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Departamento de Matemática Pura, Universidade do Porto
Rua do Campo Alegre, 687, 4169–007 Porto, Portugal, jcsantos@fc.up.pt

Presented by Avinoam Mann Received March 7, 2007

Abstract : Let G be a topological group which acts in a continuous and transitive way on
a topological space M . Sufficient conditions are given that assure that, for every m ∈ M ,
the map from G onto M defined by g 7→ g · m is an open map. Some consequences of
the existence of these conditions, concerning spinor groups and covering homomorphisms
between Lie groups, are obtained.
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Introduction

A standard reference concerning Clifford algebras and spinor groups is
[2, Part I]. In that article, the authors define, for each k ∈ N, the spinor group
Spin(k) as a group of invertible elements of the real Clifford algebra Ck. There
is a natural continuous homomorphism ρ from Spin(k) to SO(k,R) and the
authors state that ρ is a covering homomorphism (see [2, Proposition 3.13]).
However, what is actually proved is just that ρ is surjective and that the kernel
has two elements and this is not enough to prove the statement. The same
problem arises in [3, §I.6], in [5, §20.2] and in [6, §4.7]. The goal of this article
is to state and prove a theorem concerning topological groups that assures
that ρ is really a covering homomorphism. Another way of doing this, using
Lie theory, can be found in [4, §II.XI]. We also give a new proof of a theorem
concerning covering homomorphisms between Lie groups.

1. The main theorem

In what follows, every topological space (and, in particular, every topo-
logical group) is Hausdorff. The unit element of a group G will be denoted
by eG or simply by e, when there is only one group involved. The concepts
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and basic facts concerning topological groups which will be needed here can
be found at [4, Chapter II].

If ϕ is a continuous homomorphism from a topological group G to a topo-
logical group H, in order that ϕ is a covering homomorphism it is necessary
that ϕ is surjective and that the kernel of ϕ is discrete. In general, these
conditions are not sufficient to assure that ϕ is a covering homomorphism. As
an example, let α be a real irrational number and let G be the subgroup of the
torus S1×S1 whose elements are those of the form (exp(it), exp(iαt)), for some
t ∈ R. Consider the homomorphism of the group (R, +) onto G that maps
each t ∈ R into (exp(it), exp(iαt)). If you consider in R and in G the usual
topologies, then this map is a continuous and bijective homomorphism, but
it is not a homeomorphism since G is not locally compact. An even simpler
example is given by the identity map from (R,+) (with the discrete topology)
onto (R,+) (with the usual topology).

In order to give general conditions concerning two topological groups G
and H that assure that each continuous and surjective homomorphism from
G onto H with discrete kernel is a covering homomorphism, we shall have to
prove a theorem concerning group actions on topological spaces.

Theorem 1. Let G be a Lindelöf and locally compact topological group
which acts in a continuous and transitive way on a Baire space M . If m ∈ M ,
then the map

G −→ M
g 7−→ g ·m

is an open map.

Proof. It will be enough to prove that if V is a neighborhood of e, then
V · m is a neighborhood of m. Let W be a neighborhood of e such that
W−1 ·W ⊂ V and suppose that W ·m is a neighborhood of some of its points;
in other words, suppose that, for some w0 ∈ W , W ·m is a neighborhood of
w0 ·m. Then w0

−1 · (W ·m) is a neighborhood of m and therefore
⋃

w∈W

w−1 · (W ·m) (= V ·m)

is a neighborhood of m.
Therefore, all that remains to be proved is that among all neighborhoods

W of e such that W−1 · W ⊂ V there is at least one such that W · m is a
neighborhood of some of its points, and this is equivalent to saying that the



covering homomorphism 327

interior of W ·m is not empty. Let W be a compact neighborhood of e such
that W−1 ·W ⊂ V ; such a neighborhood exists since we are supposing that
G is locally compact. It is clear that the interior of W ·m is not empty if and
only if, for some g ∈ G, the interior of g · (W ·m) is not empty. It follows from
the fact that G is a Lindelöf space and from the fact that

⋃
g∈G g · ◦

W = G
that there is a sequence (gn)n∈N of elements of G such that

⋃
n∈N gn ·W = G

and, therefore, such that
⋃

n∈N gn · (W · m) = M , since the action of G on
M is transitive. For each n ∈ N, gn · (W · m) is a compact set, since W is
compact and the action is continuous, and, in particular, each set gn · (W ·m)
is a closed set. Since M is a Baire space, there is at least one n ∈ N such that
the interior of gn · (W ·m) is not empty and, as it has already been observed,
this is equivalent to the assertion that the interior of W ·m is not empty.

This proof is adapted from the proof of the corollary in [1, §9] (see Corol-
lary 2 below).

It should be observed that if G is a connected and locally compact topo-
logical group, then G is also a Lindelöf space. In fact, since G is connected, it
is generated by any neighborhood of e (see [4, §II.IV, Theorem 1]) and there-
fore if V is a compact neighborhood of e then G =

⋃
n∈N V n. This proves

that G is σ-compact and therefore Lindelöf. Of course, it follows from this
observation and from the fact that any connected component of a topological
group is homeomorphic to the connected component of the unit element that,
more generally, if a locally compact group G has only a finite or countable set
of connected components, then G is Lindelöf.

Before we proceed, let us see an interesting consequence of the previous
theorem. This corollary is the corollary of [1, §9] that was mentioned above;
we prove it for completeness and because the proof is very short.

Corollary 2. Let G be a Lindelöf and locally compact group which acts
in a continuous and transitive way on a Baire space M . Given m ∈ M , if H
is the stabilizer of m in G and if in G/H one considers the final topology with
respect to the natural projection from G onto G/H, then the map

G/H −→ M
gH 7−→ g ·m

is a homeomorphism.

Proof. The map is clearly a continuous bijection and all that remains to be
proved is that it is an open map. If A is an open set of G/H and π : G → G/H
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denotes the natural projection, then A is mapped onto π−1(A) ·m and this
set is an open set, by the previous theorem.

Theorem 3. Let G and H be topological groups and suppose that, as
topological spaces, G is Lindelöf and locally compact and H is a Baire space.
If ϕ is a continuous homomorphism from G onto H, then ϕ is a covering
homomorphism if and only if its kernel is discrete.

Proof. The homomorphism ϕ induces the action from G on H defined by

G −→ Aut(H)

g 7−→
(

H → H
h 7→ ϕ(g) · h

)
.

This action is continuous (since ϕ is continuous) and transitive (since ϕ is
surjective). Therefore, it follows from the theorem 1 (with m = eH) that ϕ is
an open map. Let V be a neighborhood of eG such that V ∩ kerϕ = {eG},
let W be an open neighborhood of eG such that W · W−1 ⊂ V and define
W ′ = ϕ(W ). Since ϕ is an open map, W ′ is a neighborhood of eH . Then

ϕ−1(W ′) =
⋃

g∈ker ϕ

g ·W

and, furthermore, this is a disjoint union, because if g, h ∈ kerϕ and v, w ∈ W
are such that g · v = h ·w, then v ·w−1 = g−1 · h ∈ kerϕ; since v ·w−1 ∈ V , it
follows that g = h. Therefore ϕ−1(W ′) is homeomorphic to ker(ϕ)×W ′ when
we consider in kerϕ the discrete topology. This proves that ϕ is a covering
homomorphism.

In order to apply this theorem to the spinor groups, it will be enough
to prove that these groups are Lindelöf and locally compact. But it is a
consequence of the definition of Spin(k) (see [2, pp. 6–8]) that this group can
be seen as a closed subset of a finite-dimensional real vector space (with the
usual topology); therefore, it is both a Lindelöf space and a locally compact
space. Since SO(k,R) is compact (and therefore a Baire space) the natural
homomorphism from Spin(k) onto SO(k,R) is a covering homomorphism. As
it was observed before (see [2, Part I] and [3, §I.6]), this fact can be used to
prove that Spin(k) has a Lie group structure.
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2. Lie group homomorphisms

Let us extract another consequence of Theorem 3. If ϕ is an analytic
homomorphism from a Lie group G to a Lie group H, let ϕ∗ denote the dif-
ferential of ϕ at eG. Note that, since every connected Lie group is locally
compact, Lindelöf and a Baire space, theorem 3 implies that an analytic ho-
momorphism ϕ from a connected Lie group G to a Lie group H is a covering
homomorphism if and only if ϕ is surjective and kerϕ is discrete.

Theorem 4. If G and H are connected Lie groups and ϕ is an analytic
homomorphism from G onto H, then ϕ is a covering homomorphism if and
only if ϕ∗ is an isomorphism.

Proof. Using the exponential map it is easy to prove that if ϕ∗ is surjective
then ϕ is also surjective. In fact, these statements are equivalent. If ϕ is sur-
jective, then it induces a bijective analytic homomorphism ψ : G/ ker(ϕ) → H.
It is in fact a homeomorphism; this can be seen as a consequence of Corol-
lary 2 or as an application of the theorem of invariance of domain. Since every
continuous homomorphism between Lie groups is analytic (see [4, §IV.XIII]
or [7, Theorem 3.39]), it follows that ψ−1 is also analytic. Therefore, ψ∗ is an
isomorphism and this implies that ϕ∗ is surjective; in fact, if π denotes the
natural projection from G onto G/ ker(ϕ), then π∗ is surjective and

ϕ = ψ ◦ π =⇒ ϕ∗ = ψ∗ ◦ π∗.

Finally, observe that ϕ∗ is injective if and only if the kernel of ϕ is discrete.
Indeed, if ϕ∗ is not injective, then there is some X in the Lie algebra g of G
such that X 6= 0 and that ϕ∗(X) = 0, and this would imply that

ϕ(exp(tX)) = exp(tϕ∗(X)) = eH for all t ∈ R .

On the other hand, if ϕ∗ is injective and if U is neighborhood of 0 in g such
that exp |U and exp |ϕ∗(U) are injective and that exp(U) is a neighborhood V
of eG, then every g ∈ V \ {eG} has the form exp(X) for some X ∈ U \ {0}
and therefore

ϕ(g) = ϕ(exp(X)) = exp(ϕ∗(X)) ;

since ϕ∗(X) 6= 0 and exp |ϕ∗(U) is injective, this proves that ϕ(g) 6= eH .

Cf. [7, p. 100] for another proof of Theorem 4.
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[3] Bröcker, T., tom Dieck, T., “Representations of Compact Lie Groups ”,
Springer-Verlag, New York, 1995.

[4] Chevalley, C., “Theory of Lie Groups I ”, Princeton University Press,
Princeton, N.J., 1946.

[5] Fulton, W., Harris, J., “Representation Theory. A First Course ”,
Springer-Verlag, New York, 1991.
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