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Abstract : It has been shown that the three-circles theorem, which is also known as Ţiţeica’s
or Johnson’s theorem, can be extended to strictly convex normed planes, with various ap-
plications. From this it follows that the notions of orthocenters and orthocentric systems in
the Euclidean plane have natural analogues in strictly convex normed planes. In the present
paper (which can be regarded as continuation of [5] and [14]) we derive several new charac-
terizations of the Euclidean plane by studying geometric properties of orthocentric systems
in strictly convex normed planes. All these results yield also geometric characterizations of
inner product spaces among all real Banach spaces of dimension ≥ 2 having strictly convex
unit balls.
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