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Abstract : The object of the present paper is to study 3-dimensional trans-Sasakian manifolds
which are locally φ-symmetric and have η-parallel Ricci tensor. Also 3-dimensional trans-
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1. Introduction

Trans-Sasakian manifolds arose in a natural way from the classification of
almost contact metric structures by D. Chinea and C. Gonzales [3], and they
appear as a natural generalization of both Sasakian and Kenmotsu manifolds.
Again in the Gray-Hervella classification of almost Hermite manifolds [7], there
appears a class W4 of Hermitian manifolds which are closely related to locally
conformally Kähler manifolds. An almost contact metric structure on a mani-
fold M is called a trans-Sasakian structure [13] if the product manifold M×R
belongs to the class W4. The class C6⊕C5 ([10], [11]) coincides with the class
of trans-Sasakian structures of type (α, β). In [11], the local nature of the two
subclasses C5 and C6 of trans-Sasakian structures is characterized completely.
In [4], some curvature identities and sectional curvatures for C5, C6 and trans-
Sasakian manifolds are obtained. It is known that ([8]) trans-Sasakian struc-
tures of type (0,0), (0, β) and (α, 0) are cosymplectic, β-Kenmotsu and α-
Sasakian respectively. In [15], it is proved that trans-Sasakian structures are
generalized quasi-Sasakian structures [12]. Thus, trans-Sasakian structures
also provide a large class of generalized quasi-Sasakian structures.

The local structure of trans-Sasakian manifolds of dimension n ≥ 5 has
been completely characterized by J. C. Marrero [10]. He proved that a trans-
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Sasakian manifold of dimension n ≥ 5 is either cosymplectic or α-Sasakian
or β-Kenmotsu manifold. But so far, it is not too much known about the
3-dimensional case.

This paper deals just on 3-dimensional connected trans-Sasakian mani-
folds. In Section 2 some preliminary results are recalled and explicit formulae
for Ricci tensor and curvature tensor [6] of 3-dimensional trans Sasakian mani-
folds are given. In Section 3 we characterize 3-dimensional locally φ-symmetric
trans-Sasakian manifolds and prove that a 3-dimensional connected trans-
Sasakian manifold of type (α, β) is locally φ-symmetric if and only if the
scalar curvature of the manifold is constant where α and β are constants.
This result is an extension of an analogous result concerning Kenmotsu man-
ifolds obtained by the first author [5]. Section 4 of our paper deals with a
3-dimensional trans-Sasakian manifold with η-parallel Ricci tensor. In this
section we also show that a 3-dimensional connected trans-Sasakian manifold
of type (α, β) has η-parallel Ricci tensor if and only if the scalar curvature of
the manifold is constant where α and β are constants. In Section 5, we show
that a 3-dimensional compact connected trans-Sasakian manifold of constant
curvature is either α-Sasakian or β-Kenmotsu. This is the most important
result obtained in this paper. Finally in the last section we construct an
example of a three-dimensional locally φ-symmetric trans-Sasakian manifold.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost
contact metric structure (φ, ξ, η, g), that is, φ is an (1, 1) tensor field, ξ is a
vector field, η is an 1-form and g is compatible Riemannian metric such that

φ2(X) = −X + η(X)ξ, η(ξ) = 1, φξ = 0, ηφ = 0, (2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.2)

g(X, φY ) = −g(φX, Y ), g(X, ξ) = η(X), (2.3)

for all X,Y ∈ T (M) [1]. The fundamental 2-form Φ of the manifold is defined
by

Φ(X, Y ) = g(X,φY ), (2.4)

for X,Y ∈ T (M).
An almost contact metric structure (φ, ξ, η, g) on a connected manifold M

is called trans-Sasakian structure [13] if (M × R, J,G) belongs to the class
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W4 [7], where J is the almost complex structure on M ×R defined by

J(X, fd/df) = (φX − fξ, η(X)d/dt),

for all vector fields X on M, a smooth function f on M ×R and the product
metric G on M ×R. This may be expressed by the condition [2]

(∇Xφ)Y = α
(
g(X, Y )ξ − η(Y )X

)
+ β

(
g(φX, Y )ξ − η(Y )φX

)
, (2.5)

for smooth functions α and β on M. Here we say that the trans-Sasakian
structure is of type (α, β). From (2.5) it follows that

∇Xξ = −αφX + β
(
X − η(X)ξ

)
, (2.6)

(∇Xη)Y = −αg(φX, Y ) + βg(φX, φY ). (2.7)

An explicit example of 3-dimensional proper trans-Sasakian manifold is
constructed in [10]. In [6], the Ricci operator, Ricci tensor and curvature ten-
sor for 3-dimensional trans-Sasakian manifolds are studied and their explicit
formulae are given.

From [6] we know that for a 3-dimensional trans-Sasakian manifold

2αβ + ξα = 0, (2.8)

S(X, ξ) =
(
2(α2 − β2)− ξβ

)
η(X)−Xβ − (φX)α, (2.9)

S(X,Y ) =
(r

2
+ ξβ − (α2 − β2)

)
g(X, Y )

−
(r

2
+ ξβ − 3(α2 − β2)

)
η(X)η(Y )

− (
Y β + (φY )α

)
η(X)− (

Xβ + (φX)α
)
η(Y ),

(2.10)

and

R(X,Y )Z =
(r

2
+ 2ξβ − 2(α2 − β2)

)(
g(Y, Z)X − g(X, Z)Y

)

− g(Y, Z)
[(r

2
+ ξβ − 3(α2 − β2)

)
η(X)ξ

− η(X)(φgradα− gradβ) +
(
Xβ + (φX)α

)
ξ
]

+ g(X,Z)
[(r

2
+ ξβ − 3(α2 − β2)

)
η(Y )ξ

− η(Y )(φgradα− gradβ) +
(
Y β + (φY )α

)
ξ
]

(2.11)
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−
[(

Zβ + (φZ)α
)
η(Y ) +

(
Y β + (φY )α

)
η(Z)

+
(r

2
+ ξβ − 3(α2 − β2)

)
η(Y )η(Z)

]
X

+
[(

Zβ + (φZ)α
)
η(X) +

(
Xβ + (φX)α

)
η(Z)

+
(r

2
+ ξβ − 3(α2 − β2)

)
η(X)η(Z)

]
Y,

where S is the Ricci tensor of type (0, 2), R is the curvature tensor of type
(1, 3) and r is the scalar curvature of the manifold M.

3. Locally φ-symmetric three-dimensional
trans-Sasakian manifolds

Definition 3.1. A trans-Sasakian manifold is said to be locally φ-sym-
metric if

φ2(∇W R)(X, Y )Z = 0,

for all vector fields W,X, Y, Z orthogonal to ξ.

This notion was introduced for Sasakian manifolds by Takahashi [14].

Let M be a 3-dimensional connected trans-Sasakian manifold. Then its
curvature tensor is given by (2.11). Differentiating (2.11) we get

(∇W R)(X,Y )Z

=
[dr(W )

2
+ 2(∇W (ξβ))− 4

(
dα(W )− dβ(W )

)][
g(Y, Z)X − g(X, Z)Y

]

− g(Y, Z)
[(dr(W )

2
+

(∇W (ξβ)
)− 6

(
dα(W )− dβ(W )

))
η(X)ξ

+
(r

2
+ ξβ − 3(α2 − β2)

)(
(∇W η)(X)ξ + η(X)(∇W ξ)

)

− (∇W η)(X)
(
φ(gradα)− gradβ

)− η(X)
(∇W (φ(gradα)− gradβ)

)

+
(∇W

(
Xβ + (φX)α

))
ξ +

(
Xβ + (φX)α

)∇W ξ
]

+ g(X, Z)
[(dr(W )

2
+

(∇W (ξβ)
)− 6

(
dα(W )− dβ(W )

))
η(Y )ξ

+
(r

2
+ ξβ − 3(α2 − β2)

)(
(∇W η)(Y )ξ + η(Y )(∇W ξ)

)

− (∇W η)(Y )
(
φ(gradα)− gradβ

)− η(Y )
(∇W

(
φ(gradα)− gradβ

))

+ (∇W

(
Y β + (φX)α)

)
ξ +

(
Y β + (φY )α

)∇W ξ
]

(3.1)
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−
[(∇W

(
Zβ + (φZ)α

))
η(Y ) +

(
Zβ + (φZ)α

)
(∇W η)Y

+
(∇W

(
Y β + (φY )α

))
η(Z) +

(
Y β + (φY )α

)
(∇W η)Z

+
(dr(W )

2
+

(∇W (ξβ)
)− 6

(
dα(W )− dβ(W )

))
η(Y )η(Z)

+
(r

2
+ ξβ − 3(α2 − β2)

)(
(∇W η)Y η(Z) + η(Y )(∇W η)Z

)]
X

+
[(∇W

(
Zβ + (φZ)α

))
η(X) +

(
Zβ + (φZ)α

)
(∇W η)X

+
(∇W

(
Xβ + (φX)α

))
η(Z) +

(
Xβ + (φX)α

)
(∇W η)Z

+
(dr(W )

2
+

(∇W (ξβ)
)− 6

(
dα(W )− dβ(W )

))
η(X)η(Z)

+
(r

2
+ ξβ − 3(α2 − β2)

)(
(∇W η)Xη(Z) + η(X)(∇W η)Z

)]
Y.

Suppose that α and β are constants and X,Y, Z,W are orthogonal to ξ. Then
using φξ = 0 and (3.1), we get

φ2(∇W R)(X, Y )Z =
(dr(W )

2

)(
g(Y, Z)X − g(X, Z)Y

)
. (3.2)

Hence from (3.2) we get φ2(∇W R)(X, Y )Z = 0 if and only if the scalar
curvature r is constant. Thus we can state the following:

Theorem 3.1. A 3-dimensional connected trans-Sasakian manifold of type
(α, β) is locally φ-symmetric if and only if the scalar curvature is constant pro-
vided α and β are constants.

The above theorem is just an extension of an analogous result concerning
Kenmotsu manifolds obtained by the first author in the paper [5].

4. η−parallel Ricci tensor

Definition 4.1. The Ricci tensor S of a trans-Sasakian manifold is said
to be η-parallel if it satisfies

(∇XS)(φY, φZ) = 0, (4.1)

for all vector fields X, Y and Z.



270 u. c. de, a. sarkar

This notion was introduced in the context of Sasakian manifolds by Kon [9].
Let M be a 3-dimensional connected trans-Sasakian manifold. Then its

Ricci tensor is given by (2.10)
In (2.10) replacing X by φX, Y by φY and using (2.1) we get for a trans-

Sasakian manifold of dimension three

S(φX, φY ) =
(r

2
+ ξβ − (α2 − β2)

)(
g(X, Y )− η(X)η(Y )

)
. (4.2)

Now we see that

(∇ZS)(φX, φY ) =∇ZS(φX, φY )− S(∇ZφX, φY )− S(φX,∇ZφY )
=∇ZS(φX, φY )− S

(
(∇Zφ)X,φY

)− S(φ∇ZX, φY )
− S

(
φX, (∇Zφ)Y

)− S(φX, φ∇ZY ).
(4.3)

Using (2.5), (2.10) and (4.2) in (4.3) we have

(∇ZS)(φX, φY )

=
(1

2
dr(Z) +∇Z(ξβ)− 2αdα(Z) + 2βdβ(Z)

)(
g(X,Y )− η(X)η(Y )

)

+
(r

2
+ ξβ − (α2 − β2)

)(
∇Zg(X, Y )− (∇Zη(X)

)
η(Y )

− η(X)
(∇Zη(Y )

))

− S
(
α
(
g(Z,X)ξ − η(X)Z

)
+ β

(
g(φZ,X)ξ − η(X)φZ

)
, φY

)
(4.4)

−
(r

2
+ ξβ − (α2 − β2)

)(
g(∇ZX,Y )− η(∇ZX)η(Y )

)

− S
(
φX, α

(
g(Z, Y )ξ − η(Y )Z

)
+ β

(
g(φZ, Y )ξ − η(Y )φZ

))

−
(r

2
+ ξβ − (α2 − β2)

)(
g(X,∇ZY )− η(X)η(∇ZY )

)
.

By virtue of (2.9) and (2.10) we obtain from (4.4)

(∇ZS)(φX, φY )

=
(1

2
dr(Z) +∇Z(ξβ)− 2αdα(Z) + 2βdβ(Z)

)(
g(X, Y )− η(X)η(Y )

)

+
(r

2
+ ξβ−(α2− β2)

)(
∇Zg(X,Y )−(∇Zη(X)

)
η(Y )−η(X)

(∇Zη(Y )
))

+ αg(Z, X)
(
(φY )β + (φ2Y )α

)
(4.5)
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+ αη(X)
((r

2
+ ξβ − (α2 − β2)

)
g(Z, φY )− (

(φY )β + (φ2Y )α
)
η(Z)

)

+ βg(φZ, X)
(
(φY )β + (φ2Y )α

)

+ βη(X)
((r

2
+ ξβ − (α2 − β2)

)(
g(Z, Y )− η(Z)η(Y )

))

−
(r

2
+ ξβ − (α2 − β2)

)(
g(∇ZX, Y )− η(∇ZX)η(Y )

)

+ αg(Z, Y )
(
(φX)β + (φ2X)α

)

+ αη(Y )
((r

2
+ ξβ − (α2 − β2)

)
g(Z, φX)− (

(φX)β + (φ2X)α
)
η(Z)

)

+ βg(φZ, Y )
(
(φX)β + (φ2X)α

)

+ βη(Y )
((r

2
+ ξβ − (α2 − β2)

)(
g(Z, X)− η(Z)η(X)

))

−
(r

2
+ ξβ − (α2 − β2)

)(
g(X,∇ZY )− η(X)η(∇ZY )

)
.

The above relation can be written as

(∇ZS)(φX, φY )

=
(1

2
dr(Z) +∇Z(ξβ)− 2αdα(Z) + 2βdβ(Z)

)(
g(X, Y )− η(X)η(Y )

)

+
(r

2
+ ξβ−(α2−β2)

)(
∇Zg(X, Y )−(∇Zη(X)

)
η(Y )−η(X)

(∇Zη(Y )
)

+ αη(X)g(Z, φY ) + βη(X)
(
g(Z, Y )− η(Z)η(Y )

)− g(∇ZX, Y )
+ η(∇ZX)η(Y ) + αη(Y )g(Z, φX) + βη(Y )

(
g(Z, X)− η(Z)η(X)

)

− g(X,∇ZY ) + η(X)η(∇ZY )
)

(4.6)

+
(
(φY )β + (φ2Y )α

)(
αg(Z, X) + βg(φZ, X)− αη(X)η(Z)

)

+
(
(φX)β + (φ2X)α

)(
αg(Z, Y ) + βg(φZ, Y )− αη(Y )η(Z)

)
.

Suppose that α and β are constants. Then using (2.7) in (4.6), we obtain

(∇ZS)(φX, φY ) =
1
2
dr(Z)

(
g(X,Y )− η(X)η(Y )

)
. (4.7)

Hence, from (4.7) we can state the following:



272 u. c. de, a. sarkar

Theorem 4.1. A 3-dimensional connected trans-Sasakian manifold of
type (α, β) has η-parallel Ricci tensor if and only if the scalar curvature of the
manifold is constant provided α and β are constants.

From Theorem 3.1 and Theorem 4.1 we can state the following:

Corollary 4.1. A 3-dimensional connected trans-Sasakian manifold of
type (α, β) has η-parallel Ricci tensor if and only if it is locally φ-symmetric
provided α and β are constants.

5. Three-dimensional trans-Sasakian manifold with
constant curvature

Let M be a 3-dimensional compact connected trans-Sasakian manifold. If
the manifold is of constant curvature then the Ricci tensor of type (0, 2) of
the manifold is given by

S(X, Y ) = 2λg(X, Y ), (5.1)

where λ is a constant. Putting Y = ξ in (5.1) and using (2.9), we get

Xβ + (φX)α + [2(λ− α2 + β2) + ξβ]η(X) = 0. (5.2)

For X = ξ, (5.2) yields
ξβ = −(λ− α2 + β2). (5.3)

By virtue of (5.2) and (5.3) it follows that

Xβ + (φX)α + (λ− α2 + β2)η(X) = 0. (5.4)

The gradient of the function β is related to the exterior derivative dβ by the
formula

dβ(X) = g(gradβ, X). (5.5)

Using (5.5) in (5.4) we obtain

dβ(X) + g(gradα, φX) + (λ− α2 + β2)η(X) = 0. (5.6)

Differentiating (5.6) covariantly with respect to Y we get

(∇Y dβ)(X) + g(∇Y gradα, φX) + g(gradα, (∇Y φ)X)

+ Y (β2 − α2)η(X) + (λ− α2 + β2)(∇Y η)(X) = 0.
(5.7)
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Interchanging X and Y in (5.7), we get

(∇Xdβ)(Y ) + g(∇Xgradα, φY ) + g(gradα, (∇Xφ)Y )

+ X(β2 − α2)η(Y ) + (λ− α2 + β2)(∇Xη)(Y ) = 0.
(5.8)

Subtracting (5.7) from (5.8) we get

g(∇Xgradα, φY )− g(∇Y gradα, φX) +
(
(∇Xφ)Y − (∇Y φ)X

)
α

+ [X(β2 − α2)η(Y )− Y (β2 − α2)η(X)]

+ (λ− α2 + β2)
(
(∇Xη)(Y )− (∇Y η)(X)

)
= 0.

(5.9)

From (2.7) and (2.4) we get

(∇Xη)(Y )− (∇Y η)(X) = α
(
Φ(X, Y )− Φ(Y, X)

)
= 2αΦ(X, Y ). (5.10)

Using (5.10) in (5.9) we have

g(∇Xgradα, φY )− g(∇Y gradα, φX) +
(
(∇Xφ)Y − (∇Y φ)X

)
α

+ [X(β2 − α2)η(Y )− Y (β2 − α2)η(X)]

+ 2(λ− α2 + β2)αΦ(X,Y ) = 0.

(5.11)

Let {E0, E1, E2} be a local φ-basis, that is, an orthonormal frame such that
E0 = ξ and E2 = φE1. In (2.5) putting X = E1, Y = E2 we get

(∇E1φ)E2 = α
(
g(E1, E2)ξ − η(E2)E1

)
+ β

(
g(φE1, E2)ξ − η(E2)φE1

)

= βg(φE1, E2)ξ = βξ.
(5.12)

Similarly,
(∇E2φ)E1 = −βξ. (5.13)

Now,
Φ(E1, E2) = g(E1, φE2) = g(E1, φ

2E1) = −1. (5.14)

In (5.11) putting X = E1 and Y = E2 and using (5.12), (5.13) and (5.14) we
obtain

g(∇E1gradα, E1) + g(∇E2gradα, E2) = 2βξα− 2α(λ− α2 + β2). (5.15)

Also (2.8) can be written as

g(gradα, ξ) = −2αβ. (5.16)
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Differentiating (5.16) covariantly with respect to ξ we get

g(∇ξgradα, ξ) + g(gradα,∇ξξ) = −2βξα− 2αξβ. (5.17)

In view of (5.3) we can write the above relation as

g(∇ξgradα, ξ) = −2βξα + 2α(λ− α2 + β2). (5.18)

From (5.15) and (5.18) we get 4α = 0, where 4 is the Laplacian defined by

4α =
2∑

i=0

g(∇Eigradα, Ei).

Since M is compact we get α is constant.
Now let us consider the following two cases:

Case-I: In this case we suppose that α is non-zero constant then by (2.8),
β = 0 every where on M.

Case-II: In this case let α = 0. Then from (5.4)

Xβ + (λ + β2)η(X) = 0,

that is,
g(gradβ, X) + (λ + β2)g(X, ξ) = 0.

Therefore,
gradβ + (λ + β2)ξ = 0. (5.19)

Differentiating (5.19) covariantly with respect to X we have

∇Xgradβ + (Xβ2)ξ + (λ + β2)∇Xξ = 0.

Using (2.6) we get from above

∇Xgradβ + (Xβ2)ξ + (λ + β2)
(− αφX + β(X − η(X)ξ)

)
= 0.

Now taking inner product of the above equation with X, we have

g(∇Xgradβ, X) =− g
(
(Xβ2)ξ,X

)

− (λ + β2)
(
g(−αφX,X) + βg(X − η(X)ξ, X)

)
.

(5.20)
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Therefore putting X = Ei and taking summation over i, i = 0, 1, 2, we get
from above

4β = −2β(ξβ + λ + β2). (5.21)

For α = 0, (5.3) yields ξβ = −(λ + β2), which in view of (5.21) gives 4β = 0.
Hence β=constant, M being compact. This leads to the following:

Theorem 5.1. If a 3-dimensional compact connected trans-Sasakian man-
ifold is of constant curvature then it is either α-Sasakian or β-Kenmotsu.

6. Example of a locally φ-symmetric three-dimensional
trans-Sasakian manifold

We consider the three-dimensional manifold M = {(x, y, z) ∈ R3, z 6= 0},
where (x, y, z) are the standard coordinates in R3. The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = z

∂

∂z

are linearly independent at each point of M. Let g be the Riemannian metric
defined by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M). Let φ be
the (1,1) tensor field defined by φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0. Then
using the linearity of φ and g we have

η(e3) = 1, φ2Z = −Z + η(Z)e3, g(φZ, φW ) = g(Z, W )− η(Z)η(W ),

for any Z,W ∈ χ(M). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact
metric structure on M. Now, by direct computations we obtain

[e1, e2] = 0, [e2, e3] = −e2, [e1, e3] = −e1.

The Riemannian connection ∇ of the metric g is given by the Koszul’s formula
which is

2g(∇XY, Z) =Xg(Y,Z) + Y g(Z, X)− Zg(X,Y )
− g

(
X, [Y, Z]

)− g
(
Y, [X, Z]

)
+ g

(
Z, [X, Y ]

)
.

(6.1)
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Using (6.1) we have

2g(∇e1e3, e1) = 2g(−e1, e1),
2g(∇e1e3, e2) = 0 = 2g(−e1, e2),
2g(∇e1e3, e3) = 0 = 2g(−e1, e3).

Hence, ∇e1e3 = −e1. Similarly, ∇e2e3 = −e2 and ∇e3e3 = 0.
(6.1) further yields

∇e1e2 = 0, ∇e1e1 = e3,
∇e2e2 = e3, ∇e2e1 = 0,
∇e3e2 = 0, ∇e3e1 = 0.

We see that

(∇e1φ)e1 = ∇e1φe1 − φ∇e1e1 = −∇e1e2 − φe3 = −∇e1e2 = 0
= 0(g(e1, e1)e3 − η(e1)e1)− 1(g(φe1, e1)e3 − η(e1)φe1).

(6.2)

(∇e1φ)e2 = ∇e1φe2 − φ∇e1e2 = ∇e1e1 − 0 = e3

= 0
(
g(e1, e2)e3 − η(e2)e1

)− 1
(
g(φe1, e2)e3 − η(e2)φe1

)
.

(6.3)

(∇e1φ)e3 = ∇e1φe3 − φ∇e1e3 = 0 + φe1 = −e2

= 0
(
g(e1, e3)e3 − η(e3)e1

)− 1
(
g(φe1, e3)e3 − η(e3)φe1

)
.

(6.4)

By (6.2), (6.3) and (6.4) we see that the manifold satisfies (2.5) for X = e1,
α = 0, β = −1, and e3 = ξ. Similarly it can be shown that for X = e2 and
X = e3 the manifold also satisfies (2.5) for α = 0, β = −1, and e3 = ξ. Hence
the manifold is a trans-Sasakian manifold of type (0,−1). With the help of
the above results it can be verified that

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1,
R(e1, e2)e2 = −e1, R(e2, e3)e2 = e3, R(e1, e3)e2 = 0,
R(e1, e2)e1 = e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = e3.

From which it follows that φ2(∇W R)(X, Y )Z = 0. Hence the 3-dimensional
trans-Sasakian manifold is locally φ-symmetric.

Also from the above expressions of the curvature tensor we obtain the
scalar curvature r = −3. Hence we note that here α, β and r all are constants.
Hence from Theorem 3.1 it follows that the manifold under consideration is
locally φ-symmetric.
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