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Abstract : We study geometric properties of radial projections of bisectors in finite-
dimensional real Banach spaces (i.e., in Minkowski spaces), especially the relation between
the geometric structure of radial projections and Birkhoff orthogonality. As an application
of our results it is shown that for any Minkowski space there exists a number, which plays
somehow the role that

√
2 plays in Euclidean space. This number is referred to as the critical

number of any Minkowski space. Lower and upper bounds on the critical number are given,
and the cases when these bounds are attained are characterized. Some new characterizations
of inner product spaces are also derived.
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1. Introduction

It is well known that bisectors in finite-dimensional real Banach spaces
(i.e., Minkowski spaces) have, in general, a complicated topological and ge-
ometric structure. It is interesting to observe that, due to this, even their
radial projections (onto the unit sphere) still have a large variety of properties
yielding interesting results, such as new characterizations of inner product
spaces and basic relations to different orthogonality concepts.

Let X be a Minkowski space with norm ‖·‖, origin o, unit sphere SX , and
unit ball BX (basic references to the geometry of Minkowski spaces are [18],
[16], [17], and the monograph [19]). The bisector B(p, q) of the linear segment
with endpoints p 6= q in X is defined by

B(p, q) := {x ∈ X : ‖x− p‖ = ‖x− q‖}.
The notion of bisector is closely related to the construction of Voronoi di-
agrams and has been intensively studied in computational geometry (where
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most of the results are obtained without the assumption that the unit ball is
centrally symmetric, cf. [6] and [7]) as well as in the geometry of Minkowski
spaces (Minkowski geometry). We refer to [16] and [18] for a survey on many
results about bisectors in the context of Minkowski geometry.

In the present paper, we study the structure of the radial projection P (x)
of B(−x, x) for any point x ∈ X\{o}, which is defined by

P (x) :=
{

z

‖z‖ : z ∈ B(−x, x)\{o}
}

.

It is evident that if X is the Euclidean plane, then P (x) contains precisely
two points for any x ∈ X\{o}, and when X is an n-dimensional Euclidean
space (n ≥ 3), then P (x) is the unit sphere of an (n−1)-dimensional subspace.
As we shall see, the geometric properties of P (x) in general Minkowski spaces
are much more complicated and worth studying.

Among the various types of orthogonalities defined for normed linear spaces
(cf. [3] and [4]), isosceles orthogonality and Birkhoff orthogonality are closely
related to geometric properties of bisectors. We say that x ∈ X is isosceles
orthogonal to y ∈ X, denoted by x ⊥I y, if ‖x + y‖ = ‖x− y‖ (cf. [12]); x is
said to be Birkhoff orthogonal to y if ‖x + ty‖ ≥ ‖x‖ holds for any real number
t, and in this case we write x ⊥B y (cf. [13]). We refer to [12], [13], [3], and
[4] for basic properties of Birkhoff orthogonality and isosceles orthogonality.
As shown in [5, p. 26], a point z belongs to B(p, q) if and only if z − p+q

2
is isosceles orthogonal to p−q

2 , which means that the geometric structure of
bisectors in Minkowski spaces is fully determined by geometric properties of
isosceles orthogonality. (We also have that B(−x, x) = {z : x ⊥I z} and
P (x) =

{
z
‖z‖ : x ⊥I z, z 6= o

}
.) Furthermore, it has been shown that in the

planar case the bisector B(−x, x) is fully contained in a bent strip determined
by x and those points on SX which are Birkhoff orthogonal to x (see Lemma
2.5 below). We show that much more can be said about the relation between
Birkhoff orthogonality and the geometric structure of bisectors in Minkowski
spaces.

In Section 2, we study geometric properties of bisectors in Minkowski
planes and provide some detailed relation between Birkhoff orthogonality and
the geometric structure of bisectors. Moreover, the intersection of radial pro-
jections of two bisectors is discussed. We lay special emphasis on planar re-
sults, since many of the results in higher dimensions can be directly obtained
from their analogues in the planar case. One of the exceptions, namely the
connectivity of P (x) in higher dimensions, is presented in Section 5.
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In Section 3 we prove the existence of a critical number c(X) for any
Minkowski space X, which plays the role that

√
2 plays in Euclidean space.

Also, we derive lower and upper bounds on c(X) and characterize the situa-
tions when c(X) attains these bounds.

In the fourth section we derive a new characterization of Euclidean space,
which says that if the bisector of the segment between any two points u,
v ∈ SX (u 6= −v) intersects SX in u+v

‖u+v‖ , then X is Euclidean. This charac-
terization requires less information about properties of bisectors than other
related characterizations.

For x, y ∈ X, with x 6= y, we denote by [x, y] the segment between x and y,
by 〈x, y〉 the line passing through x and y, and by [x, y〉 the ray with starting
point x passing through y. Also we write −→xy for the orientation from x to y,
and x̂ for x

‖x‖ (x 6= o) . The convex hull, closure, and interior of a set S are
denoted by convS, S, and intS, respectively. The distance from a point x to
a set S is denoted by d(x, S). Several times we also need the Monotonicity
Lemma (we refer to Proposition 31 in [18], which is a suitable generalization
of it): for p ∈ SX fixed and x ∈ SX variable in dimension two, the length
‖p− x‖ is non-decreasing as x moves on SX from p to −p.

2. Radial projections of bisectors in Minkowski planes

Throughout this section, X is a Minkowski plane with a fixed orientation
ω. For any x ∈ X\{o}, let H+

x and H−
x be the two open half-planes bounded

by 〈−x, x〉 such that
−−−→
(−x)z = −→zx = ω holds for any point z ∈ H+

x , and that
−→xz =

−−−→
z(−x) = ω holds for any point z ∈ H−

x . Set

P+(x) = P (x) ∩H+
x and P−(x) = P (x) ∩H−

x .

It is evident that for any x ∈ X\{o} and any number α > 0

P (αx) = P (x), P+(αx) = P+(x) = P−(−αx)

and
P−(αx) = P−(x) = P+(−αx).

Thus it suffices to study the geometric structure of P (x) = P (−x) for each
x ∈ SX .
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Theorem 2.1. For any x ∈ SX , P+(x) and P−(x) are two connected
subsets of SX , and P (x) = P+(x) ∪ P−(x).

Proof. It is clear that P (x) = P+(x) ∪ P−(x), since B(−x, x) ∩ 〈−x, x〉 =
{o}.

By P−(x) = −P+(x) it suffices to show that P+(x) is connected. Let
y ∈ SX ∩ H+

x be a point such that y ⊥B x. Then x and y are linearly
independent. Set

T : X −→ R
z = αx + βy −→ β.

It is clear that T is continuous and T (H+
x ) = {t : t > 0}.

Now we show that B(−x, x)∩H+
x is connected. Suppose the contrary, i.e.,

that B(−x, x) ∩ H+
x can be partitioned into two disjoint nonempty subsets

A1 and A2 which are open in the relative topology induced on B(−x, x) ∩
H+

x . Assume that there exists a number t0 ∈ T (A1) ∩ T (A2). Then there
exist two points z1 = α1x + t0y ∈ A1 and z2 = α2x + t0y ∈ A2. From
the convexity of B(−x, x) in the direction of x (i.e., if a line parallel to x
intersects B(−x, x) in two distinct points then the whole segment with these
points as endpoints is contained in B(−x, x), cf. [10, Lemma 1]) it follows that
[z1, z2] ⊂ B(−x, x) ∩ H+

x . Thus [z1, z2] can be partitioned into two disjoint
nonempty sets [z1, z2] ∩ A1 and [z1, z2] ∩ A2 which are open in the subspace
topology of [z1, z2]. This is impossible. Thus T (A1) ∩ T (A2) = ∅. It is clear
that T (A1) and T (A2) are open sets, and that

T (A1) ∪ T (A2) = T (B(−x, x) ∩H+
x ) = {t : t > 0},

a contradiction to the fact that the set {t : t > 0} is connected.
Then, as image of B(−x, x) ∩H+

x under the function R(X) = x̂ which is
continuous on X\{o}, P+(x) is connected.

Theorem 2.2. A Minkowski plane X is Euclidean if and only if for any
x ∈ SX the set P+(x) is a singleton.

Proof. The necessity is obvious. Conversely, for any x ∈ SX it follows from
the assumption of the theorem that B(−x, x) is contained in a line, which is
a characteristic property of Euclidean planes (cf. [5, (3.3)]).

Remark 2.3. R.C. James [12] provided an example to show that there
exists a normed plane X0 such that if x ⊥I ty holds for any t ∈ R, then either
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x = o or y = o. In other words, there exists a Minkowski plane X0 such that
P+(x) contains more than one point for any x ∈ SX0 .

Lemma 2.4. (cf. [18, Corollary 16]) For any x ∈ X\{o}, any line parallel
to 〈−x, x〉 intersects B(−x, x) in exactly one point if and only if SX does not
contain a non-trivial segment parallel to 〈−x, x〉.

For any x ∈ SX , we denote by l(x) and r(x) the two points such that
[r(x), l(x)] is a maximal segment parallel to 〈−x, x〉 on SX ∩ H+

x and that
r(x) − l(x) is a positive multiple of x. When there is no non-trivial segment
on SX parallel to 〈−x, x〉, the points l(x) and r(x) are chosen in such a way
that r(x) = l(x) ∈ SX ∩H+

x and l(x) ⊥B x (cf. Figure 1 and Figure 2 below).
The following lemma, basic for the discussion after it, refers to the shape

of bisectors in Minkowski planes.

Lemma 2.5. (cf. [16, Proposition 22]) For any x ∈ SX , B(−x, x) is fully
contained in the bent strip bounded by the rays [x, x + r(x)〉, [x, x − l(x)〉,
[−x,−x + l(x)〉, and [−x,−x− r(x)〉.

Theorem 2.6. For any x, y ∈ SX we have that y ∈ P (x) whenever
y ⊥B x.

Proof. Case I: Suppose that there exists a non-trivial maximal segment
[a, b] ⊂ SX parallel to 〈−x, x〉. It is trivial that if y ∈ SX is a point such that
y ⊥B x, then either y ∈ [a, b] or −y ∈ [a, b]. Thus it suffices to show that
[a, b] ⊂ P (x).

For any λ ∈ (0, 1), let α be an arbitrary number in the open interval
(0, min{λ, 1− λ}). Then

‖λa + (1− λ)b + α(b− a)‖ = ‖(λ− α)a + (1− λ + α)b‖ = 1

and

‖λa + (1− λ)b− α(b− a)‖ = ‖(λ + α)a + (1− λ− α)b‖ = 1.

Thus λa + (1− λ)b ∈ P (α ‖b− a‖x) = P (x), and therefore [a, b] ⊂ P (x).
Case II: If there exists a unique point y ∈ SX ∩ H+

x such that y ⊥B x,
then, by Lemma 2.5, B(−x, x) is bounded between the lines 〈x, x + y〉 and
〈−x,−x + y〉. On the other hand, by Lemma 2.4, for any integer n > 0 there
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exists a unique number λn∈ [0, 1] such that λn(x+ny)+(1−λn)(−x+ny) ⊥I x,
i.e.,

zn := (2λn − 1)x + ny ∈ B(−x, x).

Moreover,

‖ẑn − y‖ =
∥∥∥∥

(2λn − 1)x + ny

‖(2λn − 1)x + ny‖ − y

∥∥∥∥

≤
∥∥∥∥

(2λn − 1)x
‖(2λn − 1)x + ny‖

∥∥∥∥ +
∥∥∥∥

ny

‖(2λn − 1)x + ny‖ − y

∥∥∥∥ .

Since

lim
n→∞

∥∥∥∥
(2λn − 1)x

‖(2λn − 1)x + ny‖

∥∥∥∥ = lim
n→∞

1
n

∥∥∥∥∥
(2λn − 1)x∥∥2λn−1

n x + y
∥∥

∥∥∥∥∥ = 0

and

lim
n→∞

∥∥∥∥
ny

‖(2λn − 1)x + ny‖ − y

∥∥∥∥ = lim
n→∞

∣∣∣∣∣
1− ∥∥2λn−1

n x + y
∥∥

∥∥2λn−1
n x + y

∥∥

∣∣∣∣∣ = 0,

we have
lim

n→∞ ‖ẑn − y‖ = 0.

It follows that y ∈ P (x), which completes the proof.

One may expect that those points in SX , to which x is Birkhoff orthogonal,
are all in P (x). However, the following example shows that this is not true
(see also Remark 2.10).

Example 1. Let X be the Minkowski plane on R2 with the maximum
norm ‖(α, β)‖ = max{|α|, |β|} and x = (1, 1). Then B(−x, x) = 〈(−1, 1),
(1,−1)〉, and therefore P (x) = {(1,−1), (−1, 1)}. It is clear that (0, 1) 6∈ P (x)
and (1, 0) 6∈ P (x), while x ⊥B (0, 1) and x ⊥B (1, 0).

Lemma 2.7. (Uniqueness property of isosceles orthogonality, cf. [1, Corol-
lary 4]) For any x ∈ SX and 0 ≤ α ≤ 1, there exists a point y ∈ αSX which
is unique up to the sign and satisfies x ⊥I y.

Let x ∈ SX . By the uniqueness property of isosceles orthogonality, for any
t ∈ [0, 1] there exists a unique point Fx(t) such that

Fx(t) ∈ B(−x, x) ∩ tSX ∩H+
x .
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For any t ∈ (0, 1], let
Tx(t) = F̂x(t).

Lemma 2.8. Let {tn} ⊂ (0, 1] be a sequence such that limn→∞ tn = 0 and
that {Tx(tn)} is a Cauchy sequence. Then x ⊥B limn→∞ Tx(tn).

Proof. From the compactness of SX and the fact that {Tx(tn)} is a Cauchy
sequence it follows that there exists a point z ∈ SX such that

z = lim
n→∞Tx(tn).

We show that x ⊥B z, and it suffices to prove that infλ∈R ‖x + λz‖ = 1. In
fact,

inf
λ∈R

‖x + λz‖ = inf
λ∈R

∥∥∥x + λ lim
n→∞Tx(tn)

∥∥∥ = lim
n→∞ inf

λ∈R

∥∥∥∥x +
λ

tn
tnTx(tn)

∥∥∥∥

= lim
n→∞ inf

λ∈R
‖x + λFx(tn)‖ = lim

n→∞ inf
λ∈[−1,1]

‖x + λFx(tn)‖ ,

where the last equality follows from the fact that ‖x + Fx(tn)‖ = ‖x− Fx(tn)‖.
By the triangle inequality, we have for any λ ∈ [−1, 1]

1− |λ|tn = ‖x‖ − ‖λFx(tn)‖ ≤ ‖x + λFx(tn)‖ ≤ ‖x‖+ ‖λFx(tn)‖ ≤ 1 + |λ|tn,

and therefore

inf
λ∈R

‖x + λz‖ = lim
n→∞ inf

λ∈[−1,1]
‖x + λFx(tn)‖ = 1.

This completes the proof.

Theorem 2.9. Let x ∈ SX . If there exists a unique point z ∈ SX (except
for the sign) such that x ⊥B z, then z ∈ P (x). And if there exists a point
z ∈ P (x)\P (x), then either z ⊥B x or x ⊥B z.

Proof. To prove the first statement, let {sn} ⊂ (0, 1] be an arbitrary se-
quence such that limn→∞ sn = 0. It is clear that {Tx(sn)} is a bounded subset
of SX , and therefore we can choose a convergent subsequence {Tx(snk

)}. Let
tk = snk

. From Lemma 2.8 it follows that x ⊥B limk→∞ Tx(tk). Thus either
limk→∞ Tx(tk) = z or limk→∞ Tx(tk) = −z. Since Tx(tk) ∈ P (x) for each k,
z ∈ P (x).
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x

x + r(x)

x − l(x)

−x + l(x)

−x − r(x)

−x o

r(x)(l(x))

p

z

Figure 1: The proof of Theorem 2.9, Case I.

For proving the second statement, let z ∈ P (x)\P (x). We consider the
following two cases.

Case I: The line 〈−z, z〉 intersects one of the four rays

[x, x + r(x)〉, [x, x− l(x)〉, [−x,−x + l(x)〉, and [−x,−x− r(x)〉.

Without loss of generality, we can suppose that [0, z〉 intersects [x, x + r(x)〉
in some point p; see Figure 1. Since z ∈ P (x), there exists a sequence {zn} ⊂
P+(x) such that zi 6= zj (i 6= j), limn→∞ zn = z, and

(〈−zn, zn〉 ∩ [x, x + r(x)〉) ∈ (p +
1
n

BX).

By Lemma 2.5, for any number t > ‖p‖ + 1 we have tzn 6∈ B(−x, x). Thus,
for each zn there exists a number tn being the largest positive number such
that tnzn ⊥I x. It is clear that {tn}∞n=1 is bounded. Thus we can choose a
subsequence {tnk

} such that

lim
k→∞

tnk
= t0.

Hence

‖t0z + x‖ = lim
k→∞

‖tnk
znk

+ x‖ = lim
k→∞

‖tnk
znk

− x‖ = ‖t0z − x‖ ,
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x

r(x)l(x) x + r(x)

x − l(x)

−x + l(x)

−x − r(x)

−x
o

z

Figure 2: The proof of Theorem 2.9, Case II.

which means that t0z ⊥I x. Since z ∈ P (x)\P (x), we see that t0 = 0. Thus
we can suppose, without loss of generality, that {tnk

}∞k=1 ⊂ (0, 1]. Hence

z = lim
k→∞

znk
= lim

k→∞
Tx(tnk

).

By Lemma 2.8, x ⊥B z.
Case II: The line 〈−z, z〉 intersects none of the four rays

[x, x + r(x)〉, [x, x− l(x)〉, [−x,−x + l(x)〉, and [−x,−x− r(x)〉;
see Figure 2. Then it is trivial that the line 〈−z, z〉 is fully contained in the
double cone

{λl(x) + µr(x) : λµ ≥ 0}.
Thus 〈−z, z〉 intersects the segment [l(x), r(x)], and therefore z ⊥B x.

Remark 2.10. 1. The condition y ∈ SX together with y ⊥B x does not
imply that in general y ∈ P (x). For example, take again the Minkowski plane
on R2 with maximum norm, and let x = (1, 0). Then y = (1, 1) is a point
such that y ∈ SX and y ⊥B x. But for any t > 0 we have

‖x + ty‖ − ‖x− ty‖ = 1 + t−max{|1− t|, t} > 0,

which means that y 6∈ P (x).
2. In general, the condition that z ∈ SX is the unique point (except for

the sign) satisfying x ⊥B z does not imply z ∈ P (x). Let X be the Minkowski
plane on R2 with the norm ‖·‖, where for any point (α, β)

‖(α, β)‖ :=

{ √
α2 + β2 : αβ ≥ 0;

max{|α|, |β|} : αβ < 0.
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x

y

γ, the locus of midpoints

y1 y2 P+(x) = P+(x)

Figure 3: P (x) is not determined by points which are Birkhoff
orthogonal to x or to which x is Birkhoff orthogonal.

Take x = (1, 0) and z = (0, 1). Then x, z ∈ SX , and z is the unique point
(except for the sign) in SX such that x ⊥B z. But for any t > 0 we have

‖x + tz‖ − ‖x− tz‖ =
√

1 + t2 −max{1, t} > 0,

which implies that z 6∈ P (x).

3. P+(x) is an arc of SX (possibly degenerate to a point) since P+(x)
is connected. Theorem 2.9 says that if z is one of the endpoints of P+(x)
and z 6∈ P+(x), then either x ⊥B z or z ⊥B x. We remark that, in general,
the endpoints of P+(x) have nothing to do with the points that are Birkhoff
orthogonal to x or with the points to which x is Birkhoff orthogonal. For
example, let X be a Minkowski plane on R2 (cf. Figure 3 with x, y ∈ SX .
Then it can be seen that y is the unique point (except for the sign) in SX

which is Birkhoff orthogonal to x, and it is also the unique point (except for
the sign) in SX to which x is Birkhoff orthogonal. However, y is contained in
the arc between y1 and y2, which is a subset of P+(x).

Now we study the distance d(x, P (x)) from a point x to P (x), and we have
to use the following lemma.
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Lemma 2.11. (cf. [12]) If x and y are two points such that x ⊥I y, then

(1) ‖x + ky‖ ≤ |k| ‖x± y‖ and ‖x± y‖ ≤ ‖x + ky‖, if |k| ≥ 1.

(2) ‖x + ky‖ ≤ ‖x± y‖ and |k| ‖x± y‖ ≤ ‖x + ky‖, if |k| ≤ 1.

A Minkowski plane X is said to be rectilinear if SX is a parallelogram.
One can easily verify that a Minkowski plane is rectilinear if and only if there
exist two points x, y ∈ SX such that ‖x + y‖ = ‖x− y‖ = 2.

Theorem 2.12. For any x ∈ SX we have

1 ≤ d(x, P (x)) ≤ 2,

with equality on the right only if X is rectilinear, and with equality on the left
only if either there exists a segment parallel to 〈−x, x〉 on SX whose length
is not less than 1, or there exists a point z ∈ SX such that ‖z − x‖ = 1 and
[x, z] ⊂ SX .

Proof. It is trivial that d(x, P (x)) ≤ 2. If d(x, P (x)) = 2, then for any
z ∈ P (x) we have ‖z − x‖ = 2. Let z0 ∈ P (x) be a point such that z0 ⊥I x.
Then

‖z0 + x‖ = ‖z0 − x‖ = 2,

which implies that X is rectilinear.
For any x ∈ SX and z ∈ P (x) there exists a number t > 0 such that

tz ⊥I x. If t ≥ 1, then 0 < 1
t ≤ 1. By Lemma 2.11, we have

‖z − x‖ =
∥∥∥∥
1
t
tz − x

∥∥∥∥ ≥
1
t
‖tz + x‖ =

1
2t

(‖tz + x‖+ ‖tz − x‖) ≥ 1.

If 0 < t < 1, then 1
t ≥ 1. Again, by Lemma 2.11 we have

‖z − x‖ =
∥∥∥∥
1
t
tz − x

∥∥∥∥ ≥ ‖tz + x‖ =
1
2
(‖tz + x‖+ ‖tz − x‖) ≥ 1.

Hence d(x, P (x)) = inf{‖x− z‖ : z ∈ P (x)} ≥ 1.
Suppose now that d(x, P (x)) = 1, and without loss of generality we can

assume that d(x, P+(x)) = 1.
Case I: If there exists a point z ∈ P+(x) such that ‖z − x‖ = 1, then there

exists a number t > 0 such that tz ⊥I x, which yields

max{t, 1} ≤ 1
2
(‖tz + x‖+ ‖tz − x‖) = ‖tz − x‖ . (2.1)
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If 0 < t < 1, then it follows from the convexity of the function f(s) = ‖x− sz‖
and f(0) = f(1) = 1 ≤ f(−t) = f(t) that ‖x− λz‖ = 1 for any λ ∈ [−t, 1],
which implies that [x− z, x] ⊂ SX .

If t ≥ 1, then we have

‖tz‖ = ‖tz − z‖+ ‖z‖ = ‖tz − z‖+ ‖z − x‖ ≥ ‖tz − x‖ .

From (2.1) it follows that the convex function g(s) = ‖z − sx‖ satisfies g(0) =
g(1) = g(−1

t ) = g(1
t ) = 1, and then ‖z − λx‖ = 1 for −1

t ≤ λ ≤ 1, which
implies that [z − x, z] ⊂ SX .

Case II: If ‖z′ − x‖ > 1 for any z′ ∈ P+(x), then there exists a point
z ∈ P+(x)\P+(x) such that ‖z − x‖ = 1. By Theorem 2.9, either z ⊥B x or
x ⊥B z. It can be proved in a similar way as in Case I that either [x− z, x] ⊂
SX or [z − x, z] ⊂ SX . The proof is complete.

Corollary 2.13. For any x ∈ SX there exist two points u, v ∈ SX\
(
(x+

d(x, P (x))intBX) ∪ (−x + d(x, P (x))intBX)
)

such that

B(−x, x) ⊂ {αu + βv : αβ ≥ 0}.

Theorem 2.14. Let x ∈ SX . If there exists a segment [a, b] ⊂ SX parallel
to 〈−x, x〉 and of length not less than 1, then d(x, P (x)) = 1.

Proof. From Theorem 2.6 it follows that [a, b] ⊂ P (x). Since ‖b− a‖ ≥ 1,
we can assume, without loss of generality, that there exists a point z ∈ [a, b]
such that z−a = x. Then ‖z − x‖ = ‖a‖ = 1, which implies that d(x, P (x)) =
1.

Remark 2.15. The fact that there exists a point z with ‖z − x‖ = 1 and
[x, z] ⊂ SX does in general not imply that d(x, P (x)) = 1. Namely, take again
the Minkowski plane on R2 with maximum norm, and let x = (1, 1). Then x
is contained in the segment [(−1, 1), x] whose length is 2. But it is clear that
d(x, P (x)) = 2.

Next, we examine properties of intersections of radial projections of bisec-
tors of two distinct segments, and we start with a characteristic property of
the Euclidean plane.
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Theorem 2.16. A Minkowski plane X is Euclidean if and only if for any
x, y ∈ SX with x 6= ±y, P (x) ∩ P (y) = ∅.

Proof. We only need to show sufficiency. Suppose that X is not Euclidean.
Then, by Theorem 2.2, there exists a point x ∈ SX such that P+(x) contains
more than one point. Let x′ ∈ SX ∩ H+

x be such that x ⊥I x′. Then x′ ∈
P+(x). Assume that there exists a point y′ ∈ P+(x), y′ 6= x′, and let y ∈
SX\{±x} be such that y ⊥I y′. Then y′ ∈ P (y) and P (x) ∩ P (y) 6= ∅, a
contradiction.

It is possible that P (x) = P (y) holds for two points x, y ∈ SX with
x 6= ±y; see the following example.

Example 2. Let X be the Minkowski plane on R2 with maximum norm,
and let x = (1, 1

2), and x′ = (1, 1
3). We show that

P (x) = P (x′) = [(−1, 1), (0, 1)] ∪ [(0,−1), (1,−1)]\{(−1, 1), (1,−1)}. (2.2)

On the one hand, we have
∥∥∥∥
1
2
(0, 1) + x

∥∥∥∥ =
∥∥∥∥
1
2
(0, 1)− x

∥∥∥∥ and
∥∥∥∥
2
3
(0, 1) + x′

∥∥∥∥ =
∥∥∥∥
2
3
(0, 1)− x′

∥∥∥∥ ,

and therefore {(0, 1), (0,−1)} ⊆ P (x) ∩ P (x′) and

d(x, P (x)) = ‖(0, 1)− x‖ =
∥∥(0, 1)− x′

∥∥ = d(x′, P (x′)) = 1.

On the other hand, it is evident that ‖z − x‖ < 1 for any point z ∈ SX

strictly between (0, 1) and x, and that ‖z − x′‖ < 1 for any point z ∈ SX

strictly between (0, 1) and x′.
Now we show that

{(−1, 1), (1,−1)} ⊆ (P (x)\P (x)) ∩ (P (x′)\P (x′)). (2.3)

For any t > 0 we have

‖t(−1, 1) + x‖ − ‖t(−1, 1)− x‖ =
∥∥(−t + 1, t + 1

2)
∥∥− ∥∥(−t− 1, t− 1

2)
∥∥ 6= 0

and
∥∥t(−1, 1) + x′

∥∥− ∥∥t(−1, 1)− x′
∥∥ =

∥∥(−t + 1, t + 1
3)

∥∥− ∥∥(−t− 1, t− 1
3)

∥∥ 6= 0.
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On the other hand, for any integer n > 0 we have

∥∥(1− n, n− 1
2) + x

∥∥ = ‖(2− n, n)‖ = n = ‖(−n, n− 1)‖
=

∥∥(1− n, n− 1
2)− x

∥∥

and

∥∥(1− n, n− 1
3) + x′

∥∥ = ‖(2− n, n)‖ = n =
∥∥(−n, n− 2

3)
∥∥

=
∥∥(1− n, n− 1

3)− x′
∥∥ .

It is evident that

lim
n→∞

(1− n, n− 1
2)∥∥(1− n, n− 1
2)

∥∥ = lim
n→∞

(1− n, n− 1
3)∥∥(1− n, n− 1
3)

∥∥ = (−1, 1).

Thus (2.3) holds, and therefore (2.2) holds.

Remark 2.17. This example shows also that d(x, P+(x)) is not necessarily
equal to d(−x, P+(x)).

Next, we derive a sufficient condition for the property that two radial
projections satisfy P (x) ∩ P (y) = ∅.

Lemma 2.18. Let x, y ∈ SX . If x ⊥I y, then for any number t > 1 the
inequality

‖x + ty‖ > ‖x + y‖

holds.

Proof. Suppose the contrary, i.e., that there exists a number t0 > 1 such
that ‖x + t0y‖ ≤ ‖x + y‖. Then, since the function f(t) = ‖x + ty‖ is convex,

‖x + y‖ = ‖x− y‖ = ‖x + t0y‖ = f(0) = 1.

This implies that [x+ t0y, x−y] is a segment on SX having length larger than
2, which is impossible.
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Theorem 2.19. For any x, y ∈ SX with x ⊥I y, P (x) ∩ P (y) = ∅.

Proof. First we show that x̂ + y 6∈ P (x). Suppose that there exists a
number t > 0 such that ‖t(x + y) + x‖ = ‖t(x + y)− x‖. Then

∥∥(1 + 1
t )x + y

∥∥ =
∥∥(1− 1

t )x + y
∥∥ .

If t ≥ 1
2 , then |1 − 1

t | ≤ 1. Thus, from Lemma 2.18 and the convexity of the
function λ → ‖λx + y‖ we get

∥∥(1 + 1
t )x + y

∥∥ > ‖x + y‖ ≥ ∥∥(1− 1
t )x + y

∥∥ ,

a contradiction. Hence 0 < t < 1
2 . Then we have

∥∥(1− 1
t )x + y

∥∥ =
∥∥(1

t − 1)x− y
∥∥

=
1
2
( ∥∥(1 + 1

t )x + y
∥∥ +

∥∥(1
t − 1)x− y

∥∥ ) ≥ 1
t
.

On the other hand, we have

∥∥(1
t − 1)x− y

∥∥ ≤ 1
t
− 1 + 1 =

1
t

and, therefore, ∥∥(1 + 1
t )x + y

∥∥ =
∥∥(1

t − 1)x− y
∥∥ =

1
t
.

Then the convex function f(λ) = ‖x + λ(x + y)‖ satisfies f(−1) = f(−t) =
f(0) = f(t) = 1 with −1 < −t < 0 < t. Therefore f(λ) = 1 for −1 ≤ λ ≤ t.
In particular, we have f(−1

2) = 1 and then ‖x + y‖ = ‖x− y‖ = 2.
This implies that SX is a parallelogram with ±x and ±y as vertices. Then

[x, y] ⊆ SX , and therefore
∥∥(1 + 1

t )x + y
∥∥ = 2 + 1

t , again a contradiction.
Since x and y are arbitrary, we also have x̂− y 6∈ P (x).
Without loss of generality, we can suppose that y ∈ H+

x . Then, since
P+(x), P−(x), P+(y), and P−(y) are all connected sets, P+(x) lies strictly
between x̂ + y and ŷ − x, P−(x) lies strictly between −̂x− y and x̂− y, P+(y)
lies strictly between −̂x− y and ŷ − x, and P−(y) lies strictly between x̂ + y
and x̂− y. Thus P (x) ∩ P (y) = ∅, and this completes the proof.

Remark 2.20. It is possible that there exist two points x, y ∈ SX with
x ⊥I y such that P (x) ∩ P (y) 6= ∅. For example, let X be the Minkowski
plane on R2 with maximum norm, and let x = (1, 0) and y = (0, 1). Then
(1, 1) ∈ P (x) ∩ P (y) (cf. [12, Example 4.1]).
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3. A critical number for Minkowski spaces

The discussion in this section arises from the following natural problem:
Determine the sign of the difference

‖x + y‖ − ‖x− y‖ (3.1)

when only the directions of the vectors x and y are known. We exclude the
trivial case where one of the two vectors is o. In Euclidean case, this problem
can be solved in different ways. For example, we know that the difference
(3.1) is positive if and only if the angle between x and y is less than π/2.
Equivalently, (3.1) is positive if and only if

‖x̂− ŷ‖ <
√

2. (3.2)

From the discussion in the foregoing sections it can be seen that in general
Minkowski spaces we cannot determine the sign of (3.1). The only thing
we can probably do in this direction is to provide a sufficient condition for
guaranteing that (3.1) is positive. As there is no natural definition of angular
measure in Minkowski spaces, we would like to find a number which plays a
role as the number

√
2 does in (3.2).

For the discussion in the sequel, we need to introduce the so called non-
square constants

J(X) := sup{min{‖x + y‖ , ‖x− y‖} : x, y ∈ SX}

and
S(X) := inf{max{‖x + y‖ , ‖x− y‖} : x, y ∈ SX}.

Also we shall use the following equivalent representations of these two con-
stants, which were provided in [14]:

J(X) = sup{‖x− y‖ : x, y ∈ SX , x ⊥I y}

and
S(X) = inf{‖x− y‖ : x, y ∈ SX , x ⊥I y}.

It has been shown (cf. [8], [9], and [11, Theorem 10]) that

1 ≤ S(X) ≤
√

2 ≤ J(X) ≤ 2

and
J(X) · S(X) = 2.
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Now we are going to define, for any Minkowski space, the so-called critical
number

c(X) := inf
x∈SX

d(x, P (x)).

Our first result on c(X) is given by

Theorem 3.1. For any Minkowski space X we have

1 ≤ c(X) ≤
√

2,

with equality on the left if and only if there exists a segment contained in SX

whose length is not less than 1, and with equality on the right if and only if
X is Euclidean.

Proof. By Theorem 2.12, for any x ∈ SX the inequality d(x, P (x)) ≥ 1
holds. Thus it is trivial that c(X) ≥ 1. When c(X) = 1, by the compactness
of the unit sphere there exists a point x0 ∈ SX such that d(x0, P (x0)) = 1.
Then, by Theorem 2.12, there exists a segment in SX having length not less
than 1.

Conversely, suppose that there exists a segment [a, b] ⊂ SX with ‖a− b‖ ≥
1. Then it follows from Theorem 2.14 that d(â− b, P (â− b)) = 1.

On the other hand, for any x, y ∈ SX with x ⊥I y we have

‖x + y‖ = ‖x− y‖ ≥ d(x, P (x)) ≥ c(X).

Thus √
2 ≥ S(X) = inf{‖x− y‖ : x, y ∈ SX , x ⊥I y} ≥ c(X).

If c(X) =
√

2, then

sup{‖x− y‖ : x, y ∈ SX , x ⊥I y} = c(X) =
√

2.

To prove that X is Euclidean, it suffices to show that each two-dimensional
subspace of X is Euclidean, and therefore we can assume, without loss of
generality, that dimX = 2. Then, by Theorem 2.2, we only have to show that
P (x) = {y,−y} for any x, y ∈ SX with x ⊥I y. Suppose the contrary, i.e., that
there exist some points x, y, z ∈ SX with x ⊥I y such that z ∈ P (x)\{y,−y}
and, without loss of generality, that z and y lie in the same half-plane bounded
by 〈−x, x〉. It is clear that

‖z − x‖ ≥ d(x, P (x)) ≥ c(X) =
√

2 = ‖y − x‖
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and
‖z + x‖ ≥ d(−x, P (−x)) ≥ c(X) =

√
2 = ‖y + x‖ .

If one of ‖z + x‖ and ‖z − x‖ is
√

2 then, since J(X) = S(X) =
√

2, it
follows from [2, Proposition 1] that ‖z + x‖ = ‖z − x‖, which contradicts the
uniqueness property of isosceles orthogonality (see Lemma 2.7). Thus we have
min{‖z + x‖ , ‖z − x‖} >

√
2, which contradicts the fact that J(X) = S(X) =√

2. This completes the proof.

Theorem 3.2. For any Minkowski space X we have that

c(X) = sup
{
c > 0 : x, y ∈ X\{o}, ‖x̂− ŷ‖ < c implies ‖x− y‖ < ‖x + y‖}

.

Proof. Let x and y be arbitrary points from X\{o} and ‖x̂− ŷ‖ < c(X).
We show that ‖x− y‖ < ‖x + y‖. Suppose the contrary, i.e., that ‖x− y‖ ≥
‖x + y‖. Let

f(t) = ‖(tx + y) + x‖ − ‖(tx + y)− x‖ .

Then f(0) ≤ 0 and, by [12, Lemma 4.4],

lim
t→+∞ f(t) = lim

t→+∞
( ‖(tx + y) + x‖ − ‖(tx + y)− x‖ )

= lim
t→+∞

( ‖((t− 1) + 2)x + y‖ − ‖(t− 1)x + y‖ )
= 2 ‖x‖ .

Thus, by the continuity of ‖·‖, there exists a number t0 ≥ 0 such that f(t0) =
0, and therefore ̂t0x + y ∈ P (x). It is clear that ̂t0x + y lies between x̂ and ŷ.
From the Monotonicity Lemma it follows that

c(X) ≤ d(x̂, P (x̂)) ≤
∥∥∥ ̂t0x + y − x̂

∥∥∥ ≤ ‖ŷ − x̂‖ < c(X),

which is impossible.
It is then sufficient to show that c(X) is the largest number having the

required properties. Suppose the contrary, i.e., that there exists a number
α0 > c(X) having the required properties. By the compactness of SX , there
exists a point x0 ∈ SX such that d(x0, P (x0)) = c(X). Since P (x0) is not
empty, there exists a number ε ≥ 0 such that ε + c(X) < α0 and that there
exists a point y ∈ P (x0) with ‖y − x0‖ = ε + c(X). Then there exists a
number t > 0 such that ‖ty + x0‖ = ‖ty − x0‖, which is in contradiction to
the assumption that α0 > c(X) is a number having the required properties.
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4. A characterization of the Euclidean plane

The following result is well known.

Lemma 4.1. (cf. [15] and [5, 10.9]) A Minkowski plane X is Euclidean if
and only if the implication

x ⊥I y ⇒ x ⊥B y

holds for any x, y ∈ SX .

The next theorem strengthens some characterizations of inner product
spaces collected in [5].

Theorem 4.2. A Minkowski plane X is Euclidean if for any u, v ∈ SX

with u 6= −v ∥∥∥û + v − u
∥∥∥ =

∥∥∥û + v − v
∥∥∥ .

Proof. For any x ∈ SX and z ∈ B(−x, x)\{o}, let

Gx(z) =
‖x + z‖ − ‖z‖

‖z‖ z.

We show first that x ⊥I Gx(z). Let

u = x̂ + z and v = ẑ − x.

Then
∥∥∥û + v − u

∥∥∥ =
∥∥∥∥

z

‖z‖ −
x + z

‖x + z‖

∥∥∥∥ =
∥∥∥∥
( 1
‖z‖ −

1
‖x + z‖

)
z − 1

‖x + z‖x

∥∥∥∥ , (4.1)

∥∥∥û + v − v
∥∥∥ =

∥∥∥∥
z

‖z‖ −
z − x

‖x + z‖

∥∥∥∥ =
∥∥∥∥
( 1
‖z‖ −

1
‖x + z‖

)
z +

1
‖x + z‖x

∥∥∥∥ . (4.2)

By the assumption of the theorem,
∥∥∥û + v − u

∥∥∥ =
∥∥∥û + v − v

∥∥∥. Hence

∥∥∥∥
‖x + z‖ − ‖z‖

‖z‖ z − x

∥∥∥∥ =
∥∥∥∥
‖x + z‖ − ‖z‖

‖z‖ z + x

∥∥∥∥ ,

which means that x ⊥I Gx(z). It is clear that

‖Gx(z)‖ = ‖x + z‖ − ‖z‖ ≤ ‖x‖ = 1.
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Let y ∈ SX be a point such that x ⊥I y. Next we show that x ⊥B y.
Let {sn} ⊂ (0, 1] be an arbitrary sequence such that limn→∞ sn = 0. It is

clear that {Tx(sn)} is a bounded subset of SX , and therefore we can choose
a convergent subsequence {Tx(snk

)}. Let tk = snk
. Then limk→∞ tk = 0,

and {Tx(tk)} is a Cauchy sequence. From Lemma 2.8 it follows that x ⊥B

limk→∞ Tx(tk).
On the other hand, we have

lim
k→∞

Gx(tkTx(tk)) = lim
k→∞

‖x + tkTx(tk)‖ − ‖tkTx(tk)‖
‖tkTx(tk)‖ tkTx(tk)

= lim
k→∞

( ‖x + tkTx(tk)‖ − ‖tkTx(tk)‖
)
Tx(tk) = lim

k→∞
Tx(tk).

Then limk→∞ Tx(tk) ⊥I x, since Gx(tkTx(tk)) ⊥I x for each tk. From the
uniqueness property of isosceles orthogonality it follows that either
limk→∞ Tx(tk) = y or limk→∞ Tx(tk) = −y. Thus x ⊥B y and, by Lemma 4.1,
X is Euclidean.

In particular, Theorem 4.2 strengthens the following statement, which is
used to derive many characterizations of inner product spaces in Chapter 3,
Chapter 4, and Chapter 5 of the book [5].

Corollary. (cf. [12, Theorem 4.7]) A Minkowski plane X is Euclidean
if and only if the implication

x ⊥I y ⇒ x ⊥I αy (∀α ∈ R)

holds for any x, y ∈ X.

Proof. For any u, v ∈ SX with u 6= −v it is clear that (u + v) ⊥I (u− v).
Then, by the assumption of the theorem, we have

1
2
(u− v) ⊥I

(
1

‖u + v‖ −
1
2

)
(u + v)

which implies that
∥∥∥∥
1
2
(u− v) +

(
1

‖u + v‖ −
1
2

)
(u + v)

∥∥∥∥ =
∥∥∥∥
1
2
(u− v)−

(
1

‖u + v‖ −
1
2

)
(u + v)

∥∥∥∥

or, equivalently, ∥∥∥û + v − u
∥∥∥ =

∥∥∥û + v − v
∥∥∥ .

This completes the proof.
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5. Higher dimensions

In this short section one important property of radial projections of bisec-
tors in dimensions d ≥ 3 is proved.

Theorem 5.1. Let X be a Minkowski space with dimX ≥ 3. Then for
any x ∈ SX , P (x) is a connected subset of SX .

Proof. For any x ∈ SX , let Hx be a hyperplane through o such that x ⊥B

Hx. We show first that B(−x, x)\{o} is connected. Let

T : X −→ Hx

z = αx + βy −→ βy.

It is clear that T is continuous, T (z) = o if and only if z ∈ 〈−x, x〉, and
T (B(−x, x)\{o}) ⊂ Hx\{o}. On the other hand, from [12, Theorem 4.4] it
follows that for any y ∈ Hx\{o} there exists a number α such that αx + y ∈
B(−x, x)\{o}. Thus T (B(−x, x)\{o}) = Hx\{o}.

Suppose that B(−x, x)\{o} can be partitioned into two disjoint nonempty
subsets A1 and A2, which are open in the relative topology induced on B(−x, x)
\{o}. We show that T (A1)∩T (A2) = ∅. Suppose the contrary, i.e., that there
exists a point y ∈ T (A1) ∩ T (A2). Then it is evident that y 6= o. Let α1 6= α2

be two numbers such that α1x + y ∈ A1 and α2x + y ∈ A2. Then, from
the convexity of B(−x, x) in the direction of x (cf. [10, Lemma 1]) it fol-
lows that [α1x + y, α2x + y] ⊂ B(−x, x)\{o}, and therefore [α1x + y, α2x + y]
can be partitioned into two disjoint nonempty sets [α1x + y, α2x + y] ∩ A1

and [α1x + y, α2x + y] ∩ A2 which are open in the subspace topology of
[α1x + y, α2x + y]. This is impossible. Thus T (A1) ∩ T (A2) = ∅ and
T (A1) ∪ T (A2) = Hx\{o}, which contradicts the fact that Hx\{o} is con-
nected. Thus B(−x, x)\{o} is connected.

Then, as image of B(−x, x)\{o} under the continuous function R(z) = ẑ
on X\{o}, P (x) is connected.
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