebras).

In [5], we proved that any product preserving gauge bundle functor
F : VB — FM is isomorphic to T4V for some (A, V) in question.

3. LOCAL DESCRIPTION OF GENERALIZED WEIL BUNDLES

A local vector bundle trivialization (x!,... 2™, y', ...,y") : E|JU=R™ x

R"™ on F induces a fiber bundle trivialization

(@ .. ™ gt g TAVE|U=A™ x Vv
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bﬁilifi(so,w) = p(germ.(a')) € A, F(p,¥) = ¥(germ:(y?)) € V, (¢, ) €
TAVE, zeU,i=1,...,m,j=1,...,n.

Let f: F — G be a vector bundle map. If in some vector bundle coordi-
nates

(1) flz,y) = (cp(x)a (Zi/’f(x)yj)izl)

r € R™, y = (y/) € R™, then in the induced coordinates we have

(2) T f(a,w) = (T4¢(a), (Y T4vf (@)}, ).

Jj=1

ac A" w=(wl) e Vn

4. THE AFFINORS af(c)

Let ¢ € A. We have an affinor af(c) : T(A™ x V") — T(A™ x V") on
A™ x V™ given by

(3) af(c)((a, v), (b, w)) = ((a,v), (cb, cw))

for ((a,v), (b,w)) € (A™ X V™) x (A" x V™) =T(A™ x V").

LEMMA 1. We have
TTAV foaf(c) =af(c) o TTHV f

for any vector bundle map f : R"™ x R — R? x RP.

Proof. The proof is standard. We propose to use (2).

Thus according to the general theory of [3], for any vector bundle E — M
we have a canonical affinor af(c) on T4V E with the form (3) in every vector
bundle coordinates.
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5. LINEAR SEMIBASIC TANGENT VALUED p-FORMS

Let E — M be a vector bundle. A linear semibasic tangent valued p-form
on E — M is a section ¢ : E — APT*M ® TE such that o(Xi,...,X,) is a
linear vector field on F for any vector fields X1,..., X, on M. Thus a linear
semibasic tangent valued p-form ¢ on the trivial vector bundle R™ x R” over
R™ has the form

m n

i 0 koo oq 0
g P2 P et D B s

i=1 Gk=1

for some unique p-forms ¢, cp;? :TR™ xgm -+ xgpm TR™ — R on R™, where
b, .. 2™yt ..., y" are the usual vector bundle coordinates on R™ x R".

More precisely,

y= () eR", 2 € R™, vy,...,v, € T,R™.

6. THE SOLUTION OF PROBLEM 1

THEOREM 1. Let A be a Weil algebra and V' be an A-module, dimg (V') <
0. Let ¢ : E — ATE be a linear semibasic tangent valued p-form on a vector

bundle E — M. There is an unique linear semibasic tangent valued p-form
T4V o on TAYE — TAM such that

TA’Vgo(af(cl) o TAXy,...,af(cy) oTAXp)

(5) AV
=af(cr---cp)oT™ (W(Xl""’Xp))

for any vector fields X1,...,X, on M and any c,...,c, € A, where TAX is
the flow lift of X to TAM and T4V Z is the flow lift of a linear vector field
on E to TAVE.

Proof. The construction of the linear semibasic tangent valued p-form
satisfying (5) will be given in Sections 7 and 8. The proof will be end in the
end of Section 8.
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7. LOCAL DESCRIPTION OF T4V

Let ¢ be a linear semibasic tangent valued p-form on £ = R™ xR"™ — R™
of the form (4), then we define 74V on TAVE = A™ x V" by

“ )
Vo= (T o(n "‘X”))®ATAaxi
=1

(6) n

+ (TASO§O(77><---><7])) ®ATA’V(yjik),
k=1 9y

where TAcpé‘? :TA(TR™ xgm -+ xgm TR™) — TAR = A is the extension of
go? : TR™ xgm -+ xgpm TR™ — R and n : TTAR™ — TATR™ is the flow
isomorphism and 74" Z is the flow prolongation of a linear vector field Z on
E — M to TV E and where the flow lift T A -7 is the vector field on A™
and then on A™ x V™ . More precisely,

m

(TA’Vgo)(a, w)(u, ..., up)= Z TAgoi (n(ul), . n(up))TAaii(a, w)

i=1

+ Z TA<)0§ (U(Ul)a s 777(up))TA7V (yjaiyk)(av U)),
J,k=1

Uty ..., up € TLA™ a € A we V™
We prove the following proposition.

PROPOSITION 1. The linear semibasic tangent valued p-form T4V on
A™ x V" — A™ given by (6) is the unique linear tangent valued p-form
satisfying (5) for any vector fields X1,...,X, on R™ and any ci,...,c, € A.

To prove Proposition 1 we need.
LEMMA 2. We have
(7) TYV(feZ) =T fo,T4Z

for any f: R™ — R and any linear vector field Z on R"™, where (of course)
(f @ Z)(x,y) = f(@)Z(x,y) € T(zy)(R™ x R"), (z,9) € R™ x R", and
(TAf @4 TAY Z2)(a,w) = TAf(a)THY Z(a,w) € Viaw)(A™ x V"), (a,w) €
A™ x vV,
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Proof. We can prove (7) as follows. Let 1 = (¢F(t)) € GL(R") be the
flow of Z. Then the flow of f ® Z is ¥y : R™ x R — R x R", Wy(z,y) =
(x,wtf(x)(y)). Then (by (2)) we have

T4 W (a,w) = (a, ( ZTAM (T f(@)w'),_,).

a €A™, w = (w') € V™. Therefore

TY(f @ Z)(a,w) = (T4 Wy (a, w))

—<MOZWMWﬂ»»o

( 0,7"f(a) dt| Zwl k=1>

=Tf(a ) TAvV(z'dRm x ) (a, w)

dt =
=TAf(a) TV Z(a,w) = (TAf @4 T Z)(a, w).

The proof of Lemma 2 is complete. [

Proof of Proposition 1. We prove (5) as follows. By (6) and (7), by the
R-linearity of the flow lift of linear vector fields and the well-known formulas
for the flow lift 74 of vector fields to T4 M, we have

T4V (a fler) oTAXq, ... af(c))TX,)

d
_ZTAz (af(c1) o T4X1),...,n(af(cp) 0o TAX,)) ®ATAaxi

-0
+ Z TA n(af(e) o TAXY),.. n(af(cp)oTAXp)) ®4 TAy(y]aT/f)




PROLONGATION OF LINEAR SEMIBASIC TANGENT VALUED FORMS 281

The uniqueness of 74V follows from the fact that the af(c) o T4X for
all vector fields X and R™ and all ¢ € A generates (over C>°(A™)) the space
of all vector fields on A™, see [3]. |

8. GLOBAL DESCRIPTION OF 74V

Let ¢ be a linear tangent valued p-form on E — M. Using vector bundle
coordinates we can define 74" ¢ locally by (6). According to respective theory
of [3], to define T4V globally on T4V E — TAM it remains to show

PROPOSITION 2. The construction T4V given by (6) is invariant with
respect to vector bundle isomorphisms f : R™ x R™ — R™ x R". It means,
we have

(8) T (fup) = (T4 )T
for any f as above.

Proof. The formula (8) is clear because of the uniqueness case of Proposi-
tion 1, the formula (5) for any vector fields X1,..., X, on R™ and ¢1,...,¢p €
A (see Proposition 1), and the naturality of the flow operators and the natu-
rality of the affinors af(c). 1

The proof of Theorem 1 is complete. |

9. SOME NATURAL PROPERTIES OF 74V

From the uniqueness of 74V satisfying (5) we have

PRrROPOSITION 3. Let @1 and o be linear semibasic tangent valued p-forms
on E — M and G — N. If they are f-related by a local vector bundle
isomorphism f : E — G, then T4V, and T4V g are T4V f-related. In
other words, the correspondence ¢ — T4V is a VB, n-natural operator in
the sense of [3].

PROPOSITION 4. Let ¢ be a linear semibasic tangent valued p-form on
E — M. Let (A1,Vi) and (A2,Va) be two pairs in question. Suppose
that v : V| — V5 is a module isomorphism over an algebra isomorphism
p: Al — Ao, Let vt : TAWVIE — TA2V2F be the corresponding vector
bundle isomoprphism, see [4]. Then T41Vig and T42V2p are n¥*-related.
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By the same arguments we easily see that

PROPOSITION 5. Let Vi and Vo be A modules (finite dimensional over
R). Let v : Vi — V4 be an A-module homomorphism (not necessarily isomor-
phism) over idy : A — A. Then T4V1p and T4V2p are /%4 -related.

10. THE BRACKET FORMULA

Let (A, V) be in question. Let U and W be linear vector fields on £ — M.
Then [U, W] is a linear vector field on E, too. Let a,b € A.

LEMMA 3. The following formula
(9) [af(a) o TV U, af(b) o THY W] = af(ab) o TV ([U,W])
holds.

Proof. Because of the R-bilinearity of booth sides of (9) with respect to
U and W, we can assume that U is not vertical. Then using vector bundle
coordinate invariance of booth sides of (9) we can assume E = R™ x R" and
U= %. Then because of the R-linearity of both sides of (9) with respect to

W we can assume that W = f(z) 822 (x)yj%.
In the first case the formula (9) is the well-known (for Weil bundles) one

0 0
Ozt Oxt D '

[af(a )OTAf af(b) o T4(f(x)

o) )] =af(ab) o TA(Izr. f() 5

ItU = 1 and W = f(z)y’ a%kv then because of formula (7 ) and the fact
that [af (@) o TAY g, TV (39 )] = 0 (a5 (@) o TAY

da:l )
on A™ and T4V (y? 3y =0 is a vector field on V™) we have

0

5o10 2/ 0 e T (f@) 5.5)]
0

0
=[af(a) e T Z ST T () 5 )]
0

bl A
= (af(a )oTAa 1)(bT"‘f)TA’V(y](Tyk)

0 9
= (bTT"foaf(a)o TAa I)TA’V(yja—yk)

[af(a) oTAV
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T TA (T T () = T NTAY )
—af(ah) o T (5 )y ) = ab)oTAvV([aal,fm (f])

The proof of Lemma 3 is complete. |

11. SOLUTION OF PROBLEM 2

By using the pull-back with respect to p : F — M, a linear semiba-
sic tangent valued p-form K : E — APT*M ® TE on p : E — M can be
treated as the tangent valued p-form K € QP(E,TE) on manifold E. Given
K € QP(E,TFE) and L € Q4(E,TFE) we have the Frolicher-Nijenhuis bracket
[[K, L] € QPT9(E,TE) given by

HK’ L]](Zh SRR ZP-HJ)

= _Zsigna[f((zol,...,Zop),L(ZU(pH),...,Za(pﬂ))]
1 ]
+ > signoL([K(Zo1, .., Zap), Zops1)) s Zopiay - - -)

+ i 2SO ([L(Zov s Zog), Zo(qr)] Zo(gr2)s )

)‘2' ZSignO’L(K([ZUhZUQ],Zgg,. . ‘)7Z0'(p+2)7 .. )

b i 1 > sign oK (L([Zoy+ Zoals Zoss - )5 Za(gr2)s - -+ )

for any vector fields Zi, ..., Z,,4 on manifold E, see [3].
Then easily seen that for linear semibasic tangent valued p- and ¢- forms

pand iy on E — M, [[p,?]] is again a linear semibasic tangent valued (p+ ¢)-
form on £ — M.

THEOREM 2. Let (A,V) be in question. We have
(10) (T4 o, TV = TV ([, ¢]))

for any linear semibasic tangent valued p- and q- forms ¢ and v on a vector
bundle E — M.
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Proof. Because of the invariance of both sides of (10) with respect to vector
bundle charts we may assume that £ — M is the trivial vector bundle R™ x
R"™ — R™. Using many times of formulas (5) and (9) and the formula defining
the Frolicher-Nijenhuis bracket we easily verify

T4, TV g (af (e1) o TAX1, . af (eprg) o T4 Xipt)
=T ([[p.¥]]) (af(e1) o TAX1, ..., af (cprq) © T Xpiq)

for any vector fields Xi,...,X,14 on R™ (treated also as linear vector fields
on R™ x R"™) and any ci,...,cp1q € A. 1

12. APPLICATIONS TO LINEAR GENERAL CONNECTIONS

A linear general connection I' on £ — M is a linear semibasic tangent
valued 1-form I : E — T*M ® TFE such that I'(X) covers X, [3]. One can
observe

COROLLARY 1. For a linear general connection I' on E — M its lifting
TAVT is a linear general connection on T4V E — TAM.

A curvature of I is a linear semibasic (vertical) tangent valued 2-form
1
Rr = §P o [[T,T7],

where P : TT'E — VTFE is the projection in direction given by the horizontal
distribution of I, [3]. From Theorem 2 and (6) we have.

COROLLARY 2. It holds
Ryave =T (Rr)

for any linear general connection I on a vector bundle E — M.

13. FINAL REMARKS
We give briefly another purposes, why we could make the constructions.

Remark 1. Let A be a Weil algebra and V' be an A-module in question.
Let E — M be a vector bundle. One can observe that we have VB-natural
equivalence TAVE = TAE @4 V (tensor product of the A-module bundles
TAE — TAM and (trivial) TAM x V — TAM).
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Remark 2. Let T" be a linear general connection on a vector bundle £ —
M. The connection 74T (from [3] or [1]) on the A-module bundle TAFE —
TAM is A-linear. Tt means that the horizontal lift 74T(Y") of a vector field
Y on TAM is an A-linear vector field on TAE — TAM (i.e., with the flow
formed by A-module bundle local isomorphisms). On the trivial A-module
bundle TAM x V over TAM we have the trivial A-linear general connection
T'7apxv- Thus we have the tensor product connection 74T @4 T'pajy iy on
TAYE = TAE @4V — TAM, defined quite similarly as tensor product of
(R-)linear general connections (see Proposition 47.14 in [3]).

Remark 3. Similarly, let ¢ : E — APT*M ® T'E be a semibasic linear tan-
gent valued p-form on a vector bundle E — M, and let o : M — APT*M QT M
be its underlying tangent valued p-form. By [1], we have the semibasic
(A-)linear tangent valued p-form 74 : TAE — APT*TAM @ TTAE on
TAE — TAM with the underlying tangent valued p-form T4y : TAM —
ANPT*TAM QTTAM. The A-linearity means that given vector fields Y1, . . ., Y,
on TAM, TAp(Y1,...,Y,) is an A-linear vector field on TAE — TAM with
the underlying vector field 74¢p(Y1,...,Y,). Let V be an A-module in ques-
tion. Clearly, 74¢(Y1,...,Y,) x 0 (where 0 is the zero vector field on V) is an
A-linear vector field (on the trivial A-module bundle TAM x V over T4M)
with the underlying vector field 7 AE(YL ..., Yp), too. Thus we have A-linear
vector field 74V o(Y1,...,Y,) == TAp(Y1,....Y,) ®4 (T2p(V1,...,Y,) x 0)
on TAYE = TAE ®,4 V, defined similarly as tensor product of linear vec-
tor fields covering some vector field. (More precisely, its flow is the tensor
product over A of the flows of T4¢(Y1,...,Y,) and T4p(Y1,...,Y,) x 0.)
Consequently, we have semibasic (A-)linear tangent valued p-form 74V :
TAVE — NPT*TAM @ TTAYE on TAVE = TAE®4V — TAM.
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