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Abstract: This article is devoted to the study of smooth desingularizations, a geometric tool
usually employed in the definition of the De Rham Intersection Cohomology with differential
forms [12]. In this paper we work with the category of Thom-Mather simple spaces [10], [14].
We construct a functor which sends each Thom-Mather simple space into a smooth manifold
called its primary unfolding, and prove that this construction is functorially preserved under
Thom-Mather morphisms.
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To our families.
INTRODUCTION

Stratified spaces were initially defined by Thom [14], a more recent ex-
position can be found in [10]. These spaces are related to the Intersection
Homology defined by Goresky and MacPherson, a loose homology theory ex-
tending the Poincaré Duality to spaces with singular points [6]. On the other
hand, we can define the De Rham Intersection Cohomology with differential
forms by means of an unfolding; it is a suitable smooth desingularization that
can be made up by removing the singular part and gluing together two dif-
feomorphic copies of the regular part along a smooth hypersurface, for more
details see Davis [4], Ferrarotti [5] and Saralegi [12].

Simple pseudomanifolds are almost everywhere smooth spaces, they can
be separated in two disjoint pieces: A closed subset ¥ C X called the singular
part, and its complement R = X — X which turns to be a dense open subset
called the regular part. The local model of this situation is the product U x
¢(L) where U and L are manifolds and L is compact; the name pseudomanifold
arises from this kind of charts. A familiarized reader will notice that these are
just stratified pseudomanifolds whose depth is d < 1.
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This article is structured as follows: first we introduce the notion of simple
pseudomanifolds and their unfoldings. Next we study the Thom-Mather sim-
ple spaces and prove that each simple pseudomanifold has an unfolding if and
only if it satisfies the Thom-Mather condition. Although the unfoldings are
in general neither unique nor funtorial objects [1], [3]; in the last section we
prove that every radium preserving morphism between Thom-Mather simple
spaces induces a smooth map between their respective unfoldings; hence the
unfolding of a Thom-Mather simple space is essentially unique. We construct
a functor from the category of Thom-Mather simple spaces to the category of
smooth manifolds. This is done with the tool of primary unfoldings, which
allows us to work in a subcategory of spaces.

For higher depth stratified pseudomanifolds (d > 2), any attempt to extend
these results should deal with the problem of mutual incidence between the
intermediate (non maximal and non minimal) strata. The authors are working
on this purpose and hope to provide a more general discussion in the future.

All along this article, each time we use the word manifold we mean a
smooth differentiable manifold of class C*° without boundary.

1. SIMPLE PSEUDOMANIFOLDS

In this section we introduce the family of simple pseudomanifolds. Recall
that, in general, a stratified space is a pair (X, S) where S is a partition of X in
disjoint smooth pieces called strata, satisfying a border incidence condition.
Some geometric properties (such as dimension) turn to be semilocal, i. e.
they remain constant along the strata. A characteristic semilocal property
of stratified spaces is the depth; a non negative integer d that measures the
number of strata along which one can approach to a singular point. As said
before, a familiarized reader will notice that simple spaces are just stratified
spaces whose depth is < 1. We will avoid all these definitions in regard of a
clear exposition; for more details see [6], [10].

DEFINITION 1.1. A simple space is a 2nd countable metric topological
space X which can be written as the disjoint union of two manifolds X = RLIY,
such that R is an open dense set (and therefore ¥ is closed). We refer to R
(resp. X)) as the regular (resp. singular) part of X. A regular (resp. singular)
stratum S of X is a connected component of R (resp. ). The pair (R, Y) is
a decomposition of X.

A simple subspace of X is a subset Y C X such that (RNY,XNY)isa
decomposition of Y with the induced topology.



ON THE FUNCTORIALITY OF STRATIFIED DESINGULARIZATIONS 141

If X’ is another simple space, then a morphism (resp. isomorphism) is a
. f . Ce
continuous map X —— X’ which preserves the decomposition in a smooth
. . . . f
(resp. diffeomorphic) way. An embedding is a morphism X —— X' such

that f(X) is a simple subspace of X’ and X N f(X) is an isomorphism.

EXAMPLES 1.2.

(1) Each manifold M is a simple space whose singular part ¥ = () is the
empty set.

(2) The canonical decomposition of any manifold with (nonempty) bound-
ary M is (M — OM,0M).

(3) Any open subspace of a simple space is itself a simple space.

(4) If M is a manifold and X is a simple space, then the product space
M x X is a simple space, its decomposition is (M x R, M x X).

(5) Let L be a compact manifold, the open cone of L is the quotient space

Lx|0

o(r) = X029
where (1,0) ~ (I’,0) for any [,!’ € L. The equivalence class of a point (I,r)
will be written as [l,r]. The vertex is the class of any point (I,0); it will be
denoted by v. For convenience, we agree that ¢(()) = {v} is a singleton. The
space ¢(L) is simple, its decomposition is (L x Rt, {v}).

(6) A pseudo-Euclidean model (or pem for short), is a product U x ¢(L) with
the decomposition given by the above examples, i.e., (V x L x R, U x {v});
where U, L are manifolds and L is compact; this L is said to be the link of U
on U x ¢(L). Our convention for L = ) implies that any euclidean nbhd is a
pem.

(7) Since any pem is the quotient of a product manifold; each morphism

U x ¢(L) Ty« ¢(N) can be written as

fu,[l,r]) = (al(u, L,r),[az(u,l,r),as(u,l, r)]),

where a1, ag, as are maps defined on U x L x [0,00), and they are smooth by
pieces. Notice that as(u,l,0) = 0 for any u, [.
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DEFINITION 1.3. A simple pseudomanifold or spm for short, is a simple
space X such that each singular point z € X has an open nbhd z € V C X
which is the image of an embedding

Uxc(l)—==X.

We call V' = Im(«) a pem-nbhd of x, while the pair (U, «) is a chart. Since
any euclidean nbhd is a pem-nbhd (see example §1.2-(6)), the above condition
is non-trivial just for singular points.

Up to some minor details, we assume that a(u,v) = u for all u € U,
so U = VN Xis an open nbhd of z on the corresponding stratum S C X
containing x. We usually ask the points of S to have the same link L, so it
does not depend on the choice of x. We call L the link of S. |

EXAMPLES 1.4.
(a) The examples §1.2-(1), (2), (5) and (6) are spm’s.
(b) If M is a manifold and X is a spm then M x X is a spm.

(c) Any open set of a spm is also a spm.

2. DESINGULARIZATIONS

It is well known how some usual (co)homological properties of smooth
manifolds are lost when we add singularities. This is the case of the Poincaré
Duality, for instance. In order to recover these properties on a larger family of
spaces, the original works of Goresky and MacPherson defined the Intersection
Homology with singular chains [6]. Later on [7], [12], Hector and Saralegi
provided a smooth approach to the Intersection Cohomology. For more details
see also [1], [5]. Their viewpoint strongly depends on two geometric objects
associated to any spm X, which are built in order to study the way we reach
the singular part and how we can recover the usual cohomological data; these
are the Thom-Mather tubular neighborhoods [14] and the smooth unfoldings
[4].

2.1. UNFOLDINGS Recall the definition of smooth unfoldings [12]. Such
an object is obtained from an spm X with decomposition (R, ) by gluing a
finite number of copies of R and replacing 3 with a suitable smooth hyper-
surface.
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DEFINITION 2.1. An unfolding of a spm X is a manifold X together with

a continuous proper map X A X such that:

(1) The restriction £7(R) —£+ R is a smooth trivial covering.

2) For each z € £L71(X) there is a commutative square diagram:
g

UXLXRL)Z'
cl iﬁ
U X C(L)?X
such that

(a) (U,a) is a chart (see §1.3),
(b) C(uv l,t) = (u, [l7 |t|])7
(c) @ is a diffeomorphism on £~ (Im(a)).
We will refer to the above diagram as an unfolded chart at x = L(z).

A spm X is unfoldable if there is (at least) a (smooth) unfolding as above.
An unfoldable morphism is a commutative square diagram

1

such that f is a morphism, fis smooth and the vertical arrows are unfoldings.

EXAMPLES 2.2.

(1) For any manifold M the identity map M —> M is an unfolding.

(2) The map c given in §2.1-(2).(b) is an unfolding of the pem U x ¢(L).

(3) For any manifold M with non-empty border M # @; the link of OM is
a point. Define M = M x {+1}/ ~ as the quotient set obtained by gluing two
copies of M along OM, i.e., (m,1) ~ (m,—1) for all m € OM. Write [m, j] for
the class of (m,j). Consider the map

M-y, L(m,j]) =m.
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Since the border submanifold 9M has always a smooth collar then, locally, £
behaves like ¢ at §2.1-(2).(b). So M has a unique smooth structure such that
L is an unfolding.

(4) The restriction of an unfolding to any open subset is also and unfolding.

(5) If X —£- X isan unfolding, then for any singular stratum S C X the
restriction £71(S) —£+ 5 is a smooth bundle with typical fiber F' = L and
£71(S) is a hypersurface of X.

(6) The 2-torus T? provides an unfolding for the real projective plane
T2 —£>~RP2. We replace the singular point ¥ = {oo} with two disjoint

circles St x {41} and glue them with two copies of the cylinder S! x R, ob-
taining so T2. The map L is given by L£(e?, e¥?) = [e%0 ¢i¥].

2.2. TUBULAR NEIGHBORHOODS The construction of tubular neighbor-
hoods is due, among others, to Gleason and Palais. It was developed in the
context of compact transformation groups. In the smooth context, a tubular
neighborhood can be constructed trough an invariant riemannian metric and
they are related to the existence of equivariant slices [2]. All these results
have been extended to the singular context [7], [10]. When we move on a
spm X, as we approach to the singular part we must preserve the geometric
notion of conical radium. The unfoldings and the tubular neighborhoods can
be related through another geometric construction, the normalizations; so al-
though we we do not explicitly mention it, we always can assume that the
links are connected [9].

DEFINITION 2.3. Given an spm X let us consider a singular stratum S C
Y. A tubular neighborhood of S (in the sequel a tubular nbhd, for short) is a
fiber bundle £ = (T, 7,5, c(L)) satistying
(1) T is an open nbhd of S in X.
(2) The abstract fiber of £ is F' = ¢(L), the open cone of the link L of S.

(3) 7(x) = x for any x € S. In other words, the inclusion S C T is a section
of the fiber bundle.

(4) The structure group of £ is a subgroup of Difeo(L); i.e., if (U, a), (V,f3)
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are two bundle charts and U NV # ) then the change of charts is
Bla:UNV xe(L)—=UNV xeL),

B Ha(u, [, 1)) = (u, 9., (w) (1), 7]),
where go5(u) is a diffeomorphism of L for allu e UN V.

The spm X is a Thom-Mather if and only if every singular stratum has a
tubular nbhd. If X, X’ are Thom-Mather spms a Thom-Mather morphism is
a morphism f in the sense of §1.1 which preserves the tubular nbhd.

Remark 2.4. Given a tubular nbhd 7 —— S, by §2.3-(4), there is global
sense of radium T —== [0,00) in the whole tube T given by p(u, [l,7]) = r,
this function is the radium of T. Notice that p~1({0}) = S and p~}(R") =

(T —S). There is also an action R* x T'——T by radium stretching, given
by A Oé(’LL, [l’ T]) = Oé(’LL, [lv )‘T])

Remark 2.5. Given a spm X, the singular strata are disjoint connected
manifolds. Since X is normal, they can be separated trough a disjoint family
of open subsets. Therefore, and up to some minor details, if X is Thom-
Mather then we can find a disjoint family of tubular nhbds. This allows us to
simplify some things. In the rest of this section we fix a Thom-Mather spm X
and we will assume, without loss of generality, that X has a unique singular
stratum S = X, with a tubular nbhd as above.

The main goal of this section is to study how the unfoldings and the tubes
relate to each other. We state this relationship in the following theorem.

THEOREM 2.6. A spm is Thom-Mather if and only if it is unfoldable.

We will prove separately each implication, so next we show how to obtain
an unfolding from a tubular nbhd. For an equivalent way of constructing
unfoldings, the reader can see [4] [7].

ProrosiTION 2.7. Every Thom-Mather spm is unfoldable.

Proof. For the singular stratum S = ¥ and a the tubular nbhd 7 —— S |
let’s fix a bundle atlas U = {(Uq, @) }ae3. We proceed in three steps.
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Unfolding a chart: For any chart (U,«) € U, the unfolding of 771(U) is
the composition

UxLxR—=Uxc(L)—*=71"YU), (2)
where ¢ is the map given at §2.1-(2).(b).
Unfolding the tube: Define

- U, x L xR
7o tala X DXR ) o gus(u)(1),1) Voo B Vu € UanUs  (3)

~

as the quotient of the disjoint union, with the above equivalence relation.
Write [u, [, t] for the equivalence class of a triple (u,,t). According to [13, p.
14], the above operation defines a fiber bundle

T—>5, #([ult)=u (4)

with abstract fiber /' = L X R and the same structure group of T". Since the
cocycles are smooth, notice that 7" is a manifold. Let’s now define

T—5>7, L(ul,r]) = aw[L|t]), Yu € Ua, Va. (5)

In order to show that the above arrow is an unfolding of T', the reader only
needs to check, for any chart (U, ) € U, the smoothness of & in the next
commutative square diagram:

U(X><L><]R*>a T

l i,;

Ua X C(L) T>T

where a(u,l,r) = [u,l,r] is just to pick the respective equivalence class.
Unfolding the whole spm X: Remark that

LT -8)=TruT"

has two connected components, each of them being a smooth bundle over S
with abstract fibers F* = L x Rt and - = L x R~ respectively. These
two components are disjoint because the cocycles are radium-independent.
The unfolding of the whole space X can be made by taking two copies of the
regular part R = X — X; say R™, R™, and gluing them together and suitably
with T along £~ X(T — S). 1
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In order to prove the converse statement, let’s recall that any manifold M
with nonempty boundary OM # () has a collar, i.e., a transverse nbhd given
by a smooth embedding T': OM x [0,00) — M such that Im(T") is open in
M and T'(m,0) = m for all m € OM.

ProproSITION 2.8. Every unfoldable pseudomanifold X is Thom-Mather.

Proof. Let X —£+ X bean unfolding of X. Then £71(X — ) is a finite

trivial smooth covering of R = (X — X)), i.e., a disjoint union of finitely many
diffeomorphic copies of R. Pick one, say Ry = R, such that Ry is a manifold

with boundary d(Ry) = £71(S), and take a collar £71(S) x RL>FO of
L7Y(S) in Ry. Define T'= L(Im(T")) and

T8, 7(LT(z,7)=L(2).

Following [7], the above map provides a tubular nbhd of S and each unfolded
chart as in §2.1-(2) induces a bundle chart

Uxc(L)—*>7"YU), a(u,[l,r]) = LT (a(ul,0),7)).
We leave the details to the reader. |1

3. FUNCTORIAL CONSTRUCTIONS

In the previous sections we dealed with the existence of unfoldings in terms
of the tubular nbhds. Now we will see in more detail their categorical prop-
erties. It can be easily deduced from §2.1 that the unfoldings are neither
unique nor functorial objects. We will restrict ourselves to a narrower family
of spaces in order to develope some ideas concerning the smooth desingu-
larization of pseudomanifolds and their functoriality, when considered as a
topological process.

3.1. PRIMARY UNFOLDINGS Primary unfoldings are the smallest unfold-
ings one can find for a given pseudomanifold. They where originally presented
by Brasselet, Hector and Saralegi [1] and later redefined by Dalmagro [3],
whose points of view constitute the aim of this section.
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DEFINITION 3.1. A primary unfolding is an unfolding X —£. X inour

previous sense, such that the preimage of the regular part L=!(R) = RoUR; is
a double (smooth, trivial) covering, i.e., the union of exactly two diffeomorphic
copies of R.

Remark 3.2. The family of primary unfoldings is representative in the

category of unfoldable spms. Starting from any unfolding X Lo x , wWe

can construct a primary unfolding X’ i>X by taking a manifold with
border M = Ry as in the proof of §2.8 and then proceeding as in example
§2.2-(3) in order to get M- M. Then X' = M and £/ = LL" is the

composition.

LEMMA 3.3. Let X, X’ be two unfoldable pseudomanifolds. Then, for any
pair of unfoldings X £ x . X! £ X and any morphism X *f? X' ;
there is a unique continuous and almost everywhere smooth map X . X/

such that the square diagram §(1) p.4, is commutative; we call f the lifting
of f.

Proof. In order to simplify the exposition, by the above remark §3.2, we

assume that X —£- X and X' £ X are primary unfoldings.

(a) Lifting f on the regular part: If ¥ = ) then there is no singular part,
and X = R is a manifold. It follows that X = Ry U Ry. Take f = f xid,
then §3.3 trivially holds. So let’s suppose that ¥ # () and moreover, by §2.5,
we will assume that ¥ = S is a single stratum. By these arguments, we have
already defined a continuous function fsatisiying §3.3 on L71(R). Therefore,
we only must find a continuous extension of f to the entire )Z', i.e., to L71(9).

(b) Eaztension of the lifting: Pick some z € L~(S). We must show a way
to choose f(Zz). For this sake, let {Z,}, C L7!(R) be a sequence converging to
Z. Since L, f are continuous maps and £’ is a continous and proper map; by
an argument of compactness, and up to some little adjusts, we may assume

that the sequence {f(%,)}n converges in X'. We define

) = lim 7).
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If our limit-definition makes sense then it is also continuous; so next we will
show the non ambiguity of f. Since the former is a local definition, we first
study the

(¢) Local writing of the lifting: By §2.1-(2) we can restrict to unfoldables
charts; so we will assume that X=U x ¢(L) and Y = V x ¢(N) are trivial pem
nbhds and their respective unfoldings are the canonical ones - see §2.2-(2).
Then f can be written as in §1.2-(7). The point

zZ=(u,l,0) e U x L x {0}
is the limit of a sequence
{Zn = (Un, ln,tn)}n CU x L x (R —{0}).

So the sequences {uy }n, {ln}n and {t,}, respectively converge to u, I and 0.
Since L, f are continuous maps, the sequence

Wn, = f(ﬁ(gn)) = (al(um In, |tn|)7 [aQ(um In, |tn|)> a3(um In, |tn|)})

converges to w = f(£(2)) = (a1(u,,0),v). By the continuity of the functions
a; for j = 1,2,3 and up to some little adjust on az concerning the compactness
arguments; we get that

Wy, = (al(una ln7 |tn‘)7a2(una lnv |tn|)7 ia3(un7ln7 |tn|))

converges to w = (ay(u,l,0),a2(u,l,0),0).

(d) The lifting is well defined: From the continuity of the functions a;, the
element w does not depend on the choice of a particular sequence {z, },.
Notice that, the lifting fis always smooth on £L~}(X — X)), the preimage
of the regular part. |

Remark 3.4. Given an unfolding X £ x ; a bubble of X is a connected
component of £71(X — X).The above proof is still valid if we take any other
permutation of the bubbles. Along the rest of this paper, we assume that we
are working with the identity permutation, unless we state the opposite.

DEFINITION 3.5. A morphism f between pems nhbds is liftable if its lift-
ing f is globally smooth on every X. This is equivalent to ask f to be smooth

on a nbhd of £L71(%).



150 T. GUARDIA, G. PADILLA

PROPOSITION 3.6. A morphism between pem nhbds
U x ¢(L) O oLy, flu,ll,r]) = (ar(u,l,7),laz(u,l,7), a3(u,l,1)]),
is liftable into
Ux L x RLU’ «I'xR, flult)= (a1(u,1,t),az(u, 1, t),as(u,1,t)),
if and only if

(a) a1, ag are smooth even extensions of, respectively, a1, as.

(b) as is either an odd (and therefore smoooth) extension of as or it is a
smooth even extension and az(u,l,0) = az(u,l,0) =0 for all u,l.

Proof. If f is a lifting of f, then fc = ¢'f, where ¢ and ¢ are canonical
unfoldings as in §2.1-(2). Checking both sides of this equality we get

f(c(u, L t)) = f(u> [lv ‘tH) = (al(uv L |t|)a [a2(u7 L |t|)> a3(u7lv ‘tm)

and

d(f(u,l,t)) =c (al(u,l,t) as(u,l,t),as(u,l,t))
= (a1(u,1,t), [az(u,1,t), [as(u, 1, t)]]).

We conclude that
(al(u7 L ‘ﬂ)? [aQ(uv L, |t|)7 a3(u7 L, ’tm) - (al(ua L t)a [62(u7 L t)? |63(u7 [ t)H)
There are two cases; t = 0 and ¢ # 0, from which we get §3.6. 1

LEMMA 3.7. Let X be a Thom-Mather spm, then the cocycles of a tubular
neighborhoood are liftable.

Proof. Tt is enough to take ¢ = B~ la as in §2.3-(4) and check that
a(u,l,r) = u, az(u,l,r) = g(u)(l), az(u,l,r) = r satisfy the hypothesis of
§3.6. 11

LEMMA 3.8. Let f, f':U x ¢(L)——U' x¢(L') be morphisms and
@:Uxe(L)—=Uxc(L), ¢ : U xc(L')—=U" x ¢(L') be isomophisms
as in §2.3-(4). Then f'p = ¢'f if and only if a1, ag are invarant with respect
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to the group action on the coordinate | and as conmutes with the cocycles,
i.e, a1, a9 and ag satisfy:
ar(u,l,r) = ay (u, g(u)(1),7),
g/(al(ualar))QQ(ual7T) = a2(uvg(u)(l)7r)> (6)
az(u,l,7) = as(u, g(u)(l), 7).

~

Proof. Let f as above, and ¢, ¢’ be cocycles as in §2.3-(4), then

F(eu, [1,r]) = f'(u, [g(u)(D), 7])
= (ai(u, g(u) (D), ), las(u, g(u) (D), 7), a5 (u, g(u) (D), 7)]).

On the other hand

w'(f(u, [l,r])) = Lp'(al(u, l,r),laz(u,l,r),as(u,l, 7“)])
= (al(u,l,r), [g'(al(u,l,r)(ag(u,l,r)),ag(u,l,r))]).

If f'o = ¢'f then, after checking the cases r = 0 and r # 0, we get §3.8. 1

LEMMA 3.9. The restriction of a Thom-Mather morphism (see §2.3) to
the local trivializations satisfy §3.8.

Proof. Let X —%- X’ be a Thom-Mather morphism. Without any loss
of generality, we can assume that 7 = X and 7" = X’ (see §2.5). Let «,
and o/, ' be two bundle charts of X and X’ respectively defined on U x ¢(L)
and U x ¢(L').

If o = B laand ¢’ = (3') 1o/ are their respective cocycles (c.f., §2.3-(4)),
then f = (o/)"'Wa and f' = (8) "1 U3 satisfy §3.8. 11

These results imply that there is a functor from the category of Thom-
Mather spaces to the category of the smooth manifolds. Formally we state
the next theorem.

THEOREM 3.10. Every Thom-Mather morphism has a smooth Thom-
Mather lifting.

Proof. Let X N X' bea Thom-Mather morphism. According to §3.3

: . . ips s foz T
there is a unique continuous lifting X —— X’ ; moreover, f is an almost



152 T. GUARDIA, G. PADILLA

everywhere smooth map. Recall that by §3.7, the cocycles of the tubular
nbhds at X and X’ are liftable. Since f preserves the Thom-Mather structure,
by 3.9, the composition of f with any pair of trivilizing charts at X and X’
turns to be liftable. By a uniqueness argument, we deduce that fis locally
smooth on a nbhd of £7(X) and, therefore, f is smooth. |

3.2. UNIQUENESS OF THE PRIMARY UNFOLDINGS Theorem §3.10 shows
that the primary unfoldings have a quite nice, functorial behaviour.

THEOREM 3.11. Let X and X' be two Thom-Mather spaces and let

X *f>X " be a Thom-Mather isomorphism. Then, the smooth lifting of
fs J?, is a diffeomorphism between the manifolds X and X'.

Proof. We know that by §3.3 the lifting of f, fis unique up to permutation
of the bubbles. Let us fix a bubble permutation ¢ ( as in §3.4) on L71(X —X).
As fis a Thom-Mather morphism its lifting f is a smooth Thom-Mather map
between X and X’ (see, §3.10). On the another hand, the inverse morphism
of f, g is also a Thom-Mather map which lifts into a smooth manifold map g
between X’ and X. In order to satisfy the equations gf =idg and fg =idg,
we take the lifting g of g induced with the inverse permutation o~ ! of the
bubbles. So, therefore f is a diffeomorphism. |

COROLLARY 3.12. The primary unfolding of a Thom-Mather space is
unique.

Proof. Take X = X’ as in §3.11 and apply the same argumentation to the
identity X —%> X . 1
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