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1. Introduction

Recently the first author ([1]) introduced the notion of Lorentzian concir-
cular structure manifolds (briefly (LCS)n-manifolds) with an example, which
generalizes the notion of LP-Sasakian manifolds introduced by Matsumoto
([4]). The notion of local symmetry of a Riemannian manifold has been weak-
ened by many authors in several ways to a different extent. As a weaker
version of local symmetry, T. Takahashi ([5]) introduced the notion of local
φ-symmetry on a Sasakian manifold.

In the context of Lorentzian geometry, the notion of local φ-symmetry is
introduced and studied by Shaikh and Baishya ([2]) with several examples.
Generalizing these notions, in the present paper we introduce the notion of
locally φ-recurrent (LCS)n-manifolds. Section 2 is concerned with some
curvature properties of (LCS)n-manifolds. Section 3 consists of locally φ-
recurrent (LCS)n-manifolds and obtained a necessary and sufficient condition
for such a manifold to be of locally φ-recurrent. It is shown that in a locally φ-
recurrent (LCS)n-manifold, r

2 is an eigenvalue of the Ricci tensor correspond-
ing to the eigenvector associated to the 1-form of the recurrence, r being the
scalar curvature of the manifold. And also in a locally φ-recurrent (LCS)n-
manifold, the recurrent vector field is obtained as ρ = 1

r grad r. Finally, the
existence of such a manifold is ensured by several non-trivial examples in both
odd and even dimension.
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2. (LCS)n-manifolds

An n-dimensional Lorentzian manifold M is a smooth connected para-
compact Hausdorff manifold with a Lorentzian metric g, that is, M admits a
smooth symmetric tensor field g of type (0,2) such that for each point p ∈ M ,
the tensor gp : TpM × TpM → R is a non-degenerate inner product of sig-
nature (−,+, . . . ,+), where TpM denotes the tangent vector space of M at
p and R is the real number space. A non-zero vector v ∈ TpM is said to be
timelike (resp., non-spacelike, null, spacelike) if it satisfies gp(v, v) < 0 (resp.,
≤ 0, = 0, > 0) ([3]).

Definition 2.1. In a Lorentzian manifold (M, g) a vector field P defined
by

g(X, P ) = A(X)

for any X ∈ χ(M) is said to be a concircular vector field if

(∇XA)(Y ) = α{g(X, Y ) + ω(X)A(Y )}

where α is a non-zero scalar and ω is a closed 1-form.

Let Mn be a Lorentzian manifold admitting a unit timelike concircular
vector field ξ, called the generator of the manifold. Then we have

g(ξ, ξ) = −1 . (2.1)

Since ξ is a unit concircular vector field, it follows that there exists a non-zero
1-form η such that for

g(X, ξ) = η(X) , (2.2)

the equation of the following form holds

(∇Xη)(Y ) = α{g(X, Y ) + η(X)η(Y )} (α 6= 0) (2.3)

for all vector fields X, Y where ∇ denotes the operator of covariant differ-
entiation with respect to the Lorentzian metric g and α is a non-zero scalar
function satisfies

∇Xα = (Xα) = dα(X) = ρη(X) (2.4)

ρ being a certain scalar function given by ρ = −(ξα). If we put

φX =
1
α
∇Xξ , (2.5)
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then from (2.3) and (2.5) we have

φX = X + η(X)ξ , (2.6)

from which it follows that φ is a symmetric (1,1) tensor and called the struc-
ture tensor of the manifold. Thus the Lorentzian manifold Mn together with
the unit timelike concircular vector field ξ, its associated 1-form η and (1,1)
tensor field φ is said to be a Lorentzian concircular structure manifold (briefly
(LCS)n-manifold) ([1]). Especially, if we take α = 1, then we can obtain
the LP-Sasakian structure of Matsumoto ([4]). In a (LCS)n-manifold, the
following relations hold ([1]):

a) η(ξ) = −1 , b) φξ = 0 , (2.7)

c) η(φX) = 0 , d) g(φX, φY ) = g(X,Y ) + η(X)η(Y ) ,

η(R(X, Y )Z) = (α2 − ρ)[g(Y,Z)η(X)− g(X,Z)η(Y )] , (2.8)

S(X, ξ) = (n− 1)(α2 − ρ)η(X) , (2.9)

R(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ] , (2.10)

(∇Xφ)(Y ) = α{g(X, Y )ξ + 2η(X)η(Y )ξ + η(Y )X} , (2.11)

(Xρ) = dρ(X) = βη(X) . (2.12)

We now state and prove some curvature properties of (LCS)n-manifold which
will be frequently used later on.

Lemma 2.1. Let (Mn, g) be a (LCS)n-manifold. Then for any X, Y, Z
the following relation holds:

R(X,Y )Z = φR(X,Y )Z + (α2 − ρ){g(Y, Z)η(X)− g(X, Z)η(Y )}ξ (2.13)

for any vector field X,Y, Z.

Proof. From (2.3), (2.4), (2.5), (2.6) and (2.10) we can easily get (2.13).

Lemma 2.2. Let (Mn, g) be a (LCS)n-manifold. Then for any X, Y, Z
the following relation holds:

(∇W R)(X,Y )ξ = (2αρ− β){η(Y )η(W )X − η(X)η(W )Y } (2.14)

+ α(α2 − ρ){g(Y,W )X − g(X,W )Y } − αR(X,Y )W.
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Proof. By virtue of (2.3), (2.6) and (2.10) we can easily get (2.14).

Lemma 2.3. Let (Mn, g) be a (LCS)n-manifold. Then for any X, Y, Z
the following relation holds:

g((∇W R)(X, Y )Z, U) = −g((∇W R)(X, Y )U,Z) . (2.15)

Proof. By definition, we have

g((∇W R)(X,Y )Z,U) = g(∇W R(X, Y )Z, U) + R̃(X, Y, U,∇W Z) (2.16)

+ R̃(∇W X,Y, U, Z) + R̃(X,∇W Y,U, Z) ,

where R̃(X,Y, Z, U) = g(R(X, Y )Z, U) and the property of curvature tensor
have been used. Since ∇ is a metric connection, it follows that

g(∇W R(X,Y )Z,U) = g(R(X, Y )∇W U,Z)−∇W g(R(X,Y )U,Z) (2.17)

and

∇W g(R(X,Y )U,Z) = g(∇W R(X, Y )U,Z) + g(R(X, Y )U,∇W Z) . (2.18)

From (2.17) and (2.18) we have

g(∇W R(X, Y )Z, U) = − g(∇W R(X,Y )U,Z) (2.19)

− g(R(X, Y )U,∇W Z) + g(R(X,Y )∇W U,Z) .

Using (2.19) in (2.16), we get the relation (2.15).

3. Locally φ-recurrent (LCS)n-manifolds

Definition 3.1. A (LCS)n-manifold (Mn, g) is said to be locally φ-re-
current if and only if there exists a non-zero 1-form A such that

φ2((∇W R)(X, Y )Z) = A(W )R(X, Y )Z (3.1)

holds for any vector field X, Y, Z, W orthogonal to ξ, that is, for any horizontal
vector field X, Y, Z, W.

If, in particular, the 1-form A vanishes identically, then the manifold is
said to be a locally φ-symmetric manifold ([5]).
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Theorem 3.1. A (LCS)n-manifold (Mn, g) is locally φ-recurrent if and
only if the relation

(∇W R)(X,Y )Z = α(α2 − ρ){g(Y, Z)g(X, W )− g(X, Z)g(Y, W )}ξ
− αg(R(X,Y )W,Z)ξ + A(W )R(X, Y )Z (3.2)

holds for all horizontal vector fields X, Y, Z, W on M .

Proof. Let us consider a (LCS)n-manifold (Mn, g) which is locally φ-
recurrent. Then using (2.6) in (3.1) we have

(∇W R)(X,Y )Z + η((∇W R)(X,Y )Z)ξ = A(W )R(X,Y )Z (3.3)

for any X, Y, Z, W orthogonal to ξ. In view of (2.15), it follows from (3.3)
that

(∇W R)(X, Y )Z = g((∇W R)(X,Y )ξ, Z)ξ + A(W )R(X, Y )Z . (3.4)

Using (2.14) in (3.4) we obtain the relation (3.2). Conversely, if in a (LCS)n-
manifold the relation (3.2) holds, then applying φ on both sides of (3.2) and
keeping in mind that X, Y, Z and W are orthogonal to ξ, we obtain (3.1).
This proves the theorem.

Theorem 3.2. A (LCS)n-manifold is of positive (resp. negative) con-
stant curvature according as α2 > ρ (resp. α2 < ρ) if and only if the relation

φ2((∇W R)(X, Y )ξ) = A(W )R(X, Y )ξ (3.5)

holds for all horizontal vector fields X, Y, W .

Proof. Using (2.6) in (3.5) we have

(∇W R)(X, Y )ξ + η((∇W R)(X,Y )ξ)ξ = A(W )R(X, Y )ξ . (3.6)

In view of (2.14) and (2.10), (3.6) yields

(∇W R)(X,Y )ξ = 0 (3.7)

for any horizontal vector field X,Y, W . Also for any X, Y,W orthogonal to ξ,
the relation (2.14) reduces to

(∇W R)(X,Y )ξ = (2αρ− β){η(Y )η(W )X − η(X)η(W )Y } (3.8)

+ α(α2 − ρ){g(Y,W )X − g(X,W )Y } − αR(X,Y )W.
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From (3.7) and (3.8), it follows that

R(X,Y )W = (α2 − ρ){g(Y, W )X − g(X, W )Y } (3.9)

for any horizontal vector field X, Y, W . We shall now show that α2 − ρ is
constant. Taking covariant derivative along any horizontal vector field X and
then using (2.4) and (2.12) we obtain

∇X(α2 − ρ) = 0

and hence α2 − ρ =constant. Thus the manifold is of constant curvature.
Conversely, if a (LCS)n-manifold is of constant curvature, then from (3.9)

it follows that the relation (3.5) holds. This proves the theorem.

Theorem 3.3. In a locally φ-recurrent (LCS)n-manifold (Mn, g) (n > 3),
r
2 is an eigenvalue of the Ricci tensor corresponding to the eigenvector ρ, where
ρ is the associated vector field of the 1-form A.

Proof. In a locally φ-recurrent (LCS)n-manifold the relation (3.1) holds.
Changing W, X, Y cyclically in (3.1) and then adding the results we obtain

[
(∇W R)(X, Y )Z + (∇XR)(Y, W )Z + (∇Y R)(W,X)Z

]

+
[
η((∇W R)(X, Y )Z) + η((∇XR)(Y, W )Z) + η((∇Y R)(W,X)Z)

]
ξ

= A(W )R(X, Y )Z + A(X)R(Y, W )Z + A(Y )R(W,X)Z ,

which yields by virtue of Bianchi identity that

A(W )R(X, Y )Z + A(X)R(Y, W )Z + A(Y )R(W,X)Z = 0 (3.10)

for all X, Y, Z, W orthogonal to ξ. Taking an inner product on both sides of
(3.10) by any horizontal vector field U , we get

A(W )g(R(X, Y )Z, U) + A(X)g(R(Y, W )Z, U) (3.11)

+ A(Y )g(R(W,X)Z, U) = 0 .

Contraction over X and U in (3.11) yields

A(W )S(Y, Z) + A(R(Y, W )Z)−A(Y )S(W,Z) = 0 . (3.12)

Again, contracting X and U in (3.12) we obtain

S(W,ρ) =
r

2
A(W ) =

r

2
g(W,ρ) .

This proves the theorem.
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Theorem 3.4. In a locally φ-recurrent (LCS)n-manifold (Mn, g), the
1-form of recurrence A is given by

A(W ) =
dr(W )

r
(3.13)

for all W orthogonal to ξ, where r is the non-zero and non-constant scalar
curvature of the manifold.

Proof. In a locally φ-recurrent (LCS)n-manifold, the relation (3.2) holds
good. Taking an inner product on both sides of (3.2) by an arbitrary horizontal
vector field U tangent to M , we obtain

g((∇W R)(X,Y )Z,U) = A(W )g(R(X,Y )Z,U) . (3.14)

Contracting over X and U in (3.14), we get

(∇W S)(Y,Z) = A(W )S(Y, Z) (3.15)

which yields again by contraction over Y and Z, the relation (3.13). This
proves the theorem.

In particular, if r is a non-zero constant in the direction orthogonal to
ξ, then the locally φ-recurrent (LCS)n-manifold reduces to the locally φ-
symmetric (LCS)n-manifold. Thus we have the following corollary:

Corollary 3.1. If in a locally φ-recurrent (LCS)n-manifold (Mn, g) the
scalar curvature is a non-zero constant along the orthogonal direction to ξ,
then the manifold is locally φ-symmetric.

We shall now construct several examples of locally φ-recurrent (LCS)n-
manifolds.

Example 3.1. We consider a 3-dimensional manifold

M =
{
(x, y, z) ∈ R3 : x 6= ±

√
2z2, x 6= 0, z 6= 0

}
,

where (x, y, z) are the standard coordinates in R3. Let {E1, E2, E3} be linearly
independent global frame on M given by

E1 = z
∂

∂x
, E2 = zx

∂

∂y
, E3 =

∂

∂z
.
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Let g be the Lorentzian metric defined by

g(E1, E3) = g(E2, E3) = g(E1, E2) = 0 ,

g(E1, E1) = g(E2, E2) = 1 ,

g(E3, E3) = −1 .

Let η be the 1-form defined by η(U) = g(U,E3) for any U ∈ χ(M). Let φ be
the (1,1) tensor field defined by φE1 = E1, φE2 = E2, φE3 = 0. Then using
the linearity of φ and g we have

η(E3) = −1 ,

φU = U + η(U)E3 ,

g(φU, φW ) = g(U,W ) + η(U)η(W )

for any U,W ∈ χ(M).
Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric

g and R be the curvature tensor of g. Then we have

[E1, E2] =
z

x
E2 , [E1, E3] = −1

z
E1 , [E2, E3] = −1

z
E2 . (3.16)

Taking E3 = ξ and using Koszul formula for the Lorentzian metric g, we can
easily calculate

∇E1E3 = −1
z
E1 , ∇E1E1 = −1

z
E3 , ∇E1E2 = 0 ,

∇E2E3 = −1
z
E2 , ∇E3E2 = 0 , ∇E2E1 = − z

x
E2 ,

∇E3E3 = 0 , ∇E2E2 =
z

x
E1 − 1

z
E3 , ∇E3E1 = 0 .

From the above it can be easily seen that E3 = ξ is a unit timelike concircular
vector field and hence (φ, ξ, η, g) is a (LCS)3 structure on M . Consequently
M3(φ, ξ, η, g) is a (LCS)3-manifold with α = −1

z 6= 0 such that (Xα) = ρη(X)
where ρ = − 1

z2 . Using the above relations, we can easily calculate the non-
vanishing components of the curvature tensor R as follows:
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R(E2, E3)E3 = − 2
z2

E2 , R(E1, E3)E3 = − 2
z2

E1 ,

R(E1, E2)E2 = −
[
2

( z

x

)2
− 1

z2

]
E1 , R(E2, E3)E2 = − 2

z2
E3 ,

R(E1, E3)E1 = − 2
z2

E3 , R(E1, E2)E1 =
[
2

( z

x

)2
− 1

z2

]
E2

and the components which can be obtained from these by the symmetry prop-
erties. From the above, we can easily calculate the non-vanishing components
of the Ricci tensor S as follows:

S(E1, E1) = −
[
2

( z

x

)2
− 1

z2

]
,

S(E2, E2) = −
[
2

( z

x

)2
− 1

z2

]
,

S(E3, E3) = − 4
z2

.

Hence the scalar curvature r is given by

r =
3∑

i=1

εiS(Ei, Ei) = −
[
4

( z

x

)2
− 2

z2

]
6= 0 ,

where εi = g(Ei, Ei).
Consequently, dr(E1) = −8( z

x)3 6= 0 but dr(E2) = 0. We shall show
that the manifold (M3, g) under consideration is locally φ-recurrent (LCS)3-
manifold. To verify this we calculate the covariant derivatives of the required
non-zero components of the curvature tensor as follows:

(∇E1R)(E1, E2)E1 = −4(
z

x
)3E2 ,

(∇E1R)(E1, E2)E2 = 4(
z

x
)3E1 ,

(∇E2R)(E1, E2)E1 =

[(
1
z

)3

− 2z

x2

]
E3 .
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This implies that the manifold under consideration is not locally φ-symmetric.
Let us now consider the components of the 1-form A as follows:

A(Ei) =




− 4z5

x(2z4 − x2)
for i = 1 ,

0 otherwise ,

at any point x ∈ M . In our M3, (3.1) reduces with the 1-form to the following
equations:

φ2((∇EiR)(Ej , Ek)El = A(Ei)R(Ej , Ek)El ,

for i, j, k, l = 1, 2. Hence the manifold under consideration satisfies the fol-
lowing relation

φ2((∇W R)(X, Y )Z) = A(W )R(X, Y )Z

for all vector fields X,Y, Z, W orthogonal to ξ, that is, for any horizontal vector
field X, Y, Z, W . Thus the manifold (M3, g) under consideration is neither
locally symmetric nor locally φ-symmetric but locally φ-recurrent (LCS)3-
manifold. Hence we can state the following:

Theorem 3.5. There exists a locally φ-recurrent (LCS)3-manifold which
is neither locally symmetric nor locally φ-symmetric.

Example 3.2. We consider the 4-dimensional manifold

M =
{

(x, y, z, u) ∈ R4 : u 6= 0, x 6= ±1,±
√

2
}

,

where (x, y, z, u) are the standard coordinates in R4. Let {E1, E2, E3, E4} be
linearly independent global frame on M given by

E1 = − 1
u

∂

∂x
, E2 = − x

u

(
∂

∂y
+

∂

∂z

)
, E3 = − 1

u

∂

∂z
, E4 =

∂

∂u
.

Let g be the Lorentzian metric defined by

g(E1, E1) = g(E2, E2) = g(E3, E3) = 1 ,

g(E4, E4) = −1 ,

g(Ei, Ej) = 0 for i 6= j .
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Let η be the 1-form defined by η(U) = g(U,E4) for any U ∈ χ(M). Let φ be
the (1,1) tensor field defined by φE1 = E1, φE2 = E2, φE3 = E3 and φE4 = 0.
Then using the linearity of φ and g we have

η(E4) = −1 ,

φ2U = U + η(U)E4 ,

g(φU, φW ) = g(U,W ) + η(U)η(W )

for any U,W ∈ χ(M). Let ∇ be the Levi-Civita connection with respect to
the Lorentzian metric g and R be the curvature tensor of g. Then we have

[E1, E4] = − 1
u

E1 , [E1, E2] = − 1
xu

E2 ,

[E2, E4] = − 1
u

E2 , [E3, E4] = − 1
u

E3 .

Taking E4 = ξ and using Koszul formula for the Lorentzian metric g, we can
easily calculate

∇E1E4 = − 1
u

E1 , ∇E2E4 = − 1
u

E2 , ∇E3E4 = − 1
u

E3 ,

∇E1E1 = − 1
u

E4 , ∇E2E1 =
1
xu

E2 , ∇E3E3 = − 1
u

E4 ,

∇E2E2 = − 1
u

E4 − 1
ux

E1 .

From the above it can be easily seen that E4 = ξ is a unit timelike concircular
vector field and hence (φ, ξ, η, g) is a (LCS)4 structure on M . Consequently
M4(φ, ξ, η, g) is a (LCS)4-manifold with α = − 1

u 6= 0 and ρ = − 1
u2 . Using

the above relations, we can easily calculate the non-vanishing components of
the curvature tensor as follows:

R(E2, E3)E2 = − 1
u2

E3 , R(E2, E3)E3 =
1
u2

E2 ,

R(E1, E3)E1 = − 1
u2

E3 , R(E1, E3)E3 =
1
u2

E1 ,

R(E3, E4)E4 = − 2
u2

E3 , R(E3, E4)E3 = − 2
u2

E4 ,
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R(E1, E4)E1 = − 2
u2

E4 , R(E1, E4)E4 = − 2
u2

E1 ,

R(E2, E4)E2 = − 2
u2

E4 , R(E2, E4)E4 = − 2
u2

E2 ,

R(E1, E2)E2 =
1
u2

(
1− 2

x2

)
E1 , R(E1, E2)E1 = − 1

u2

(
1− 2

x2

)
E2 ,

and the components which can be obtained from these by the symmetry prop-
erties. From the above, we can easily calculate the scalar curvature r as
follows:

r =
4∑

i=1

εiS(Ei, Ei) =
2
u2

(
1− 2

x2

)
6= 0 ,

where εi = g(Ei, Ei). Consequently, dr(E1) = − 8
(ux)3

6= 0, but dr(E2) = 0,
dr(E3) = 0. We shall now show that the manifold (M4, g) is locally φ-
recurrent (LCS)4-manifold. To verify this we calculate the covariant deriva-
tives of the required non-zero components of the curvature tensor as follows:

(∇E1R)(E1, E2)E1 =
4

(ux)3
E2 ,

(∇E1R)(E1, E2)E2 = − 4
(ux)3

E1 +
(

1
u3

+
1

x2u3

)
E4 ,

(∇E2R)(E1, E2)E1 = − 2
x2u3

E4 .

This implies that the manifold under consideration is not locally φ-symmetric.
Let us now consider the components of the 1-form as follows:

A(Ei) =




− 2

ux(x2 − 1)
for i = 1 ,

0 otherwise ,

at any point x ∈ M . In our M3, (3.1) reduces with the 1-form to the following
equations:

φ2((∇EiR)(Ej , Ek)El) = A(Ei)R(Ej , Ek)El ,

for i, j, k, l = 1, 2. Hence the manifold satisfies the following relation

φ2((∇W R)(X, Y )Z) = A(W )R(X, Y )Z

for all vector fields X,Y, Z,W orthogonal to ξ. Thus the manifold (M4, g)
under consideration is neither locally symmetric nor locally φ-symmetric but
locally φ-recurrent (LCS)4-manifold. Hence we can state the following:
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Theorem 3.6. There exists a locally φ-recurrent (LCS)4-manifold which
is neither locally symmetric nor locally φ-symmetric.
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