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Abstract : The aim of this note is to study the existence of normal trajectories joining two
given submanifolds under the action of an external field in a standard stationary spacetime.
Here, it is assumed that both the growth of the potential and that one of the coefficients of
the metric are critical in a suitable sense.
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1. Introduction

Taking a Lorentzian manifold (M, 〈·, ·〉L), a function V ∈ C1(M×[0, T ∗],R)
(T ∗ > 0), two submanifolds P , Q of M and an arrival time T ∈ ]0, T ∗], we
use variational tools in order to find accurate conditions ensuring that P and
Q can be connected by means of normal trajectories under the action of the
potential V in time T , i.e., we seek for solutions of the equation

DL
s ż +∇LV (z, s) = 0 for all s ∈ [0, T ] (1.1)

which satisfy the boundary conditions
{

z(0) ∈ P, z(T ) ∈ Q,

ż(0) ∈ Tz(0)P
⊥, ż(T ) ∈ Tz(T )Q

⊥,
(1.2)
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244 normal trajectories in stationary spacetimes

where DL
s denotes the covariant derivative along z induced by the Levi–Civita

connection of 〈·, ·〉L and ∇LV (z, s) is the gradient of V with respect to z.
Clearly, this problem generalizes the study of the geodesic connectedness,

that is the possibility of joining any two given points in M by geodesics, but,
even in the simplest case, we are able to give only partial answers as the metric
is not positive definite (cf. [17] or, for a recent survey, [11] and references
therein). As we cannot carry on a general study, we limit our interest to a
class of Lorentzian manifolds whose features make them appropriate to be
handled from a variational point of view.

Definition 1.1. A spacetimeM (i.e., a Lorentzian manifold with a time–
orientation) is called standard stationary if it splits as a product M0 × R,
where the connected finite dimensional manifold M0 is endowed with a Rie-
mannian metric 〈·, ·〉 and the metric 〈·, ·〉L is given by

〈ζ, ζ ′〉L = 〈ξ, ξ′〉+ 〈δ(x), ξ〉τ ′ + 〈δ(x), ξ′〉τ − β(x)ττ ′ (1.3)

for any z = (x, t) ∈M and ζ = (ξ, τ), ζ ′ = (ξ′, τ ′) ∈ TzM≡ TxM0×R, where
δ and β are respectively a smooth vector field and a smooth strictly positive
scalar field on M0. In particular, M is named standard static if δ ≡ 0.

Let us point out that this assumption is not too restrictive with respect to
the general theory dealing with stationary spacetimes, i.e. spacetimes admit-
ting a timelike Killing vector field K. In fact, not only locally any stationary
spacetime looks like a standard one, but also a global splitting exists in some
“good” geometric assumptions. More precisely, recalling that a spacetime
is globally hyperbolic if it admits a (smooth) spacelike Cauchy hypersurface
(i.e., a subset crossed exactly once by any inextendible timelike curve), it is
known that a stationary spacetime M is standard if it is globally hyperbolic
and admits at least one complete Killing vector field (see [8, Theorem 2.3]).
By the way, in this general case the coefficients in (1.3) are not given a pri-
ori but depend on the Cauchy hypersurface and the complete Killing vector
field which are considered. Even more, in a recent paper it is showed that a
necessary and sufficient condition forM to split globally as a standard confor-
mastationary spacetime with respect to a complete timelike conformal vector
field K is to be distinguishing (see [14, Theorem 1.2]).

After many papers dealing with the geodesic connectedness in standard
stationary spacetimes (see [11] and references therein), in the last years the
study of geodesic connectedness has been set out in (general) stationary space-
times by using an intrinsic approach but, firstly, introducing quite technical
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assumptions (see [13]) while, more recently, considering only geometric hy-
potheses such as the existence of a complete spacelike Cauchy hypersurface
and a complete Killing vector field, which imply also that the spacetime is
standard (see [8]).

More in general, the study of normal trajectories joining two given sub-
manifolds P , Q under the action of a potential V has been developed only
in standard stationary spacetimes so, here, we want to improve the known
results but giving “good” growth assumptions on the coefficients δ, β of (1.3)
and on the potential V . Indeed, even in this setting, our problem is interest-
ing not only from a physical point of view, since these spacetimes represent
time–independent gravitational fields (as, for example, the Kerr spacetime)
but also from a mathematical one. In fact, from a variational viewpoint it is
equivalent to find critical points of the action functional

fV (z) =
1
2

∫ T

0
〈ż, ż〉Lds−

∫ T

0
V (z, s)ds

on a suitable set of curves (for more details, see Proposition 2.1 in Section 2).
Clearly, when V ≡ 0 and P = {p}, Q = {q} (with p = (xp, tp), q =

(xq, tq) ∈ M), the given problem reduces to the study of geodesics joining p
to q in M and, as geodesics are invariant by affine reparametrizations, the
arrival time T between the fixed events is not relevant (in fact, in many related
papers it is just T = 1). In this case, in the pioneer paper [12] the authors
provide a variational principle in order to overcome the unboundedness of the
action functional, so that looking for geodesics reduces to studying critical
points of the new functional

J(x) =
∫ T

0
〈ẋ, ẋ〉ds +

∫ T

0

〈δ(x), ẋ〉2
β(x)

ds − K2
t (x)

∫ T

0

1
β(x)

ds

in ΩT (xp, xq), suitable set of curves joining xp to xq in a time T , where it is

Kt(x) =
(

∆t −
∫ T

0

〈δ(x), ẋ〉
β(x)

ds

) (∫ T

0

1
β(x)

ds

)−1

, (1.4)

with ∆t = tq − tp.
A couple of years ago, the main technical growth assumptions on δ and

β, introduced in [12], have been weakened by far. Indeed, in [2] it is proved
that a standard stationary spacetime is geodesically connected in the following
hypotheses:



246 normal trajectories in stationary spacetimes

(H1) the Riemannian manifold (M0, 〈·, ·〉) is complete and smooth (at least
C3),

(H2) there exist µ1, µ2 ≥ 0, k1, k2 ∈ R and a point x̄ ∈ M0 such that for all
x ∈M0 it is

0 < β(x) ≤ µ1d
2(x, x̄) + k1, (1.5)

√
〈δ(x), δ(x)〉 ≤ µ2d(x, x̄) + k2,

where, d(·, ·) denotes the distance canonically associated to the Riemannian
metric 〈·, ·〉 on M0.

Let us point out that, in the same hypotheses (H1) and (H2), a stan-
dard stationary spacetime M = M0 × R is also globally hyperbolic (see [16,
Corollary 3.4]).

More in general, if V ≡ 0 and P = S1 × {tp} and Q = S2 × {tq}, in the
hypothesis

(H3) S1 and S2 are two embedded submanifolds in M0 such that both of
them are closed as subsets of M0 while at least one of them is compact,

the existence of normal geodesics joining P to Q has been studied both in
a stationary spacetime, if β is far away from zero and both δ and β have a
sublinear growth (cf. [10]), and in a static one but in growth condition (1.5)
(cf. [6]).

On the other hand, if V 6≡ 0 and S1 = {xp}, S2 = {xq}, equation (1.1) has
been studied not only in a Riemannian manifold (see [7]) but also both in a
static and in a stationary one when potential V is time–independent, i.e.,

V (z, s) ≡ V (x, s) for all z = (x, t) ∈M, s ∈ [0, T ∗] (1.6)

(see [1], respectively [3]). In all these cases, if V satisfies the assumption

(H4) there exist λ ≥ 0, k ∈ R, x̄ ∈M0 such that it is

V (x, s) ≤ λd2(x, x̄) + k for all x ∈M0, s ∈ [0, T ∗],

the existence of trajectories, which are solutions of (1.1), is not guaranteed
(in fact, some counterexamples can be found, see Remark 1.4). Anyway, such
solutions exist surely if the coefficient λ in (H4) and the arrival time T are
related by the further condition

λT 2 <
π2

2
. (1.7)
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In the more general setting, i.e. if S1 and S2 do not reduce to a singleton
but (H3) holds, some results on a Riemannian manifold M0 have been ob-
tained in [5] up to assume a condition which is a little bit stronger than (H4):

(H∗
4 ) there exist λ ≥ 0, k ∈ R such that

V (x, s) ≤ λd2(x,A) + k for all x ∈M0, s ∈ [0, T ∗],

choosing A = S1 if S2 is compact, or A = S2 if S1 is compact, where
d(x,A) = infy∈A d(x, y).

Here, we consider problem (1.1) – (1.2) on a standard stationary spacetime
when the potential V is non–trivial and independent of the universal time t
(although it may even depend on the parameter s of the curve).

As previously remarked, a variational formulation entirely based on the
Riemannian part of the spacetime can be stated; more precisely, the given
problem reduces to find critical points of the functional

JV (x) =
1
2
J(x)−

∫ T

0
V (x, s)ds (1.8)

on ΩT (S1, S2), suitable set of curves joining S1 to S2 in a time T (for the exact
definition, see Section 2),

Thus, the main theorem can be stated as follows.

Theorem 1.2. Let M = M0 × R be a standard stationary spacetime
which satisfies hypotheses (H1), (H2) and let V ∈ C1(M× [0, T ∗],R), T ∗ > 0,
be a potential satisfying condition (1.6). Moreover, let P = S1×{tp} and Q =
S2 × {tq} be two submanifolds of M with tp, tq ∈ R and S1, S2 submanifolds
of M0 which satisfy (H3). Then, if the potential V and the arrival time
T ∈ ]0, T ∗] are such that (H∗

4 ) and (1.7) hold, P and Q can be joined by at
least one normal trajectory which solves (1.1) and (1.2).

Remark 1.3. If, in addition to the assumptions of Theorem 1.2, S1 and
S2 are both contractible in M0, then a direct application of Ljusternik–
Schnirelman Theory implies some multiplicity results either if M0 is non–
contractible in itself (cf., e.g., [6, Proposition 3.6] and the related references)
or if it is not (see [9, Theorem 3.7].

Remark 1.4. Even if both S1 and S2 are singleton, counterexamples can
be construct both if hypothesis (H4) holds, but (1.7) fails (see, e.g., [7, Ex-
ample 3.6]) and if (H2) fails (see [4, Section 7] for β that grows more than
quadratically; see also [2, Example 2.7] when δ grows more than linearly).
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2. Variational setting and abstract tools

Let (M, 〈·, ·〉L) be a stationary spacetime with M = M0 × R and 〈·, ·〉L
as in (1.3), where (M0, 〈·, ·〉) is a Riemannian manifold such that (H1) holds.
Moreover, let S1 and S2 be two submanifolds of M0 and fix tp, tq ∈ R, so
that it is P = S1 × {tp} and Q = S2 × {tq}. Now, fixed T > 0, for simplicity
assume I = [0, T ].

Here, our aim is working by means of variational tools. Thus, let us recall
some basic definitions (for more details, cf. [11] and references therein).

It is known that there exists a closed embedding of any complete Rieman-
nian manifold in RN (cf. [15]). Hence, we can assume that M0 is a closed
submanifold of RN , 〈·, ·〉 is the restriction to M0 of the Euclidean metric of
RN and d(·, ·) is the corresponding distance, i.e.,

d(x1, x2) = inf
{∫ b

a

√
〈γ̇, γ̇〉ds : γ ∈ Ax1,x2

}
if x1, x2 ∈M0,

where γ ∈ Ax1,x2 if γ : [a, b] →M0 is a piecewise smooth curve joining x1 to
x2.

Thus, the manifold H1(I,M0) can be identified with the set of the abso-
lutely continuous curves x : I → RN with square summable derivative such
that x(I) ⊂ M0. Furthermore, since M0 is a complete Riemannian mani-
fold with respect to 〈·, ·〉, H1(I,M0) equipped with its standard Riemannian
structure is a complete Riemannian manifold, too.

Let Z be the smooth manifold of all the H1(I,M)–curves joining P to
Q, while ΩT (S1, S2) denotes the smooth submanifold of H1(I,M0) which
contains all the curves joining S1 to S2 in a time T with

TxΩT (S1, S2) = {ξ ∈ TxH1(I,M0) : ξ(0) ∈ Tx(0)S1, ξ(T ) ∈ Tx(T )S2}
for all x ∈ ΩT (S1, S2). By the product structure of M, it follows

Z ≡ ΩT (S1, S2)×W T (tp, tq) and TzZ ≡ TxΩT (S1, S2)×H1
0

for each z = (x, t) ∈ Z, as

W T (tp, tq) = {t ∈ H1(I,R) : t(0) = tp, t(T ) = tq} = H1
0 + j∗

is a closed affine submanifold of H1(I,R) with tangent space TtW
T (tp, tq) =

H1
0 , with

j∗ : s ∈ I 7→ t0 + s
∆t

T
∈ R, H1

0 = {t ∈ H1(I,R) : t(0) = t(T ) = 0}.
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Let us remark that, if S1 and S2 are closed, then the submanifold Z of
H1(I,M) can be equipped with the Riemannian structure

〈ζ, ζ〉H =
∫ T

0
〈Dsξ, Dsξ〉ds +

∫ T

0
τ̇2ds

for any z = (x, t) ∈ Z, ζ = (ξ, τ) ∈ TzZ, and the submanifold ΩT (S1, S2),
hence Z, is complete.

Now, let V = V (z, s) be a given potential on M× [0, T ∗] and consider
T < T ∗.

It is quite standard proving the following variational principle (for a hint,
see the proof of [10, Proposition 2.1]).

Proposition 2.1. A curve z : I → M is a normal trajectory joining P
to Q under the action of the potential V in the time T , i.e. it solves problem
(1.1)–(1.2), if and only if z ∈ Z is a critical point of the action functional fV

in the manifold Z.

In our setting, from Proposition 2.1 and (1.3) it follows that we have to
look for critical points of the (strongly unbounded) action functional

fV (z) =
1
2

∫ T

0
(〈ẋ, ẋ〉+ 2〈δ(x), ẋ〉ṫ− β(x)ṫ2)ds−

∫ T

0
V (z, s)ds (2.1)

for z = (x, t) ∈ Z. But, as in the problem of geodesic connectedness, a way
to get over the lack of boundedness of fV on Z can be to introduce a new
functional which depends only on the Riemannian variable x. Clearly, such
an approach is allowed if both the metric coefficients and the potential V are
independent on the time component t.

Proposition 2.2. Assume that the potential V satisfies condition (1.6)
and consider z∗ = (x∗, t∗) ∈ Z. The following statements are equivalent:

(i) z∗ is a critical point of the action functional fV defined in (2.1);

(ii) x∗ is a critical point of the functional JV : ΩT (S1, S2) → R defined in
(1.8) and t∗ = Ψ(x∗), with Ψ : ΩT (S1, S2) → W T (tp, tq) such that

Ψ(x)(s) = t0 +
∫ s

0

〈δ(x(σ)), ẋ(σ)〉
β(x(σ))

dσ −Kt(x)
∫ s

0

1
β(x(σ))

dσ

and Kt(x) defined as in (1.4).
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Moreover, for each x ∈ ΩT (S1, S2) and (ξ, τ) ∈ TxΩT (S1, S2)×H1
0 it is

fV (x,Ψ(x)) = JV (x) and J ′V (x)[ξ] = f ′V (x,Ψ(x))[(ξ, τ)].

So, from now on, assume that the potential V satisfies the hypothesis (1.6).
Hence, by Proposition 2.2 our problem is reduced to study the Riemannian
functional JV on ΩT (S1, S2) and, in order to find at least one critical point,
we can use the following classical abstract minimum theorem.

Theorem 2.3. Let Ω be a complete Riemannian manifold and J a C1

functional on Ω which satisfies the Palais–Smale condition, i.e., any (xk)k ⊂ Ω
such that

(J (xk))k is bounded and lim
k→+∞

J ′(xk) = 0

converges in Ω, up to subsequences. Then, if J is bounded from below, it
attains its infimum.

3. Proof of Theorem 1.2

As already observed in Section 2, the functional JV in (1.8) is C1 on the
Riemannian manifold ΩT (S1, S2) which is complete if S1 and S2 are closed
submanifolds of M0. Thus, in order to apply Theorem 2.3, we just need to
prove that JV is bounded from below and satisfies the Palais–Smale condition.
Or better, it is enough to prove that JV is bounded from below and coercive
in ΩT (S1, S2), i.e.,

JV (xk) → +∞ if ‖ẋk‖ → +∞

(here, ‖ · ‖ is the L2–norm). In fact, if JV is coercive in ΩT (S1, S2), then a
sequence (xk)k has to be bounded if (JV (xk))k is bounded, and the Palais–
Smale condition is a consequence of the following lemma.

Lemma 3.1. If S1 and S2 are two submanifolds of M0 such that (H3)
holds, then each sequence (xk)k, bounded in ΩT (S1, S2) and such that
J ′V (xk) → 0, converges up to subsequences.

Proof. It is enough reasoning as in the proof of [11, Lemma 3.4.1] taking
into account some comments in the proof of [6, Proposition 4.2].
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Taking any ε ∈ ]0, 1[, it is easy to check that the functional JV can be
written as

JV (x) =
ε

2
J ε(x) + (1− ε)J ε

T (x),

where

J ε(x) =
∫ T

0
〈ẋ, ẋ〉ds +

∫ T

0

〈δ(x), ẋ〉2
βε(x)

ds

−
(

∆ε
t −

∫ T

0

〈δ(x), ẋ〉
βε(x)

ds

)2 (∫ T

0

1
βε(x)

ds

)−1

,

with βε(x) = ε β(x) and ∆ε
t = ∆t

ε , and

J ε
T (x) =

1
2

∫ T

0
〈ẋ, ẋ〉ds−

∫ T

0
V ε(x, s)ds, with V ε(x, s) =

V (x, s)
1− ε

.

Then, the following lemmas can be stated.

Lemma 3.2. If (H2) and (H3) hold, then for each ε ∈ ]0, 1[ the functional
J ε is bounded from below and coercive in ΩT (S1, S2).

Proof. The proof can be obtained by reasoning as in the proofs of [2,
Lemma 2.6] and [6, Proposition 4.1] with some minor changes according to
assume S1 or S2 as compact set.

Lemma 3.3. If (H3), (H∗
4 ) and (1.7) hold, then, taken ε ∈ ]0, 1[ small

enough so that
λ

1− ε
T 2 <

π2

2
,

the functional J ε
T is bounded from below and coercive in ΩT (S1, S2).

Proof. See [5, Lemma 3.1].

Proof of Theorem 1.2. Obviously, in the hypotheses of Theorem 1.2, Lem-
mas 3.2 and 3.3 imply that the functional JV is bounded from below and coer-
cive in ΩT (S1, S2); hence, it satisfies the Palais–Smale condition (see Lemma
3.1) and Theorem 2.3 applies. So, JV attains its infimum, and, from Propo-
sition 2.2, a solution of the given problem must exist.
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