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Abstract : We study geometric properties of radial projections of bisectors in finite-
dimensional real Banach spaces (i.e., in Minkowski spaces), especially the relation between
the geometric structure of radial projections and Birkhoff orthogonality. As an application
of our results it is shown that for any Minkowski space there exists a number, which plays
somehow the role that

√
2 plays in Euclidean space. This number is referred to as the critical

number of any Minkowski space. Lower and upper bounds on the critical number are given,
and the cases when these bounds are attained are characterized. Some new characterizations
of inner product spaces are also derived.
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[3] J. Alonso, C. Beńıtez, Orthogonality in normed linear spaces: a survey. Part
I: main properties, Extracta Math. 3 (1988), 1 – 15.
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