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Abstract : Let A be a Banach algebra and L(A) the algebra of all bounded linear operators
acting on A. For a, b ∈ A, the generalized derivation δa,b ∈ L(A) and the elementary
operator ∆a,b ∈ L(A) are defined by δa,b(x) = ax − xb and ∆a,b(x) = axb − x, x ∈ A.
Let da,b = δa,b or ∆a,b. In this note we give couples (a, b) ∈ A2 such that the range and
the kernel of da,b are orthogonal in the sense of Birkhoff. As application of this results we
give consequences for certain operator equations inspired by earlier studies of the equation
α + α−1 = β + β−1 for automorphism α, β on Von Neuman algebras.
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“ to my wife Hasna”

1. INTRODUCTION

Let A be a Banach algebra and L(A) the algebra of all bounded linear
operators acting on A. For a, b ∈ A, the generalized derivation δa,b ∈ L(A)
and the elementary operator ∆a,b ∈ L(A) are defined by δa,b(x) = ax − xb
and ∆a,b(x) = axb− x, x ∈ A. If La is the left multiplication by a and Rb is
the right multiplication by b defined by La(x) = ax and Rb(x) = xb, x ∈ A,
then δa,b = La −Rb and ∆a,b = LaRb − I.

Let da,b = δa,b or ∆a,b. Then the following implications hold for a general
bounded linear operator T on a normed linear space V , in particular for
T = da,b :

KerT ⊥ ImT ⇒ KerT ∩ ImT = {0}
⇒ KerT ∩ ImT = {0}.

Here ImT denote the closure of the range of T and KerT ⊥ ImT denotes
that the kernel of T is orthogonal to the range of T in the sense of Birkhoff.
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Recall that if M, N are linear subspaces of a normed linear space V , then
M ⊥ N in the sense of Birkhoff [5] if

‖a + b‖ ≥ ‖a‖ for all a ∈ M and b ∈ N .

Orthogonality of matrices (more generally bounded linear operators on an
infinite dimensional Hilbert space), in particular orthogonality of the range
and the kernel of elementary operators has been studied in recent years. In
the first part of this work we study orthogonality of the range and the kernel
of da,b, and we give couples (a, b) ∈ A2 such that

Im da,b ∩Ker da,b = {0} .

Consider the equation
α + α−1 = β + β−1 (*)

for automorphisms α, β on Von Neumann algebras. As application of results
given in the first section for elementary operators we study the equation (*)
in the setting of Banach algebra.

2. Elementary operators

We begin this section by the following lemma.

Lemma 2.1. Let a, b ∈ A with cb = e. Then

Rb(Im δa,c ∩Ker δa,c) = Im∆a,b ∩Ker∆a,b .

In particular if Im δa,c ∩Ker δa,c = {0} then Im∆a,b ∩Ker∆a,b = {0}.

Proof. First, observe that if cb = e, then Rbδa,c = ∆a,b. Indeed, for all
x ∈ A we have that Rbδa,c(x) = axb − xcb = axb − x = ∆a,b(x). Assume
that t ∈ Rb(Im δa,c ∩ Ker δa,c). Since Rbδa,c = ∆a,c and Rb is continuous
for the uniform norm, then t ∈ Im∆a,b ∩ Ker ∆a,b. Conversely, since Rc is
continuous for the uniform norm, then by the same argument we prove that
if t ∈ Im∆a,b ∩Ker∆a,b, then t ∈ Rb(Im δa,c ∩Ker δa,c).

Remark 2.2. Let a, b ∈ A with cb = e. By an easy adaptation of the proof
of Lemma 2.1, we get that

Rb(Im δa,c ∩Ker δa,c) = Im ∆a,b ∩Ker∆a,b .
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2.1. Normal elements. Let a ∈ A. The algebraic numerical range
V (a) of a is defined by [2]:

V (a) =
{

f(a) : f ∈ A′
and ‖f‖ = |f(e)| = 1

}

where A′
is the dual space of A and e is the identity on A. If V (a) ⊆ R, then

a is called hermitian. If n = h + ik where h, k are hermitian elements and
hk = kh, then n is called normal.

Define
D(A) =

{
(a, b) ∈ A2 : Im δa,b ⊥ Ker δa,b

}
.

In this section we show that normal elements are in D(A).

Lemma 2.3. If h, k ∈ A are hermitian elements, then so is δh,k.

Proof. Because V (δh,k) ⊆ V (Lh)− V (Lk) = V (h)− V (k) ⊆ R.

Remark 2.4. If X is a Banach space, it is known [7] that

V (δh,k) = V (h)− V (k) for all h ∈ L(X) .

So the converse of Lemma 2.3, is true if A = L(X) where X is a Banach space.

Lemma 2.5. If m,n ∈ A are normal elements, then so is δm,n.

Proof. Assume that m = h + ik and n = p + iq where h, k, p and q are
hermitian elements in A such that hk = kh and pq = qp. Then δm,n =
δh,p + iδk,q with δh,pδk,q = δk,qδh,p. Since h, p and k, q are hermitian, then by
Lemma 2.3, δn,p and δk,q are hermitian. So δm,n is normal.

Theorem 2.6. ([3]) Let E be a Banach space and T ∈ L(E). If T is a
normal operator then

KerT ⊥ ImT .

Theorem 2.7. If m,n ∈ A are normal elements, then

Ker δm,n ⊥ Im δm,n .

Proof. Assume that m,n ∈ A are normal elements. Then by Lemma 2.5,
δm,n is normal and by Theorem 2.6, Ker δm,n ⊥ Im δm,n.
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Corollary 2.8. If a, b ∈ A are normal and there exist c ∈ A such that
bc = e, then

Ker ∆a,c ∩ Im∆a,c = {0} .

Proof. If a, b are normal elements, then by Theorem 2.7 Ker δa,b ⊥ Im δa,b.
This implies that Ker δa,b∩ Im δa,b = {0}. Using Lemma 2.1, we conclude that
Ker∆a,c ∩ Im∆a,c = {0}.

In the following theorem we give other couples (a, b) ∈ A2 which are in
D(A). The technique used to prove this theorem was published first in [4].

Theorem 2.9. Let a and b in A with bc = e and ‖c‖ ≤ 1 for some c in
A. If ‖an‖ ≤ 1 and ‖bn‖ ≤ 1 for all n ∈ N, then

Ker δa,b ⊥ Im δa,b .

Proof. Since we have that

anx− xbn =
n−1∑

i=0

an−i−1(ax− xb)bi ,

then

anx− xbn −
n−1∑

i=0

an−i−1(ax− xb− y)bi = nybn−1 ,

where y ∈ Ker δa,b. If we multiply this equality right by cn−1 we obtain

ny = anxcn−1 − xb−
n−1∑

i=0

an−i−1(ax− xb− y)bicn−1 ,

so

∥∥y
∥∥ ≤ 1

n

{∥∥an
∥∥∥∥x

∥∥∥∥c
∥∥n−1 +

∥∥x
∥∥∥∥b

∥∥
}

+
1
n

n−1∑

i=0

∥∥an−i−1
∥∥∥∥ax− xb− y

∥∥∥∥bi
∥∥∥∥c

∥∥n−1
,

hence
∥∥y

∥∥ ≤ 2
n

∥∥x
∥∥ +

1
n

n−1∑

i=0

∥∥ax− xb− y
∥∥ .
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Passing to the limit n →∞ we obtain that

‖y‖ ≤ ‖ax− xb− y‖ .

Finally, Im δa,b ⊥ Ker δa,b.

Theorem 2.10. Let a and b in A with ‖a‖ ≤ 1 and ‖b‖ ≤ 1. Then

Im∆a,b ⊥ Ker∆a,b .

Proof. If ‖a‖ ≤ 1 and ‖b‖ ≤ 1, then ‖Ma,b‖ ≤ 1. So V (Ma,b) ⊆ D where
D is the closed unit disk. Since ∆a,b = Ma,b − 1, then

V (∆a,b) ⊆ {λ ∈ C : |λ + 1| ≤ 1} .

If 0 is an eigenvalue of ∆a,b, then 0 ∈ V (∆a,b). Hence 0 is in the boundary of
V (∆a,b). It follows from a result of Sinclair [8, Proposition 1] that Im ∆a,b ⊥
Ker∆a,b. If 0 is not an eigenvalue of ∆a,b then Ker ∆a,b = {0} and the result
follows because all linear subspaces are orthogonal to {0}.

2.2. Normal-equivalent elements. Recall that an element a ∈ A is
hermitian-equivalent if

sup{‖ exp(iat)‖ : t ∈ R} < ∞ ,

and that n is normal-equivalent if n = r + is where rs = sr and r, s are
hermitian-equivalent: we write n∗ = r − is for such an n.

Define
B(A) =

{
(a, b) ∈ A2 : Im δa,b ∩Ker δa,b = {0}} .

Note that every element of D(A) is in B(A). Hence normal elements are in
B(A). In this section we show that normal-equivalent elements are in B(A).

Definition 2.11. ([1]) Let A be an algebra with involution and a, b ∈ A.
(a, b) is said to be a couple of Fuglede if ax = xb implies a∗x = xb∗ for every
x ∈ A.

Theorem 2.12. Let A be an algebra with involution and a, b ∈ A. If
(a, b) is a couple of Fuglede, then

Im δa,b ∩Ker δa,b = {0} .
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Proof. Let x ∈ Im δa,b ∩ Ker δa,b = {0}, then x = ay − yb for y ∈ A and
ax = xb. If (a, b) is a couple of Fuglede, then

x∗x = x∗ay − x∗yb

= b(x∗y)− (x∗y)b

and b(x∗x) = x∗ax = (x∗x)b. By Kleinecke-Shirokov’s Theorem [6] x∗x is
quasi-nilpotent. Since x∗x is positive, then x = 0.

The following result which is proved in [1] is an extension of Fuglede’s
Theorem to normal-equivalent elements:

Theorem 2.13. Let A be a complex unital Banach algebra. If a, b ∈ A
are normal-equivalent, then (a, b) is a couple of Fuglede.

As a consequence of Theorem 2.12 and Theorem 2.13, we get the following
corollaries:

Corollary 2.14. Let a, b ∈ A. If a and b are normal-equivalent, then

Im δa,b ∩Ker δa,b = {0} .

Proof. If a and b are normal-equivalent, then by Theorem 2.13 (a, b) is a
couple of Fuglede and by Theorem 2.12 we have

Im δa,b ∩Ker δa,b = {0} .

Corollary 2.15. Let a, b ∈ A with cb = e. If a, c are normal equivalent,
then

Im∆a,b ∩Ker∆a,b = {0} .

Proof. If cb = e, then by Remark 2.2

Rb(Im δa,c ∩Ker δa,c) = Im ∆a,b ∩Ker∆a,b .

If a, c are normal equivalent, then by Corollary 2.14 we have

Im δa,c ∩Ker δa,c = {0} .

So
Im∆a,b ∩Ker∆a,b = {0} .
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3. Application

The following lemma will be used later.

Lemma 3.1. Let u, v ∈ A invertible elements. Then the following state-
ments are equivalent:

(i) uxv−1 + u−1xv = 2x ⇒ ux = xv;

(ii) x ∈ Ker(∆u,v−1)2 ⇒ x ∈ Ker(∆u,v−1).

Proof. The proof of this lemma follows from the fact that x ∈
Ker(∆u,v−1)2 is equivalent to uxv−1 + u−1xv = 2x and x ∈ Ker∆u,v−1 is
equivalent to ux = xv.

If u and v are invertible elements such that

Im ∆u,v−1 ∩Ker∆u,v−1 = {0} ,

then
Ker(∆u,v−1)2 = Ker∆u,v−1 .

From Lemma 3.1, it follow that

uxv−1 + u−1xv = 2x ⇒ ux = xv for all x ∈ A .

In particular, if u and v are normal invertible elements, then by Corollary 2.8,
Im∆u,v−1 ∩Ker ∆u,v−1 = {0}.

The following corollary gives more.

Corollary 3.2. Let u, v ∈ A invertible elements such that ‖u‖ ≤ 1 and
‖v−1‖ ≤ 1. If uxv−1 + u−1xv = 2x for all x ∈ A, then ux = xv.

Proof. Assume that u and v are invertible such that ‖u‖ ≤ 1 and ‖v−1‖ ≤
1, then from Theorem 2.10 we have that Im∆u,v−1 ⊥ Ker∆u,v−1 . This implies
that Ker∆2

u,v−1 = Ker ∆u,v−1 . We conclude by Lemma 3.1.
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