Prolongation of Linear Semibasic Tangent Valued Forms to Product Preserving Gauge Bundles of Vector Bundles

Włodzimierz M. Mikulski

Institute of Mathematics, Jagiellonian University, Kraków, Reymonta 4, Poland e-mail: mikulski@im.uj.edu.pl

(Presented by Manuel de León)

AMS Subject Class. (2000): 58A05

Received December 2, 2006

0. Introduction

A linear semibasic tangent valued p-form on a vector bundle $E \to M$ is a section $\varphi: E \to \wedge^p T^*M \otimes TE$ such that $\varphi(X_1, \ldots, X_p)$ is a linear vector field on E for any vector fields X_1, \ldots, X_p on M. (We recall that a vector field $X: E \to TE$ on a vector bundle $p: E \to M$ is linear if it is a vector bundle map between vector bundles $p: E \to M$ and $Tp: TE \to TM$. Equivalently, the flow ExptX is formed by vector bundle (local) isomorphisms.)

A very important example of a semibasic linear tangent valued 1-form is a linear general connection Γ on a vector bundle $E \to M$. (We recall that a general linear connection on a vector bundle $E \to M$ is a semibasic linear tangent valued 1-form $\Gamma: E \to T^*M \otimes TE$ on $E \to M$ such that $\Gamma(X)$ projects onto X for any vector field X on M, [3].) Connections play important roles in differential geometry, field theories of mathematical physics, and differential equations, [3], [2], [6].

Let A be a Weil algebra and $T^A: \mathcal{M}f \to \mathcal{F}\mathcal{M}$ be the corresponding Weil functors on the category $\mathcal{M}f$ of all manifolds and maps. Let $E \to M$ be a vector bundle. Then $T^AE \to T^AM$ is a vector bundle, too. Restricting the well know facts of lifting of tangent values forms on manifolds to Weil bundles, we obtain.

PROPOSITION A. ([1]) For any linear semibasic tangent valued p-form $\varphi: E \to \wedge^p T^*M \otimes TE$ there exists an unique linear semibasic tangent valued

p-form $\mathcal{T}^A \varphi : T^A E \to \wedge^p T^* T^A M \otimes T T^A E$ on $T^A E \to T^A M$ such that

(*)
$$\mathcal{T}^{A}\varphi(\mathbf{a}f(a_{1})\circ\mathcal{T}^{A}X_{1},\ldots,\mathbf{a}f(a_{p})\circ\mathcal{T}^{A}X_{p})$$

$$=\mathbf{a}f(a_{1}\cdots a_{p})\circ\mathcal{T}^{A}(\varphi(X_{1},\ldots,X_{p}))$$

for any vector fields X_1, \ldots, X_p on M and any $a_1, \ldots, a_p \in A$, where we denote the flow lift of a field Z on N to T^AN by T^AZ and where $\mathbf{a}f(a): TT^AN \to TT^AN$ is the canonical affinor on T^AN corresponding to $a \in A$.

The Frolicher-Nijenhuis bracket $[[\varphi,\psi]]$ of linear semibasic tangent valued p- and q- forms on $E\to M$ is again a linear semibasic tangent valued (p+q)-form on $E\to M$.

PROPOSITION B. ([1]) We have

$$(**) \qquad [[\mathcal{T}^A \varphi, \mathcal{T}^A \psi]] = \mathcal{T}^A([[\varphi, \psi]])$$

for any linear semibasic tangent valued p- and q-forms φ and ψ on $E \to M$.

The gauge bundle functor $T^A: \mathcal{VB} \to \mathcal{FM}$ (on the category \mathcal{VB} of all vector bundles and vector bundle maps) obtained from $T^A: \mathcal{M}f \to \mathcal{FM}$ is an example of product preserving gauge bundle functors $F: \mathcal{VB} \to \mathcal{FM}$. In [5], for any Weil algebra A and any A-module V with $dim_{\mathbf{R}}(V) < \infty$ we constructed a product preserving gauge bundle functor $T^{A,V}: \mathcal{VB} \to \mathcal{FM}$, and we proved.

PROPOSITION C. ([5]) Any product preserving gauge bundle functor $F: \mathcal{VB} \to \mathcal{FM}$ is isomorphic to $T^{A,V}$ for some (A,V) in question.

In [5], we also observed that $T^AE = T^{A,V}E$ for V = A, and that $T^{A,V}p$: $T^{A,V}E \to T^{A,V}M = T^AM$ (M is treated as the zero vector bundle over M) is a vector bundle (even A-module bundle) for any vector bundle $p: E \to M$. Thus we have the following natural problems.

PROBLEM 1. For a product preserving gauge bundle functor $F: \mathcal{VB} \to \mathcal{FM}$ to construct canonically a linear semibasic tangent valued p-form $\mathcal{F}\varphi: FE \to \wedge^p T^*FM \otimes TFE$ on $Fp: FE \to FM$ from a linear semibasic tangent valued p-form $\varphi: E \to \wedge^p T^*M \otimes TE$ on a vector bundle $p: E \to M$ such that a formula similar to (*) holds.

PROBLEM 2. For a product preserving gauge bundle functor $F: \mathcal{VB} \to \mathcal{FM}$ to prove a formula similar to (**).

The purpose of the present paper is to solve the above problems for all fiber product preserving gauge bundle functors $F: \mathcal{VB} \to \mathcal{FM}$. We may of course assume $F = T^{A,V}$. Given $a \in A$ we have a canonical affinor $\mathbf{a}f(a): TT^{A,V}E \to TT^{A,V}E$ on $T^{A,V}E$. Given a linear vector field Z on E its flow ExptZ is formed by (local) vector bundle isomorphisms and we have the flow prolongation $T^{A,V}Z = \frac{\partial}{\partial t}_{|t=0}(T^{A,V}(ExptZ))$ of Z to $T^{A,V}E$. We prove

THEOREM A. Given a linear semibasic tangent valued p-form $\varphi: E \to \wedge^p T^*M \otimes TE$ on a vector bundle $E \to M$ there is an unique linear semibasic tangent valued p-form $\mathcal{T}^{A,V}\varphi: T^{A,V}E \to \wedge^p T^*T^AM \otimes TT^{A,V}E$ on the vector bundle $T^{A,V}E \to T^AM$ satisfying

$$\mathcal{T}^{A,V}\varphi(\mathbf{a}f(c_1)\circ\mathcal{T}^AX_1,\ldots,\mathbf{a}f(c_p)\circ\mathcal{T}^AX_p)$$

$$=\mathbf{a}f(c_1\cdots c_p)\circ\mathcal{T}^{A,V}(\varphi(X^1,\ldots,X^p))$$

for any vector fields X_1, \ldots, X_p on M and any $c_1, \ldots, c_p \in A$.

In the proof of Theorem A, the linear semibasic p-form $\mathcal{T}^{A,V}\varphi$ will be explicitly constructed. Next, for the Frolicher-Nijenhuis bracket we prove.

THEOREM B. We have

$$[[\mathcal{T}^{A,V}\varphi,\mathcal{T}^{A,V}\psi]]=\mathcal{T}^{A,V}([[\varphi,\psi]])$$

for any linear semibasic tangent valued p- and q- forms φ and ψ on $E \to M$.

In the last section we apply the above results to linear general connections on vector bundles.

All manifolds and maps are assumed to be of class C^{∞} .

1. Weil bundles

Let A be a Weil algebra, see [3]. Given a manifold M we have the Weil bundle

$$T^AM = \bigcup_{z \in M} Hom\big(C_z^\infty(M), A\big)$$

over M corresponding to A, where $Hom(C_z^{\infty}(M), A)$ is the set of all algebra homomorphisms φ from the (unital) algebra $C_z^{\infty}(M) = \{germ_z(g) | g : M \to \mathbf{R}\}$ into A. Given a map $\underline{f} : M \to N$ we have the induced (via pull-back) map $T^A\underline{f} : T^AM \to T^AN$. The correspondence $T^A : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ is a product preserving bundle functor on the category $\mathcal{M}f$ of all manifolds and maps, [3].

It is well-known that any product preserving bundle functor $F: \mathcal{M}f \to \mathcal{F}\mathcal{M}$ is isomorphic to T^A for some Weil algebra A, [3].

2. Generalized Weil bundles

Let A be a Weil algebra and V be an A-module with $\dim_{\mathbf{R}}(V) < \infty$. In [5], similarly to Weil bundles, given a vector bundle $E = (E \xrightarrow{p} M)$ we defined an A-module bundle

$$T^{A,V}E = \{(\varphi, \psi) | \varphi \in Hom(C_z^{\infty}(M), A), \psi \in Hom_{\varphi}(C_z^{\infty, f.l.}(E), V), z \in M\}$$

over T^AM , where $Hom_{\varphi}(C_z^{\infty,f.l.}(E),V)$ is the A-module of all module homomorphisms ψ over φ from the $C_z^{\infty}(M)$ -module $C_z^{\infty,f.l.}(E)=\{germ_z(h)\mid h:E\to\mathbf{R}\text{ is fibre linear}\}$ into V. Given another vector bundle $G=(G\overset{q}\to N)$ and a vector bundle homomorphism $f:E\to G$ over $\underline{f}:M\to N$ we have the induced A-module bundle map $T^{A,V}f:T^{A,V}E\to T^{A,V}G$ over $T^Af:T^AM\to T^AN$ by

$$T^{A,V}f(\varphi,\psi)=(\varphi\circ\underline{f}_z^*,\psi\circ f_z^*),$$

 $(\varphi,\psi)\in T_z^{A,V}E, z\in M,$ where $\underline{f}_z^*:C_{\underline{f}(z)}^\infty(N)\to C_z^\infty(M)$ and $f_z^*:C_{\underline{f}(z)}^{\infty,f.l.}(G)\to C_z^{\infty,f.l.}(E)$ are given by the pull-back with respect to \underline{f} and f. The correspondence $T^{A,V}:\mathcal{VB}\to\mathcal{FM}$ is a product preserving gauge bundle functor, see [5] (see also [4] for examples of modules over Weil algebras).

In [5], we proved that any product preserving gauge bundle functor $F: \mathcal{VB} \to \mathcal{FM}$ is isomorphic to $T^{A,V}$ for some (A,V) in question.

3. Local description of generalized Weil bundles

A local vector bundle trivialization $(x^1, \ldots, x^m, y^1, \ldots, y^n) : E|U = \mathbb{R}^m \times \mathbb{R}^n$ on E induces a fiber bundle trivialization

$$(\tilde{x}^1,\ldots,\tilde{x}^m,\tilde{y}^1,\ldots,\tilde{y}^n):T^{A,V}E|U=A^m\times V^n$$

by $\tilde{x}^i(\varphi,\psi) = \varphi(\operatorname{germ}_z(x^i)) \in A$, $\tilde{y}^j(\varphi,\psi) = \psi(\operatorname{germ}_z(y^j)) \in V$, $(\varphi,\psi) \in T_z^{A,V} E, z \in U, i = 1, \ldots, m, j = 1, \ldots, n$.

Let $f:E\to G$ be a vector bundle map. If in some vector bundle coordinates

(1)
$$f(x,y) = \left(\varphi(x), \left(\sum_{j=1}^{n} \psi_j^k(x) y^j\right)_{k=1}^p\right)$$

 $x \in \mathbf{R}^m$, $y = (y^j) \in \mathbf{R}^n$, then in the induced coordinates we have

(2)
$$T^{A}f(a,w) = \left(T^{A}\varphi(a), \left(\sum_{j=1}^{n} T^{A}\psi_{j}^{k}(a)w^{j}\right)_{k=1}^{p}\right),$$

 $a \in A^m$, $w = (w^j) \in V^n$.

4. The affinors $\mathbf{a}f(c)$

Let $c \in A$. We have an affinor $\mathbf{a}f(c): T(A^m \times V^n) \to T(A^m \times V^n)$ on $A^m \times V^n$ given by

(3)
$$\mathbf{a}f(c)((a,v),(b,w)) = ((a,v),(cb,cw))$$

for
$$((a, v), (b, w)) \in (A^m \times V^n) \times (A^m \times V^n) = T(A^m \times V^n).$$

Lemma 1. We have

$$TT^{A,V} f \circ \mathbf{a} f(c) = \mathbf{a} f(c) \circ TT^{A,V} f$$

for any vector bundle map $f: \mathbf{R}^m \times \mathbf{R}^n \to \mathbf{R}^q \times \mathbf{R}^p$.

Proof. The proof is standard. We propose to use (2).

Thus according to the general theory of [3], for any vector bundle $E \to M$ we have a canonical affinor $\mathbf{a}f(c)$ on $T^{A,V}E$ with the form (3) in every vector bundle coordinates.

5. Linear semibasic tangent valued p-forms

Let $E \to M$ be a vector bundle. A linear semibasic tangent valued p-form on $E \to M$ is a section $\varphi: E \to \wedge^p T^*M \otimes TE$ such that $\varphi(X_1, \ldots, X_p)$ is a linear vector field on E for any vector fields X_1, \ldots, X_p on M. Thus a linear semibasic tangent valued p-form φ on the trivial vector bundle $\mathbf{R}^m \times \mathbf{R}^n$ over \mathbf{R}^m has the form

(4)
$$\varphi = \sum_{i=1}^{m} \varphi^{i} \otimes \frac{\partial}{\partial x^{i}} + \sum_{j,k=1}^{n} \varphi_{j}^{k} \otimes y^{j} \frac{\partial}{\partial y^{k}}$$

for some unique p-forms φ^i , $\varphi^k_j : T\mathbf{R}^m \times_{\mathbf{R}^m} \cdots \times_{\mathbf{R}^m} T\mathbf{R}^m \to \mathbf{R}$ on \mathbf{R}^m , where $x^1, \ldots, x^m, y^1, \ldots, y^n$ are the usual vector bundle coordinates on $\mathbf{R}^m \times \mathbf{R}^n$. More precisely,

$$\varphi(x,y)(v_1,\ldots,v_p) = \sum_{i=1}^m \varphi^i(v_1,\ldots,v_p) \frac{\partial}{\partial x^i}(x,y) + \sum_{j,k=1}^n \varphi^k_j(v_1,\ldots,v_p) y^j \frac{\partial}{\partial y^k}(x,y) \in T_{(x,y)}(\mathbf{R}^m \times \mathbf{R}^n),$$

$$y = (y^j) \in \mathbf{R}^n, x \in \mathbf{R}^m, v_1, \dots, v_p \in T_x \mathbf{R}^m.$$

6. The solution of Problem 1

THEOREM 1. Let A be a Weil algebra and V be an A-module, $\dim_{\mathbf{R}}(V) < \infty$. Let $\varphi : E \to \wedge^T E$ be a linear semibasic tangent valued p-form on a vector bundle $E \to M$. There is an unique linear semibasic tangent valued p-form $\mathcal{T}^{A,V}\varphi$ on $T^{A,V}E \to T^AM$ such that

(5)
$$\mathcal{T}^{A,V}\varphi(\mathbf{a}f(c_1)\circ\mathcal{T}^AX_1,\dots,\mathbf{a}f(c_p)\circ\mathcal{T}^AX_p)$$
$$=\mathbf{a}f(c_1\cdots c_p)\circ\mathcal{T}^{A,V}(\varphi(X_1,\dots,X_p))$$

for any vector fields X_1, \ldots, X_p on M and any $c_1, \ldots, c_p \in A$, where $\mathcal{T}^A X$ is the flow lift of X to $\mathcal{T}^A M$ and $\mathcal{T}^{A,V} Z$ is the flow lift of a linear vector field on E to $\mathcal{T}^{A,V} E$.

Proof. The construction of the linear semibasic tangent valued p-form satisfying (5) will be given in Sections 7 and 8. The proof will be end in the end of Section 8.

7. Local description of
$$\mathcal{T}^{A,V}\varphi$$

Let φ be a linear semibasic tangent valued p-form on $E = \mathbf{R}^m \times \mathbf{R}^n \to \mathbf{R}^m$ of the form (4), then we define $\mathcal{T}^{A,V}\varphi$ on $\mathcal{T}^{A,V}E = A^m \times V^n$ by

(6)
$$\mathcal{T}^{A,V}\varphi = \sum_{i=1}^{m} \left(T^{A}\varphi^{i} \circ (\eta \times \dots \times \eta) \right) \otimes_{A} \mathcal{T}^{A} \frac{\partial}{\partial x^{i}} + \sum_{j,k=1}^{n} \left(T^{A}\varphi_{j}^{k} \circ (\eta \times \dots \times \eta) \right) \otimes_{A} \mathcal{T}^{A,V} \left(y^{j} \frac{\partial}{\partial y^{k}} \right),$$

where $T^A \varphi_j^k : T^A (T\mathbf{R}^m \times_{\mathbf{R}^m} \cdots \times_{\mathbf{R}^m} T\mathbf{R}^m) \to T^A \mathbf{R} = A$ is the extension of $\varphi_j^k : T\mathbf{R}^m \times_{\mathbf{R}^m} \cdots \times_{\mathbf{R}^m} T\mathbf{R}^m \to \mathbf{R}$ and $\eta : TT^A \mathbf{R}^m \to T^A T\mathbf{R}^m$ is the flow isomorphism and $T^{A,V}Z$ is the flow prolongation of a linear vector field Z on $E \to M$ to $T^{A,V}E$ and where the flow lift $T^A \frac{\partial}{\partial x^i}$ is the vector field on A^m and then on $A^m \times V^n$. More precisely,

$$(\mathcal{T}^{A,V}\varphi)(a,w)(u_1,\ldots,u_p) = \sum_{i=1}^m T^A \varphi^i \big(\eta(u_1),\ldots,\eta(u_p)\big) \mathcal{T}^A \frac{\partial}{\partial x^i}(a,w)$$
$$+ \sum_{i,k=1}^n T^A \varphi^k_j \big(\eta(u_1),\ldots,\eta(u_p)\big) \mathcal{T}^{A,V} \big(y^j \frac{\partial}{\partial y^k}\big)(a,w),$$

 $u_1, \ldots, u_p \in T_a A^m, \ a \in A^m, \ w \in V^n.$ We prove the following proposition.

PROPOSITION 1. The linear semibasic tangent valued p-form $\mathcal{T}^{A,V}\varphi$ on $A^m \times V^n \to A^m$ given by (6) is the unique linear tangent valued p-form satisfying (5) for any vector fields X_1, \ldots, X_p on \mathbf{R}^m and any $c_1, \ldots, c_p \in A$.

To prove Proposition 1 we need.

Lemma 2. We have

(7)
$$\mathcal{T}^{A,V}(f \otimes Z) = T^A f \otimes_A \mathcal{T}^{A,V} Z$$

for any $f: \mathbf{R}^m \to \mathbf{R}$ and any linear vector field Z on \mathbf{R}^n , where (of course) $(f \otimes Z)(x,y) = f(x)Z(x,y) \in T_{(x,y)}(\mathbf{R}^m \times \mathbf{R}^n), \ (x,y) \in \mathbf{R}^m \times \mathbf{R}^n, \ \text{and} \ (T^A f \otimes_A T^{A,V} Z)(a,w) = T^A f(a) T^{A,V} Z(a,w) \in V_{(a,w)}(A^m \times V^n), \ (a,w) \in A^m \times V^n.$

Proof. We can prove (7) as follows. Let $\psi_t = (\psi_l^k(t)) \in GL(\mathbf{R}^n)$ be the flow of Z. Then the flow of $f \otimes Z$ is $\Psi_t : \mathbf{R}^m \times \mathbf{R}^n \to \mathbf{R}^m \times \mathbf{R}^n$, $\Psi_t(x,y) = (x, \psi_{tf(x)}(y))$. Then (by (2)) we have

$$T^{A,V}\Psi_t(a,w) = \left(a, \left(\sum_{l=1}^n T^A \psi_l^k(tT^A f(a)) w^l\right)_{k=1}^n\right),$$

 $a \in A^m$, $w = (w^l) \in V^n$. Therefore

$$T^{A,V}(f \otimes Z)(a,w) = \frac{d}{dt}_{|t=0} \left(T^{A,V} \Psi_t(a,w) \right)$$

$$= \left(0, \frac{d}{dt}_{|t=0} \left(\sum_{l=1}^n T^A \psi_l^k(tT^A f(a)) w^k \right)_{k=1}^n \right)$$

$$= \left(0, T^A f(a) \frac{d}{dt}_{|t=0} \left(\sum_{l=1}^n \psi_l^k(t) w^k \right)_{k=1}^n \right)$$

$$= T^A f(a) \frac{d}{dt}_{|t=0} T^{A,V}(id_{\mathbf{R}^m} \times \psi_t)(a,w)$$

$$= T^A f(a) T^{A,V} Z(a,w) = (T^A f \otimes_A T^{A,V} Z)(a,w).$$

The proof of Lemma 2 is complete. ■

Proof of Proposition 1. We prove (5) as follows. By (6) and (7), by the **R**-linearity of the flow lift of linear vector fields and the well-known formulas for the flow lift \mathcal{T}^A of vector fields to $\mathcal{T}^A M$, we have

$$T^{A,V}\varphi(\mathbf{a}f(c_{1})\circ T^{A}X_{1},\ldots,\mathbf{a}f(c_{p})T^{A}X_{p})$$

$$=\sum_{i=1}^{m}T^{A}\varphi^{i}(\eta(\mathbf{a}f(c_{1})\circ T^{A}X_{1}),\ldots,\eta(\mathbf{a}f(c_{p})\circ T^{A}X_{p}))\otimes_{A}T^{A}\frac{\partial}{\partial x^{i}}$$

$$+\sum_{j,k=1}^{n}T^{A}\varphi^{k}_{j}(\eta(\mathbf{a}f(c_{1})\circ T^{A}X_{1}),\ldots,\eta(\mathbf{a}f(c_{p})\circ T^{A}X_{p}))\otimes_{A}T^{A,V}(y^{j}\frac{\partial}{\partial y^{k}})$$

$$=\sum_{i=1}^{m}c_{1}\cdots c_{p}T^{A}(\varphi^{i}(X_{1},\ldots,X_{p}))\otimes_{A}T^{A}\frac{\partial}{\partial x^{i}}$$

$$+\sum_{j,k=1}^{n}c_{1}\cdots c_{p}T^{A}(\varphi^{k}_{j}(X_{1},\ldots,X_{p}))\otimes_{A}T^{A,V}(y^{j}\frac{\partial}{\partial y^{k}})$$

$$=\mathbf{a}f(c_{1}\cdots c_{p})\circ T^{A,V}(\varphi(X_{1},\ldots,X_{p})).$$

The uniqueness of $\mathcal{T}^{A,V}\varphi$ follows from the fact that the $\mathbf{a}f(c)\circ\mathcal{T}^AX$ for all vector fields X and \mathbf{R}^m and all $c\in A$ generates (over $C^\infty(A^m)$) the space of all vector fields on A^m , see [3].

8. Global description of $\mathcal{T}^{A,V}\varphi$

Let φ be a linear tangent valued p-form on $E \to M$. Using vector bundle coordinates we can define $\mathcal{T}^{A,V}\varphi$ locally by (6). According to respective theory of [3], to define $\mathcal{T}^{A,V}\varphi$ globally on $T^{A,V}E \to T^AM$ it remains to show

PROPOSITION 2. The construction $\mathcal{T}^{A,V}$ given by (6) is invariant with respect to vector bundle isomorphisms $f: \mathbf{R}^m \times \mathbf{R}^n \to \mathbf{R}^m \times \mathbf{R}^n$. It means, we have

(8)
$$\mathcal{T}^{A,V}(f_*\varphi) = (T^{A,V}f)_*\mathcal{T}^{A,V}\varphi$$

for any f as above.

Proof. The formula (8) is clear because of the uniqueness case of Proposition 1, the formula (5) for any vector fields X_1, \ldots, X_p on \mathbf{R}^m and $c_1, \ldots, c_p \in A$ (see Proposition 1), and the naturality of the flow operators and the naturality of the affinors $\mathbf{a}f(c)$.

The proof of Theorem 1 is complete.

9. Some natural properties of $\mathcal{T}^{A,V}\varphi$

From the uniqueness of $\mathcal{T}^{A,V}\varphi$ satisfying (5) we have

PROPOSITION 3. Let φ_1 and φ_2 be linear semibasic tangent valued p-forms on $E \to M$ and $G \to N$. If they are f-related by a local vector bundle isomorphism $f: E \to G$, then $T^{A,V}\varphi_1$ and $T^{A,V}\varphi_2$ are $T^{A,V}f$ -related. In other words, the correspondence $\varphi \to T^{A,V}\varphi$ is a $\mathcal{VB}_{m,n}$ -natural operator in the sense of [3].

PROPOSITION 4. Let φ be a linear semibasic tangent valued p-form on $E \to M$. Let (A_1, V_1) and (A_2, V_2) be two pairs in question. Suppose that $\nu: V_1 \to V_2$ is a module isomorphism over an algebra isomorphism $\mu: A_1 \to A_2$. Let $\eta^{\nu,\mu}: T^{A_1,V_1}E \to T^{A_2,V_2}E$ be the corresponding vector bundle isomorphism, see [4]. Then $\mathcal{T}^{A_1,V_1}\varphi$ and $\mathcal{T}^{A_2,V_2}\varphi$ are $\eta^{\nu,\mu}$ -related.

By the same arguments we easily see that

PROPOSITION 5. Let V_1 and V_2 be A modules (finite dimensional over \mathbf{R}). Let $\nu: V_1 \to V_2$ be an A-module homomorphism (not necessarily isomorphism) over $id_A: A \to A$. Then $\mathcal{T}^{A,V_1}\varphi$ and $\mathcal{T}^{A,V_2}\varphi$ are $\eta^{id_A,\nu}$ -related.

10. The bracket formula

Let (A, V) be in question. Let U and W be linear vector fields on $E \to M$. Then [U, W] is a linear vector field on E, too. Let $a, b \in A$.

Lemma 3. The following formula

(9)
$$[\mathbf{a}f(a) \circ \mathcal{T}^{A,V}U, \mathbf{a}f(b) \circ \mathcal{T}^{A,V}W] = \mathbf{a}f(ab) \circ \mathcal{T}^{A,V}([U,W])$$

holds.

Proof. Because of the **R**-bilinearity of booth sides of (9) with respect to U and W, we can assume that U is not vertical. Then using vector bundle coordinate invariance of booth sides of (9) we can assume $E = \mathbf{R}^m \times \mathbf{R}^n$ and $U = \frac{\partial}{\partial x^1}$. Then because of the **R**-linearity of both sides of (9) with respect to W we can assume that $W = f(x) \frac{\partial}{\partial x^i}$ or $W = f(x) y^j \frac{\partial}{\partial y^k}$.

In the first case the formula (9) is the well-known (for Weil bundles) one

$$\left[\mathbf{a}f(a)\circ\mathcal{T}^A\frac{\partial}{\partial x^1},\mathbf{a}f(b)\circ\mathcal{T}^A\left(f(x)\frac{\partial}{\partial x^i}\right)\right]=\mathbf{a}f(ab)\circ\mathcal{T}^A\left(\left[\frac{\partial}{\partial x^1},f(x)\frac{\partial}{\partial x^i}\right]\right).$$

If $U = \frac{\partial}{\partial x^1}$ and $W = f(x)y^j\frac{\partial}{\partial y^k}$, then because of formula (7) and the fact that $[\mathbf{a}f(a)\circ\mathcal{T}^{A,V}\frac{\partial}{\partial x^1},\mathcal{T}^{A,V}(y^j\frac{\partial}{\partial y^k})] = 0$ (as $\mathbf{a}f(a)\circ\mathcal{T}^{A,V}\frac{\partial}{\partial x^1}$ is a vector field on A^m and $\mathcal{T}^{A,V}(y^j\frac{\partial}{\partial y^k})$ is a vector field on V^n) we have

$$\begin{split} \left[\mathbf{a}f(a) \circ \mathcal{T}^{A,V} \frac{\partial}{\partial x^{1}}, \mathbf{a}f(b) \circ \mathcal{T}^{A,V} \left(f(x) y^{j} \frac{\partial}{\partial y^{k}} \right) \right] \\ &= \left[\mathbf{a}f(a) \circ \mathcal{T}^{A,V} \frac{\partial}{\partial x^{1}}, b T^{A} f \mathcal{T}^{A,V} (y^{j} \frac{\partial}{\partial y^{k}}) \right] \\ &= \left(\mathbf{a}f(a) \circ \mathcal{T}^{A} \frac{\partial}{\partial x^{1}} \right) (b T^{A} f) \mathcal{T}^{A,V} (y^{j} \frac{\partial}{\partial y^{k}}) \\ &= \left(b T T^{A} f \circ \mathbf{a}f(a) \circ \mathcal{T}^{A} \frac{\partial}{\partial x^{1}} \right) \mathcal{T}^{A,V} (y^{j} \frac{\partial}{\partial y^{k}}) \end{split}$$

$$\begin{split} &=baTT^{A}f(T^{A}\frac{\partial}{\partial x^{1}})\mathcal{T}^{A,V}(y^{j}\frac{\partial}{\partial y^{k}})=abT^{A}(\frac{\partial}{\partial x^{1}}f)\mathcal{T}^{A,V}(y^{j}\frac{\partial}{\partial y^{k}})\\ &=\mathbf{a}f(ab)\circ\mathcal{T}^{A,V}\Big(\frac{\partial}{\partial x^{1}}f(x)y^{j}\frac{\partial}{\partial y^{k}}\Big)=\mathbf{a}f(ab)\circ\mathcal{T}^{A,V}\Big([\frac{\partial}{\partial x^{1}},f(x)y^{j}\frac{\partial}{\partial y^{k}}]\Big). \end{split}$$

The proof of Lemma 3 is complete. ■

11. Solution of Problem 2

By using the pull-back with respect to $p:E\to M$, a linear semibasic tangent valued p-form $K:E\to \wedge^p T^*M\otimes TE$ on $p:E\to M$ can be treated as the tangent valued p-form $K\in\Omega^p(E,TE)$ on manifold E. Given $K\in\Omega^p(E,TE)$ and $L\in\Omega^q(E,TE)$ we have the Frolicher-Nijenhuis bracket $[[K,L]]\in\Omega^{p+q}(E,TE)$ given by

$$\begin{aligned} & [[K,L]](Z_{1},\ldots,Z_{p+q}) \\ & = \frac{1}{p!q!} \sum_{\sigma} \operatorname{sign} \sigma \big[K(Z_{\sigma 1},\ldots,Z_{\sigma p}), L\big(Z_{\sigma(p+1)},\ldots,Z_{\sigma(p+q)}\big) \big] \\ & + \frac{-1}{p!(q-1)!} \sum_{\sigma} \operatorname{sign} \sigma L\big(\big[K(Z_{\sigma 1},\ldots,Z_{\sigma p}), Z_{\sigma(p+1)} \big], Z_{\sigma(p+2)},\ldots \big) \\ & + \frac{(-1)^{pq}}{(p-1)q!} \sum_{\sigma} \operatorname{sign} \sigma K\big(\big[L(Z_{\sigma 1},\ldots,Z_{\sigma q}), Z_{\sigma(q+1)} \big], Z_{\sigma(q+2)},\ldots \big) \\ & + \frac{(-1)^{p-1}}{(p-1)!(q-1)!2!} \sum_{\sigma} \operatorname{sign} \sigma L\big(K\big([Z_{\sigma 1},Z_{\sigma 2}], Z_{\sigma 3},\ldots \big), Z_{\sigma(p+2)},\ldots \big) \\ & + \frac{(-1)^{p-1)q}}{(p-1)!(q-1)!2!} \sum_{\sigma} \operatorname{sign} \sigma K\big(L\big([Z_{\sigma 1},Z_{\sigma 2}], Z_{\sigma 3},\ldots \big), Z_{\sigma(q+2)},\ldots \big) \end{aligned}$$

for any vector fields Z_1, \ldots, Z_{p+q} on manifold E, see [3].

Then easily seen that for linear semibasic tangent valued p- and q- forms φ and ψ on $E \to M$, $[[\varphi, \psi]]$ is again a linear semibasic tangent valued (p+q)-form on $E \to M$.

THEOREM 2. Let (A, V) be in question. We have

(10)
$$[[\mathcal{T}^{A,V}\varphi,\mathcal{T}^{A,V}\psi]] = \mathcal{T}^{A,V}([[\varphi,\psi]])$$

for any linear semibasic tangent valued p- and q- forms φ and ψ on a vector bundle $E \to M$.

Proof. Because of the invariance of both sides of (10) with respect to vector bundle charts we may assume that $E \to M$ is the trivial vector bundle $\mathbf{R}^m \times \mathbf{R}^n \to \mathbf{R}^m$. Using many times of formulas (5) and (9) and the formula defining the Frolicher-Nijenhuis bracket we easily verify

$$[[\mathcal{T}^{A,V}\varphi,\mathcal{T}^{A,V}\psi]](\mathbf{a}f(c_1)\circ\mathcal{T}^AX_1,\ldots,\mathbf{a}f(c_{p+q})\circ\mathcal{T}^AX_{p+q})$$

$$=\mathcal{T}^{A,V}([[\varphi,\psi]])(\mathbf{a}f(c_1)\circ\mathcal{T}^AX_1,\ldots,\mathbf{a}f(c_{p+q})\circ\mathcal{T}^AX_{p+q})$$

for any vector fields X_1, \ldots, X_{p+q} on \mathbf{R}^m (treated also as linear vector fields on $\mathbf{R}^m \times \mathbf{R}^n$) and any $c_1, \ldots, c_{p+q} \in A$.

12. Applications to linear general connections

A linear general connection Γ on $E \to M$ is a linear semibasic tangent valued 1-form $\Gamma: E \to T^*M \otimes TE$ such that $\Gamma(X)$ covers X, [3]. One can observe

COROLLARY 1. For a linear general connection Γ on $E \to M$ its lifting $\mathcal{T}^{A,V}\Gamma$ is a linear general connection on $T^{A,V}E \to T^AM$.

A curvature of Γ is a linear semibasic (vertical) tangent valued 2-form

$$\mathcal{R}_{\Gamma} := \frac{1}{2} P \circ [[\Gamma, \Gamma]],$$

where $P: TTE \to VTE$ is the projection in direction given by the horizontal distribution of Γ , [3]. From Theorem 2 and (6) we have.

COROLLARY 2. It holds

$$\mathcal{R}_{\mathcal{T}^{A,V}\Gamma} = \mathcal{T}^{A,V}(\mathcal{R}_{\Gamma})$$

for any linear general connection Γ on a vector bundle $E \to M$.

13. Final remarks

We give briefly another purposes, why we could make the constructions.

Remark 1. Let A be a Weil algebra and V be an A-module in question. Let $E \to M$ be a vector bundle. One can observe that we have \mathcal{VB} -natural equivalence $T^{A,V}E = T^AE \otimes_A V$ (tensor product of the A-module bundles $T^AE \to T^AM$ and (trivial) $T^AM \times V \to T^AM$). Remark 2. Let Γ be a linear general connection on a vector bundle $E \to M$. The connection $\mathcal{T}^A\Gamma$ (from [3] or [1]) on the A-module bundle $T^AE \to T^AM$ is A-linear. It means that the horizontal lift $\mathcal{T}^A\Gamma(Y)$ of a vector field Y on T^AM is an A-linear vector field on $T^AE \to T^AM$ (i.e., with the flow formed by A-module bundle local isomorphisms). On the trivial A-module bundle $T^AM \times V$ over T^AM we have the trivial A-linear general connection $\Gamma_{T^AM \times V}$. Thus we have the tensor product connection $\mathcal{T}^A\Gamma \otimes_A \Gamma_{T^AM \times V}$ on $T^{A,V}E = T^AE \otimes_A V \to T^AM$, defined quite similarly as tensor product of (R-)linear general connections (see Proposition 47.14 in [3]).

References

- [1] Cabras A., Kolář, I., Prolongation of tangent valued forms to Weil bundles, *Arch. Math. Brno*, **31** (1995), 139–145.
- [2] DE LEON, M., RODRIGUES, P.R., "Generalized Classical Mechanics and Field Theory", North-Holland, Math. Studies 112, North-Holland Publishers Co., Amsterdam, 1985.
- [3] KOLÁŘ, I., MICHOR, P.W., SLOVÁK, J., "Natural Operations in Differential Geometry", Springer-Verlag, Berlin, 1993.
 [4] KUREŠ, M., MIKULSKI, W.M., Liftings of linear vector fields to product
- [4] Kureš, M., Mikulski, W.M., Liftings of linear vector fields to product preserving gauge bundle functors on vector bundles, *Lobachevskii Math. J.*, 12 (2003), 51-61.

- [5] MIKULSKI, W.M., Product preserving gauge bundle functors on vector bundles, Colloq. Math., 90 (2) (2001), 277 285.
- [6] Vondra, A., Higher order differential equations represented by connections on prolongations of a fibered manifold, *Extracta Math.*, **15** (3) (2000), 421–512.