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Abstract : We consider monads over varying categories, and by defining the morphisms of
Kleisli and of Eilenberg-Moore from a monad to another and the appropriate transforma-
tions (2-cells) between morphisms of Kleisli and between morphisms of Eilenberg-Moore,
we obtain two 2-categories MndKl and MndEM. Then we prove that MndKl and MndEM

are, respectively, 2-isomorphic to the conjugate of Kl and to the transpose of EM, for
two suitably defined 2-categories Kl and EM, related, respectively, to the constructions of
Kleisli and of Eilenberg-Moore. Next, by considering those morphisms and transformations
of monads that are simultaneously of Kleisli and of Eilenberg-Moore, we obtain a 2-category
Mndalg, of monads, algebraic morphisms, and algebraic transformations, and, to confirm
its naturalness, we, on the one hand, prove that its underlying category can be obtained by
applying the Ehresmann-Grothendieck construction to a suitable contravariant functor, and,
on the other, we provide an explicit 2-embedding of a certain 2-category, Sigpd, of many-
sorted signatures (hence also of another 2-category Spfpd, of many-sorted specifications),
arising from the field of many-sorted universal algebra, into a 2-category of the type Mndalg.
Moreover, we investigate for the adjunctions between varying categories the counterparts
of the concepts previously defined for the monads, obtaining several 2-categories of adjunc-
tions, as well as several 2-functors from them to the corresponding 2-categories of monads,
and all in such a way that the classical Kleisli and Eilenberg-Moore constructions are left
and right biadjoints, respectively, for these 2-functors. Finally, we define a 2-category Adalg,
of adjunctions, algebraic squares, and algebraic transformations, and prove that there exists
a canonical 2-functor Mdalg from Adalg to Mndalg.
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1. Introduction

As it is well-known P.J. Huber proved in [19, p. 370] that every adjoint
situation gave rise to a monad. In this connection, we remark that Mac Lane,
in [23, p. 159] says: “. . . Then Hilton (and others) raised the question as to
whether any monad arises from an adjunction. Two independent answers
appeared: Kleisli’s construction in [1965] of the “free algebra” realization
and the decisive construction by Eilenberg-Moore [1965] of the category of
algebras for a monad.” In this article, taking into account (and generalizing)
the slogan due to Mac Lane: “Adjoint functors arise everywhere”, stated in
the preface to the first edition of [23], we solve affirmatively the problem as to
whether the classical constructions of Kleisli and of Eilenberg-Moore arise as
natural examples of biadjoint situations. Specifically, we investigate several
2-categories of monads—from now on understood as pairs (C,T), where C is
a category and T = (T, η, µ) a monad on C—and of adjunctions, which enable
us to prove that the Kleisli (see [20] and [23]) and Eilenberg-Moore (see [9]
and [23]) classical constructions are, respectively, left and right biadjoints to
certain 2-functors from some convenient 2-categories of adjunctions to some
convenient 2-categories of monads.

Let us notice that the source and motivation for this work has to be found
in a previous investigation on two-dimensional many-sorted general algebra
carried out in [6] and [29]. One of the aims of the last-mentioned works
was to prove the equivalence between clones (represented by Hall algebra)
and finitary many-sorted algebraic theories (represented by Bénabou alge-
bras) using the equivalence between the many-sorted specifications of Hall
and Bénabou in a “convenient 2-category of many-sorted specifications” and
by means of a pseudo-functor from such a 2-category to the 2-category Cat,
of categories. The crucial element of the procedure consists in properly defin-
ing the aforementioned “convenient 2-category of many-sorted specifications”
and to do so the theory of Fujiwara in [12] and [13] (which was proposed to
cover the case of ordinary single-sorted algebras) was extended in [6] and [29]
into several directions. Firstly, by defining the concept of polyderivor, from a
many-sorted signature into another, which assigns to basic sorts, words and
to formal operations, families of derived terms, which subsumes the known
earlier proposals of derivor, defined in [16], and that of morphism between
many-sorted algebraic theories. Secondly, by equipping the category of many-
sorted signatures and polyderivors, Sigpd, with a 2-category structure, by
defining the appropriate transformations between the polyderivors, that gen-
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eralize the equivalences defined by Fujiwara in [13], and allow richer compar-
isons between many-sorted signatures than those usually considered in the
literature devoted to it. Lastly, by introducing the corresponding 2-category
Spfpd, of many-sorted specifications, pd-specification morphisms, and trans-
formations between pd-specification morphisms. Moreover, in [6] and [29] we
defined a 2-category Algpd which has as objects (0-cells) the pairs (Σ,A),
with Σ a many-sorted signature and A a Σ-algebra, as morphisms (1-cells)
from (Σ,A) to (Λ,B), the pairs (d, h), with d a polyderivor from Σ to Λ
and h a Σ-homomorphism from A to d∗pd(B), where d∗pd is a functor from
Alg(Λ) to Alg(Σ) (see [6] or [29] for its definition), and as 2-cells from (d, f)
to (e, g), where (d, f) and (e, g) are morphisms from (Σ,A) to (Λ,B), the
2-cells ξ : Σ /o _ // Λ in Sigpd such that ξB ◦ f = g. The principal significance
of the 2-categories Sigpd, Spfpd, and Algpd in the present context, which, we
add, have already been used for other purposes in [6] and [29], is that they
did not fall under the standard frame of formal monad theory as stated by
Street in [30] and therefore a more general theory must be sought to account
for the aforementioned, and similar, 2-categories.

To show the way in which the aforementioned subjects are developed, next
we proceed to, briefly, describe the contents of the subsequent sections of this
article.

In the second section we define the morphisms of Kleisli and the mor-
phisms of Eilenberg-Moore from a monad (C,T) to another (C′,T′), from
which we obtain, respectively, the categories MndKl, of monads and mor-
phisms of Kleisli, and MndEM, of monads and morphisms of Eilenberg-Moore.
Then we prove that MndKl is isomorphic to the category Kl, of monads and
morphisms from (C,T) to (C′,T′) the pairs (J,H), where J is a functor from
C to C′ and H a functor from Kl(T), the Kleisli category of T, to Kl(T′),
the Kleisli category of T′, such that H ◦ FT = FT′ ◦ J , where FT and FT′
are the canonical functors from C to Kl(T) and from C′ to Kl(T′). As for
MndKl, we prove that MndEM is isomorphic to the dual of the category EM,
of monads and morphisms from (C,T) to (C′,T′) the pairs (K, H), where K
is a functor from C′ to C and H a functor from EM(T′), the Eilenberg-
Moore category of T′, to EM(T), the Eilenberg-Moore category of T, such
that GT ◦ H = K ◦ GT

′
, where GT and GT

′
are the canonical functors from

EM(T) to C and from EM(T′) to C′, respectively. Following this, after
equipping the categories MndKl and MndEM with 2-category structures and
defining, on the one hand, the 2-category Kl, with 2-cells from (J,H) to
(J ′,H ′) the natural transformations from H to H ′, and, on the other hand,
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the 2-category EM, with 2-cells from (K, H) to (K ′, H ′) the natural trans-
formations from H to H ′, we prove that MndKl is 2-isomorphic to Klc, the
conjugate of Kl, and that MndEM is 2-isomorphic to EMt, the transpose
of EM (for the definition of the concepts of “conjugate” and “transpose”
see [2, p. 26]). Furthermore, by defining the Street transformations from a
Kl-morphism to another, respectively, from an EM-morphism to another, we
obtain a sub-2-category of MndKl, respectively, of MndEM, and character-
ize its images in Kl and EM. Finally, by considering those morphisms and
transformations of monads that are, in a well-defined sense, simultaneously
of Kleisli and of Eilenberg-Moore, we obtain a 2-category Mndalg, of mon-
ads, algebraic morphisms, and algebraic transformations, and, to confirm its
naturalness, we, on the one hand, prove that its underlying category can be
obtained by applying the Ehresmann-Grothendieck construction to a suitable
contravariant functor, and, on the other, provide an explicit embedding of
the 2-category Sigpd (thus also of the 2-category Spfpd) into a 2-category of
the type Mndalg. Moreover, we state that Mndalg, by its very definition,
bears some interesting relations with the 2-categories MndKl and MndEM.
Specifically, we show that it is isomorphic to the sub-2-category of MndKl

for which the underlying functors of the 1-cells have a right adjoint, and to
the sub-2-category of MndEM for which the underlying functors of the 1-cells
have a left adjoint.

We must remark here that the 2-cells of the 2-categories MndKl and
MndEM are essentially coincident with the 2-cells introduced by Lack and
Street in [22]. In the aforementioned article, Lack and Street work out a for-
mal theory of monads, continuing the labor begun by Street in [30], developing
the usual elements of the theory of monads in the context of monads in a 2-
category K. They give an explicit description of the free completion EM(K)
of a 2-category K under the Eilenberg-Moore construction, showing that it
has the same underlying category as the 2-category Mnd(K) of monads in K
but different 2-cells. In the case where K = Cat we have that the 2-category
Kl(Cat) of Lack and Street, the free completion under Kleisli objects of Cat,
is the conjugate of our 2-category MndKl and that their 2-category EM(Cat),
the free completion under Eilenberg-Moore objects of Cat, is the transpose
of our 2-category MndEM.

Perhaps it is appropriate at this point to note that we came upon the
concepts of 2-cell between morphisms of Kleisli and of 2-cell between mor-
phisms of Eilenberg-Moore after investigating, as mentioned above, a two-
fold generalization of the morphisms and transformations of Fujiwara which
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provide, among others, the aforementioned 2-categories Sigpd and Spfpd, and
natural 2-embeddings from them into a convenient 2-category Mndalg (see
below). It is nonetheless reassuring that what we defined in order to get an
abstract rendition of what it happened in some 2-categories of many-sorted
algebras and specifications has turned out to have the very important and
natural property of being a completion as proved by Lack and Street in [22].
To this we add that Lack and Street in [22] develop a great deal of their formal
theory of monads under the proviso that one is willing to work with EM(K)
as the 2-category of monads instead of working with Mnd(K).

In the third section, turning our attention to adjunctions between varying
categories, we obtain from a certain 2-category Ad, of adjunctions, two new
2-categories of adjunctions, AdKl and AdEM, which will allow us to extend
to 2-functors the classical, and well-known, construction that assigns to an
adjunction a monad, and this in such a way that the Kleisli and Eilenberg-
Moore constructions will be left and right biadjoints, respectively, for such
2-functors. Moreover, the morphisms and transformations of Kleisli and of
Eilenberg-Moore between monads will be characterized, respectively, as the
image of morphisms and transformations of Kleisli and of Eilenberg-Moore
between the adjunctions. Finally, we define a 2-category Adalg which has
adjunctions as 0-cells, algebraic squares between adjunctions as 1-cells, and
algebraic transformations between algebraic squares as 2-cells, and prove that
there exists a canonical 2-functor Mdalg from Adalg to Mndalg. The existence
of Mdalg confirms, in particular, that, from an algebraic standpoint, algebraic
squares and transformations between algebraic squares play for adjunctions
the same role that algebraic morphisms and algebraic transformations between
algebraic morphisms play for monads.

In summary, this article gives, among other things, an abstract analysis
of the classical Kleisli and Eilenberg-Moore constructions. The two construc-
tions, notably the latter, have proved to be particularly influential within
category theory (and theoretical computer science) over the past forty-five
years or so; therefore they merit an abstract analysis; and we have obtained
results that are not entirely obvious consequences of the work of previous
articles (in particular of [22], which is a chronological predecessor, but not a
precursor of this article, as explained above). Moreover, we have given a small
amount of development of examples that do not seem to have been considered
by previous authors.

In this article, unless otherwise stated, we assume that the foundational
system underlying category theory is ZFC + ∃GU(U), i.e., Zermelo-Fraenkel
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(-Skolem) set theory with the Axiom of Choice plus the existence of a
Grothendieck universe U fixed once and for all (for an explanation of the
concept of Grothendieck universe see, e.g., [23, p. 22]). Therefore every set
we consider in this article will be either a U -small set, i.e., an element of U ,
or a U -large set, i.e., a subset of U , or a set which is neither U -small nor
U -large. Besides, we let Set stand for the category with objects the U -small
sets and morphisms the mappings between U -small sets, and, depending on
the context, that Cat denotes either, the category of the U -categories (i.e.,
categories C such that the set of objects of C is a subset of U , and the hom-sets
of C elements of U), and functors between U -categories, or the 2-category of
the U -categories, functors between U -categories, and natural transformations
between functors.

In all that follows we use standard concepts and constructions from cate-
gory theory, see e.g., [1], [2], [8], [11], [17], [23], [24], and [31].

2. Monads, morphisms, and transformations

In this section we define two types of morphisms from a monad to another,
called morphisms of Kleisli and of Eilenberg-Moore, respectively. Then, for
each type of morphism, we define its corresponding notion of transformation,
which is more general than that of 2-cell between morphisms of monads de-
fined by Street in [30]—providing some examples of this fact—and which are
essentially coincident with those defined by Lack and Street in [22]. From
this we obtain the 2-categories MndKl and MndEM and prove that MndKl is
2-isomorphic to the conjugate of another 2-category, Kl, related to the Kleisli
construction, and that MndEM is 2-isomorphic to the transpose of another
2-category, EM, related to the Eilenberg-Moore construction. Finally, by
considering those morphisms and transformations that are simultaneously of
Kleisli and of Eilenberg-Moore we obtain the algebraic morphisms and trans-
formations, and we provide an explicit 2-embedding of a certain 2-category,
Sigpd, of many-sorted signatures (thus also of another 2-category Spfpd, of
many-sorted specifications), arising from the field of many-sorted universal
algebra, into a 2-category of the type Mndalg.

We next turn to defining the morphisms of Kleisli between monads, the
identity at a monad, and the composition of two composable morphisms of
Kleisli. But before doing that we recall, once more, that for us a monad is a
pair (C,T), where C is a category and T = (T, η, µ) a monad on C.
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Definition 2.1. Let (C,T) and (C′,T′) be two monads. A morphism of
Kleisli or, for brevity, a Kl-morphism, from (C,T) to (C′,T′) is a pair (J, λ),
where J is a functor from C to C′ and λ a natural transformation from JT
to T ′J such that the following diagrams commute

J
Jη //

η′J $$JJJJJJJJJJJJ JT

λ
²²

T ′J

JTT
λT //

Jµ
²²

T ′JT
T ′λ // T ′T ′J

µ′J
²²

JT
λ

// T ′J

We write (J, λ) : (C,T) // (C′,T′) to denote that (J, λ) is a Kl-morphism
from (C,T) to (C′,T′). For every monad (C,T), the identity at (C,T),
denoted by id(C,T), is the morphism (IdC, idT ). If (J, λ) is a Kl-morphism
from (C,T) to (C′,T′) and (J ′, λ′) a Kl-morphism from (C′,T′) to (C′′,T′′),
then the composition of (J, λ) with (J ′, λ′), denoted by (J ′, λ′) ◦ (J, λ), is

(J ′, λ′) ◦ (J, λ) = (J ′ ◦ J, λ′J ◦ J ′λ).

We now give an example of the concept of Kl-morphism that comes from
the theory of closure spaces (in this respect we recall that every Galois corre-
spondence, which is an adjunction, gives rise in a canonical way to a closure
space).

Example 2.2. As it is well-known, see, e.g., [23, p. 139] to every closure
space (A, C) there corresponds a monad (Sub(A),C), where Sub(A) is the
category determined by the ordered set (Sub(A),⊆), with Sub(A) the power
set of A, and C the monad on Sub(A) obtained from the closure operator C
on A. Moreover, to every continuous mapping (or, synonymously, morphism
of closure spaces) j from (A,C) to (B,D) there corresponds a Kl-morphism
(J j , λj) from (Sub(A),C) to (Sub(B),D), where the functor J j from Sub(A)
to Sub(B) is precisely j[·], i.e., the formation of j-direct images, and λj the
trivial natural transformation from j[·] ◦ C to D ◦ j[·]. From now on, (j[·], λ)
stands for (J j , λj).

We leave it to the reader to verify the following proposition.

Proposition 2.3. Monads and Kl-morphisms yield a category, hereafter
denoted by MndKl.
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In the following proposition, for a given pair of monads, we prove that there
exists a one-to-one correspondence between the set of all pairs of functors that
(in the same direction) relate, respectively, the underlying categories of the
monads and the categories of Kleisli associated to the underlying monads on
the underlying categories of the monads and satisfy, in addition, a suitable
condition (specified below) and the set of all Kl-morphisms between the given
pair of monads.

But before stating the aforementioned proposition we recall that, for a
category C and a monad T on C, the Kleisli category of T, denoted by Kl(T),
has the same objects that C and, for every X, Y ∈ C, HomKl(C)(X, Y ) is
HomC(X, T (Y )). If P : X // T (Y ) and Q : Y // T (Z), then we define the
composition of P with Q as Q¦P = µZ ◦T (Q)◦P . The identity morphism at
an object X is ηX . Moreover, let FT denote the functor from C to Kl(T) which
is the identity mapping on the objects and sends a morphism f : X // Y to
ηY ◦ f : X // T (Y ), and GT the functor from Kl(T) to C which sends an
object X to T (X) and a morphism P : X // T (Y ) to µY ◦ T (P ).

Proposition 2.4. Let (C,T) and (C′,T′) be two monads. Then there
exists a one-to-one correspondence between the Kl-morphisms (J, λ) from
(C,T) to (C′,T′) and the pairs (J,H), where J is a functor from C to C′

and H a functor from Kl(T) to Kl(T′), such that the following equality holds
H ◦ FT = FT′ ◦ J.

Proof. Let (J, λ) : (C,T) // (C,T′) be a Kl-morphism. Then the pair
(J,Hλ), where Hλ is the functor from Kl(T) to Kl(T′) which assigns to a
C-morphism P from Y to T (X) the C′-morphism λX ◦ J(P ), is such that
Hλ ◦ FT = FT′ ◦ J .

Reciprocally, if (J,H), where J is a functor from C to C′ and H a functor
from Kl(T) to Kl(T′), is such that H◦FT = FT′◦J , then let κ be the conjugate
natural transformation of the identity natural transformation from FT′ ◦ J to
H ◦ FT and λH the composition of FT with κ. Then

λH(= κFT) : JT = JGTFT +3 GT′HFT = GT′FT′J = T ′J,

and, for every Kl(T)-object X, (λH)X is H(idC
T (X)).

To prove that the pair (J, λH) is a Kl-morphism from (C,T) to (C′,T′) it
is sufficient to take into account the defining diagrams of the Kl-morphisms
for the natural transformation λH and the triangular equations of the involved
adjunctions.

It is easy to check that both correspondences are mutually inverse.
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Definition 2.5. The category Kl has as objects the monads and as mor-
phisms from (C,T) to (C′,T′) the pairs (J,H), where J is a functor from C
to C′ and H a functor from Kl(T) to Kl(T′), such that the following equality
holds

H ◦ FT = FT′ ◦ J.

On account of the above definition and from the functorial character of
the one-to-one correspondence defined in Proposition 2.4 we have the following
proposition.

Proposition 2.6. The categories MndKl and Kl are isomorphic.

As stated in the definition immediately below, just as, e.g., natural trans-
formations compare functors, the so-called transformations of Kleisli com-
pare Kl-morphisms of monads by means of a certain class of 2-cells (that,
for a given pair of Kl-morphisms of monads, are in a one-to-one correspon-
dence with a suitable subset of the set of all natural transformations be-
tween the functors on the categories of Kleisli associated to the given pair of
Kl-morphisms).

Remark 2.7. It is worth pointing out that Lack and Street in [22, p. 248]
from a 2-category K, define another 2-category Kl(K) which has (as objects
the monads, as 1-cells the morphisms of Kleisli, and) as 2-cells precisely the
opposite of the transformations of Kleisli.

Definition 2.8. Let (J, λ) and (J ′, λ′) : (C,T) // (C′,T′) be two
Kl-morphisms of monads. A transformation of Kleisli or, for brevity,
a Kl-transformation, from (J, λ) to (J ′, λ′) is a natural transformation
Ξ: J ′ +3 T ′J making commutative the following diagram

J ′T
ΞT //

λ′
²²

T ′JT
T ′λ // T ′T ′J

µ′J
²²

T ′J ′
T ′Ξ

// T ′T ′J
µ′J

// T ′J

If Ξ is a Kl-transformation from (J, λ) to (J ′, λ′), then we will write Ξk for
the unique natural transformation from J ′T to T ′J in the above diagram.
Moreover, we will use Ξ: (J, λ) /o _ // (J ′, λ′) or a diagram as displayed in
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C

C

C′

C′

TVVVVVVVVVV

**VVVVVVVVVV

T ′ **VVVVVVVVVVVVVVVVVVV

J
ÀÀ

J ′
¢¢

J
ÀÀ

J ′
¢¢

mmmmrz
λ

mmmmrz
λ′

.n ] ..Ξ

to indicate that Ξ is a Kl-transformation from (J, λ) to (J ′, λ′).
For every Kl-morphism (J, λ) from (C,T) to (C′,T′) the Kl-identity at

(J, λ) is the natural transformation Jη′ : J +3 T ′J .
The vertical composition of two Kl-transformations as in the diagram

(C,T)

(J, λ)

##
(J ′, λ′) //

(J ′′, λ′′)

;;
(C′,T′),

²OÂ
²² Ξ

²OÂ
²² Ξ′

denoted by Ξ′ ◦̃ Ξ, is the natural transformation

J ′′
Ξ′ // T ′J ′

T ′Ξ // T ′T ′J
µ′J // T ′J.

The horizontal composition of two Kl-transformations as in the diagram

(C,T)

(J, λ)
**

(J ′, λ′)
44
(C′,T′)

(J ′′, λ′′)
**

(J ′′′, λ′′′)
44
(C′′,T′′),²OÂ

²² Ξ
²OÂ
²² Ξ′

denoted by Ξ′ ∗̃ Ξ, is the natural transformation

J ′′′J ′
J ′′′Ξ // J ′′′T ′J

Ξ′kJ // T ′J ′′J.

We leave it to the reader to verify the following proposition.

Proposition 2.9. Monads, Kl-morphisms, and Kl-transformations be-
tween Kl-morphisms yield a 2-category, hereafter denoted by MndKl.
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We next give an example (really a bundle or schema of examples) of the
concept of Kl-transformation that comes from the theory of closure spaces. We
shall see later concrete algebraic and logical examples of the aforementioned
concept.

Example 2.10. Let (A,C) and (B, D) be two closure spaces. If j and j′

are two continuous mappings from (A,C) to (B,D) and, for every X ⊆ A, it
happens that j′[X] ⊆ D(j[X]), then we obtain a Kl-transformation from the
Kl-morphism (j[·], λ) to the Kl-morphism (j′[·], λ′).

We notice that the 2-cells between morphisms of monads considered by
Street in [30] are a particular case of the transformations treated here. In
fact, the transformations of Street are characterized as those transformations
of Kleisli which can be factorized through a natural transformation between
the underlying functors of the Kl-morphisms.

Definition 2.11. Let (J, λ) and (J ′, λ′) be two Kl-morphisms from (C,T)
to (C′,T′). A transformation of Street or, for brevity, an St-transformation,
from (J, λ) to (J ′, λ′) is a natural transformation σ from J ′ to J such that
the following equality holds λ ◦ σT = T ′σ ◦ λ′, i.e., such that the following
diagram commutes

C
T

**UUUUUUUUUUUUUUU

J ′

££

J

¿¿

C

J ′

¢¢

J

ÀÀ

C′

T ′ **UUUUUUUUUUUUUUU

C

____ks
σ

____ks
σ

llllrz
λ

llllrz
λ′

To every St-transformation there corresponds a Kl-transformation as
stated in the following proposition. However, as we will show below not
every Kl-transformation can be obtained from an St-transformation—in other
words, St-transformations are too strict to include what are felt should be ex-
amples.

Proposition 2.12. Let (J, λ) and (J ′, λ′) : (C,T) // (C′,T′) be two
Kl-morphisms and let σ be an St-transformation from (J, λ) to (J ′, λ′). Then
the natural transformation η′J ◦ σ = λση = T ′σ ◦ λ′(J ′η) is a Kl-transforma-
tion.
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C 1
))RRRRRRRRRR

J
ÀÀ

C

J ′
¢¢

C′
1

RRRR

((RRRR

T ′
:: C

′

llllrz
σ

µµµµ¦° η′

=

C

1

¸¸T
TTTTTTT

**TTTTTTT

J ′

££

J

¿¿

C

J ′

¤¤

J

¾¾

C′

T ′
TTTTTT

**TTTTTT

C′

····§± η

____ks
σ

____ks
σ

kkkkqy
λ

kkkkqy
λ′

In what follows we will say that a Kl-transformation Ξ: (J, λ) /o _ // (J ′, λ′)
is a transformation of Kleisli-Street or, for brevity, a KS-transformation, if Ξ
is obtained from an St-transformation σ : J ′ +3 J as indicated in the above
proposition.

Since the set of all KS-transformations is, obviously, closed under the oper-
ation of composition, we obtain a sub-2-category of MndKl, hereafter denoted
by MndKS.

The following examples, the former algebraic and the latter logical, prove
that not every Kl-transformation can be obtained from an St-transformation.

Example 2.13. For the closure space (Z, SgZ), where Z is the additive
group of the integers and SgZ the subalgebra generating operator which sends
a subset X of Z to SgZ(X), the additive subgroup of Z generated by X, and
the endomorphisms idZ and µ2 of Z, where µ2 is multiplication by 2, we have,
for every subset X of Z, that µ2[X] ⊆ SgZ(idZ[X]) = SgZ(X). Hence there
exists a Kl-transformation from (idZ[·], λ) to (µ2[·], λ′), with λ and λ′ trivial.
However, there is not any St-transformation from (idZ[·], λ) to (µ2[·], λ′), since
it is not true that, for every subset X of Z, µ2[X] ⊆ X.

Example 2.14. For the interpretations t, of McKinsey-Tarski [26], and t′,
of Gödel [15], of the intuitionistic propositional logic into the modal proposi-
tional logic S4, we have that, for every formula ϕ ∈ Fmi, with Fmi the set of
the intuitionistic formulas, from `i ϕ, it follows that `S4 t(ϕ) and `S4 t′(ϕ),
moreover, `S4 t(ϕ) ↔ ¤t′(ϕ). Therefore, for every intuitionistic formula ϕ, we
can assert that `S4 t(ϕ) → t′(ϕ), hence t′[Cni(∅)] ⊆ CnS4(t[Cni(∅)]), where
Cni is the consequence operator for the intuitionistic propositional logic and
CnS4 the consequence operator for the modal propositional logic S4. From
this it follows that there exists a Kl-transformation from (t[·] ◦ κCni(∅), λ) to
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(t′[·]◦κCni(∅), λ
′), where t[·] and t′[·] are the operators of direct image formation

from Sub(Fmi) to Sub(FmS4), with FmS4 the set of the modal formulas, and
κCni(∅) the mapping from Sub(∅) to Sub(Fmi) which picks Cni(∅). However,
there is not any St-transformation from (t[·] ◦ κCni(∅), λ) to (t′[·] ◦ κCni(∅), λ

′).
For the interpretations k, of Kolmogorov [21], and k′, of Gentzen [14], of

the classical propositional logic into the intuitionistic propositional logic, we
have, for every set of formulas Γ ⊆ Fmc and every formula ϕ ∈ Fmc, with
Fmc the set of the classical formulas, that Γ `c ϕ if and only if k[Γ] `i k(ϕ)
and Γ `c ϕ if and only if k′[Γ] `i k′(ϕ). Moreover, for every ϕ ∈ Fmc, it
happens that `i k(ϕ) ↔ k′(ϕ). Thus, for every Γ ⊆ Fmc, we have that
k′[Γ] ⊆ Cni(k[Γ]) and k[Γ] ⊆ Cni(k′[Γ]). From this it follows that there are
two mutually inverse Kl-transformations between (k[·], λ) and (k′[·], λ′), as
shown by the following diagram

Sub(Fmc)
Cnc //

k′[·]
¤¤

k[·]
¿¿

Sub(Fmc)

k′[·]
¤¤

k[·]
¿¿

Sub(Fmi) Cni

// Sub(Fmi)

/o _ //o/_oo /o _ //o/_oo

However, there is not any St-transformation neither from (k[·], λ) to (k′[·], λ′)
nor from (k′[·], λ′) to (k[·], λ), since, for every set Γ ⊆ Fmc, neither k′[Γ] ⊆ k[Γ]
nor k[Γ] ⊆ k′[Γ].

Definition 2.15. We denote by Kl the 2-category which has as 0-cells
the monads, as 1-cells from (C,T) to (C′,T′) the pairs of functors (J,H), with
J a functor from C to C′ and H a functor from Kl(T) to Kl(T′), such that
H ◦FT = FT′ ◦J , as 2-cells from (J,H) to (J ′,H ′) the natural transformations
from H to H ′, and as identities and compositions the obvious ones.

Proposition 2.16. The 2-categories MndKl and Klc are 2-isomorphic.

Proof. By Proposition 2.4 there exists a one-to-one correspondence
between the 1-cells of MndKl and those of Klc. Let (J, λ) and (J ′, λ′) be two
Kl-morphisms from (C,T) to (C′,T′) and Ξ: (J, λ) /o _ // (J ′, λ′) a Kl-transfor-
mation. Then Ξ determines a 2-cell τΞ : (J ′,Hλ′) +3 (J,Hλ) in Klc, where τΞ

is the natural transformation which sends an object X in C to the morphism
in Kl(T′) that corresponds to the morphism ΞX from J ′(X) to T ′(J(X))
in C.
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Reciprocally, if (J,H) and (J ′,H ′) are two 1-cells in Klc from Kl(T) to
Kl(T′) and ϑ : (J ′,H ′) +3 (J,H) a 2-cell in Kl, then the mapping Ξϑ which
sends a C-object X to the morphism in C′ that corresponds to ϑX in Kl(T′)
is a Kl-transformation from (J, λH) to (J ′, λH′).

Both correspondences are clearly mutually inverse.
To complete the proof that the 2-categories MndKl and Klc are 2-iso-

morphic, it only remains to verify the compatibility with the vertical and
horizontal compositions and the compatibility with the identities. The details
are left to the reader.

We next define a 2-category whose conjugate is, as a consequence of the
above proposition, 2-isomorphic to the 2-category MndKS.

Definition 2.17. We denote by KlSt the 2-category which has as 0-cells
the monads, as 1-cells from (C,T) to (C′,T′) the pairs of functors (J,H), with
J : C // C′ and H : Kl(T) // Kl(T′), such that the following equality holds
H ◦ FT = FT′ ◦ J , as 2-cells from (J,H) to (J ′,H ′) the pairs of natural trans-
formations (σ, τ), with σ : J +3 J ′ and τ : H +3 H ′ such that the following
equality holds τFT = FT′σ, and as identities and compositions the obvious
ones.

The 2-category KlSt can be identified to a sub-2-category of Kl by for-
getting the first component of all the 2-cells. Furthermore, by restricting the
2-isomorphism between MndKl and Klc we have the following corollary.

Corollary 2.18. The 2-categories MndKS and KlcSt are 2-isomorphic.

By inverting the direction of the natural transformation, but leaving in-
variant the direction of the functor, in the definition of the concept of Kl-
morphism we obtain another concept of morphism of monads, that of mor-
phism of Eilenberg-Moore. Let us notice that since the direction of the functor
does not change, the aforementioned concepts do not give rise to dual cate-
gories. However, because of its relation with the algebraic morphisms between
monads, defined later on, and which are one of the sources of this research
(and since for us the theory of monads is not a purely formal but a substan-
tial subject whose notions and constructions should be founded, ultimately, on
mathematical examples), it is suitable to define the morphisms of Eilenberg-
Moore by inverting the direction of the functor instead of that of the natural
transformation.
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We next turn to defining the morphisms of Eilenberg-Moore between mon-
ads, the identity at a monad and the composition of two composable mor-
phisms of Eilenberg-Moore.

Definition 2.19. Consider two monads (C,T) and (C′,T′). A morphism
of Eilenberg-Moore or, for brevity, an EM-morphism, from (C,T) to (C′,T′)
is a pair (K,λ), where K : C′ // C is a functor and λ : TK +3 KT ′ a natural
transformation such that the following diagrams commute

K
ηK //

Kη′ %%KKKKKKKKKKKK TK

λ
²²

KT ′

TTK
Tλ //

µK
²²

TKT ′
λT ′ // KT ′T ′

Kµ′
²²

TK
λ

// KT ′

We write (K, λ) : (C,T) // (C′,T′) to denote that (K, λ) is an EM-morphism
from (C,T) to (C′,T′). For every monad T on C the identity at (C,T),
denoted by id(C,T), is the morphism (IdC, idT ). If (K,λ) is an EM-morphism
from (C,T) to (C′,T′) and (K ′, λ′) an EM-morphism from (C′,T′) to (C′′,T′′),
then the composition of (K, λ) with (K ′, λ′), denoted by (K ′, λ′) ◦ (K,λ), is

(K ′, λ′) ◦ (K,λ) = (K ′ ◦K, Kλ′ ◦ λK ′).

We leave it to the reader to verify the following proposition.

Proposition 2.20. Monads and EM-morphisms yield a category, here-
after denoted by MndEM.

In the following proposition, for a given pair of monads, we prove that there
exists a one-to-one correspondence between the set of all pairs of functors that
(in the opposite direction) relate, respectively, the underlying categories of the
monads and the categories of Eilenberg-Moore associated to the underlying
monads on the underlying categories of the monads and satisfy, in addition, a
suitable condition (specified below) and the set of all EM-morphisms between
the given pair of monads.

But before stating the aforementioned proposition we recall that, for a
category C and a monad T on C, the Eilenberg-Moore category of T, denoted
from now on by EM(T), has as objects the T-algebras, i.e., the ordered pairs
(A,α) where A is an object of C and α : T (A) // A a morphism of C such
that α◦ηA = idA and α◦T (α) = α◦µA, and for two T-algebras (A,α), (B, β),
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HomEM(C)((A,α), (B, β)) is the set of all morphisms f : A // B such that
f ◦ α = β ◦ T (α). Moreover, let FT denote the functor from C to EM(T)
which sends an object X to (T (X), µX) and a morphism f : X // Y to T (f),
and GT the functor from EM(T) to C which sends a T-algebra (A,α) to A
and a morphism f : (A,α) // (B, β) to f .

Proposition 2.21. Let (C,T) and (C′,T′) be two monads. Then there
exists a one-to-one correspondence between the EM-morphisms (K, λ) from
(C,T) to (C′,T′) and the pairs (K, H), where K is a functor from C′ to C
and H a functor from EM(T′) to EM(T), such that the following equality
holds GT ◦H = K ◦GT

′
.

Proof. Let (K, λ) : (C,T) // (C′,T′) be an EM-morphism. Then the or-
dered pair (K,Hλ), where Hλ is the functor from EM(T′) to EM(T) which as-
signs to a T′-algebra (A,α) the T-algebra (K(A),K(α)◦λA) and to a morphism
f in EM(T′) the morphism K(f) in EM(T), is such that GT ◦Hλ = K ◦GT

′
.

Reciprocally, if (K, H), where K : C′ // C and H : EM(T′) // EM(T),
is such that GT ◦H = K ◦GT

′
, then let κ be the conjugate natural transfor-

mation of the identity natural transformation from K ◦GT
′
to GT ◦H and λH

the composition of κ with GT. Then

λH(= GTκ) : TK = GTFTK +3 GTHFT
′
= KGT

′
FT

′
= KT ′.

The pair (K, λH) is, obviously, an EM-morphism from (C,T) to (C′,T′).
It is easy to check that both correspondences are mutually inverse.

Definition 2.22. The category EM has as objects the monads and as
morphisms from (C,T) to (C′,T′) the pairs (K, H), where K is a functor from
C′ to C and H a functor from EM(T′) to EM(T), such that the following
equality holds

GT ◦H = K ◦GT
′
.

From the above definition it is easy to verify the following proposition.

Proposition 2.23. The categories MndEM and EMop are isomorphic.

We have already seen how to compare the Kl-morphisms by means of the
Kl-transformations. The same can be done for the EM-morphisms of monads,
but in this case by means of the so-called transformations of Eilenberg-Moore
(that, for a given pair of EM-morphisms of monads, are in a one-to-one cor-
respondence with a suitable subset of the set of all natural transformations
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between the functors on the categories of Eilenberg-Moore associated to the
given pair of EM-morphisms).

Definition 2.24. Consider two EM-morphisms of monads (K, λ) and
(K ′, λ′) from (C,T) to (C′,T′). A transformation of Eilenberg-Moore or,
for brevity, an EM-transformation, from (K,λ) to (K ′, λ′) is a natural trans-
formation Ξ from K to K ′T ′ making commutative the following diagram

TK
λ //

TΞ
²²

KT ′
ΞT ′ // K ′T ′T ′

K ′µ′
²²

TK ′T ′
λ′T ′

// K ′T ′T ′
K ′µ′

// K ′T ′

If Ξ is an EM-transformation from (K,λ) to (K ′, λ′), then we will write Ξe for
the unique natural transformation from TK to K ′T ′ in the above diagram.
Moreover, we will use Ξ: (K, λ) /o _ // (K ′, λ′) or a diagram as displayed in

C

C

C′

C′

TUUUUUUUUU

**UUUUUUUUU

T ′ **UUUUUUUUUUUUUUUUU

K

AA

K ′
]]

K

AA

K ′
]]GGGG Â'

λ GGGG Â'
λ′

/o _ //Ξ

to indicate that Ξ is an EM-transformation from (K,λ) to (K ′, λ′).
For every EM-morphism (K,λ) from (C,T) to (C′,T′) the EM-identity at

(K,λ) is the natural transformation Kη′ : K +3 KT ′.
The vertical composition of two EM-transformations as in the diagram

(C,T)

(K,λ)

##
(K ′, λ′) //

(K ′′, λ′′)

;;
(C′,T′),

²OÂ
²² Ξ

²OÂ
²² Ξ′

denoted by Ξ′ ◦̃ Ξ, is the natural transformation

K
Ξ // K ′T ′

Ξ′T ′ // K ′′T ′T ′
K ′′µ′ // K ′′T ′.
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The horizontal composition of two EM-transformations as in the diagram

(C,T)

(K, λ)
**

(K ′, λ′)
44
(C′,T′)

(K ′′, λ′′)
**

(K ′′′, λ′′′)
44
(C′′,T′′),²OÂ

²² Ξ
²OÂ
²² Ξ′

denoted by Ξ′ ∗̃ Ξ, is the natural transformation

KK ′′ ΞK ′′
// K ′T ′K ′′ K ′Ξ′e // K ′K ′′′T ′′.

We leave it to the reader to verify the following proposition.

Proposition 2.25. Monads, EM-morphisms, and EM-transformations
yield a 2-category, hereafter denoted by MndEM.

As was the case for the Kl-transformations, there are also EM-transfor-
mations which have the additional property of factorizing through a natural
transformation between the underlying functors of the EM-morphisms.

Definition 2.26. Let (K, λ) and (K ′, λ′) be two EM-morphisms from
(C,T) to (C′,T′). A transformation of Street or, for brevity, an St-transfor-
mation, from (K,λ) to (K ′, λ′) is a natural transformation σ from K to K ′

such that the following equality holds σT ′ ◦λ = λ′ ◦Tσ, i.e., such that tal the
following diagram commutes

C
T

**UUUUUUUUUUUUUUU

K

AA

K ′

]]

C

K

AA

K ′

]]

C′

T ′ **UUUUUUUUUUUUUUU

C

____ +3
σ

____ +3
σ

GGGG Â'
λ GGGG Â'

λ′

To every St-transformation there corresponds an EM-transformation as
stated in the following proposition.

Proposition 2.27. Let (K, λ) and (K ′, λ′) be two EM-morphisms from
(C,T) to (C′,T′) and σ an St-transformation from (K, λ) to (K ′, λ′). Then
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the natural transformation K ′η′ ◦ σ = σT ′ ◦ λ ◦ ηK = λ′ ◦ η ◦ σ is an EM-
transformation.

C 1
))RRRRRRRRRR

K

AA

C

K ′

]]

C′
1

RRRR

((RRRR

T ′
:: C

′

llll 2:σ

µµµµ¦° η′

=

C

1

¹¹T
VVVVVV

**VVVVVV

K

AA

K ′

]]

C

K

AA

K ′

]]

C′

T ′
UUUUUU

**UUUUUU

C′

¹¹¹¹̈² η

____ +3
σ

____ +3
σ

GGGG Â'
λ GGGG Â'

λ′

From now on, we will say that an EM-transformation Ξ: (K,λ) /o _ // (K ′, λ′)
is a transformation of Eilenberg-Moore-Street or, for brevity, an EMS-trans-
formation, if Ξ is obtained from an St-transformation σ : K +3 K ′ as indi-
cated in the above proposition.

Since the set of all EMS-transformations is, obviously, closed under the
operation of composition, we obtain a sub-2-category of MndEM, hereafter
denoted by MndEMS.

Let us notice that, as was the case for the Kl-transformations, not every
EM-transformation can be obtained from an St-transformation.

Definition 2.28. We denote by EM the 2-category which has as 0-cells
the monads, as 1-cells from (C,T) to (C′,T′) the pairs of functors (K, H),
with K a functor from C′ to C and H a functor from EM(T′) to EM(T),
such that GT ◦ H = K ◦ GT

′
, as 2-cells from (K,H) to (K ′,H ′) the natural

transformations from H to H ′, and as identities and compositions the obvious
ones.

Proposition 2.29. The 2-categories MndEM and EMt are 2-isomor-
phic.

Proof. By Proposition 2.21 there exists a one-to-one correspondence be-
tween the 1-cells of MndEM and those of EMop. Let (K, λ) and (K ′, λ′) be
two EM-morphisms from (C,T) to (C′,T′) and Ξ an EM-transformation from
(K,λ) to (K ′, λ′). Then Ξ determines a 2-cell τΞ : (K, Hλ) +3 (K ′,Hλ′) in
EMt, where τΞ is the natural transformation which sends a T′-algebra (A,α)
in EM(T′) to the morphism K ′(α) ◦ ΞA in EM(T).

Reciprocally, if (K, H) and K ′,H ′ are two 1-cells in EMt from EM(T′) to
EM(T) and ζ a 2-cell from (K, H) to (K ′,H ′) in EM, then the mapping Ξζ
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which sends an object A in C to ζ(T ′(A),µ′A) ◦K(η′A) is an EM-transformation
from (K,λH) to (K ′, λH′

).
Both correspondences are mutually inverse.
To complete the proof that the 2-categories MndEM and EMt are 2-

isomorphic, it only remains to verify the compatibility with the vertical and
horizontal compositions and the compatibility with the identities. The details
are left to the reader.

We next define a 2-category whose transpose is, as a consequence of the
above proposition, 2-isomorphic to the 2-category MndEMS.

Definition 2.30. We denote by EMSt the 2-category which has as 0-cells
the monads, as 1-cells from (C,T) to (C′,T′) the pairs of functors (K,H), with
K a functor from C′ to C and H a functor from EM(T′) to EM(T), such
that the following equality holds GT ◦ H = K ◦ GT

′
, as 2-cells from (K, H)

to (K ′,H ′) the pairs of natural transformations (σ, τ), with σ : K +3 K ′ and
τ : H +3 H ′, such that the following equality holds GTσ = τGT

′
, and as

identities and compositions the obvious ones.

The 2-category EMSt can be identified to a sub-2-category of EM by
forgetting the first component of all the 2-cells. Furthermore, by restricting
the 2-isomorphism between MndEM and EMt we have the following corollary.

Corollary 2.31. The 2-categories MndEMS and EMt
St are 2-isomor-

phic.

Our next aim is to construct, by using the concept of adjoint square, a
new 2-category, with the same 0-cells that MndKl and MndEM, denoted
by Mndalg (because its 1-cells and 2-cells will be called, respectively, alge-
braic morphisms and algebraic transformations). By definition, the 2-category
Mndalg, as we will see, is isomorphic to the sub-2-category of MndKl for which
the underlying functors of the 1-cells have a right adjoint, and to the sub-2-
category of MndEM for which the underlying functors of the 1-cells have a
left adjoint. But before doing that, since, as we have said previously, it will
be used afterwards to define Mndalg, we explain what the adjoint squares in
the sense of [17] are precisely.

Definition 2.32. (Cf., [17, pp. 144 –145]) An adjoint square is an ordered
triple (F aG, (J, λ, H), F ′ aG′), also denoted by (J, λ,H) : F aG // F ′ aG′,
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where the adjoints F aG and F ′aG′ and the functors J and H are related as
in the diagram

C D

C′ D′

oo G

>
F

//

J

²²

H

²²oo G′

>
F ′

//

and λ is a matrix

λ =

(
λ0 : F ′J +3 HF λ1 : J +3 G′HF

λ2 : F ′JG +3 H λ3 : JG +3 G′H

)

of compatible 2-cells (our notation is slightly different from that of [17]), i.e.,
a matrix of natural transformations as indicated such that the following equa-
tions are fulfilled

λ0 = (λ2F )(F ′Jη) = (ε′HF )(F ′λ1) = (ε′HF )(F ′λ3F )(F ′Jη) ,

λ1 = (G′λ0)(η′J) = (G′λ2F )(η′Jη) = (λ3F )(Jη) ,

λ2 = (Hε)(λ0G) = (ε′Hε)(F ′λ1G) = (ε′H)(F ′λ3) ,

λ3 = (G′Hε)(G′λ0G)(η′JG) = (G′λ2)(η′JG) = (G′Hε)(λ1G) ,

where η : 1 +3 GF and ε : FG +3 1 are the unit and counit respectively of
F a G, whereas η′ : 1 +3 G′F ′ and ε′ : F ′G′ +3 1 are the unit and counit
respectively of F ′aG′.

We next turn to recalling one of the fundamental facts about the concept
of adjoint square, specifically that the adjoint squares are equipped with a
structure of double category. We do not give a proof of it, since one by
Gray can be found in [17, pp. 146 – 149]. However, following the proposition
we recall the definition of the data that occur in the double category under
consideration (referring the reader to the original sources [17], [25], and [27]
for more details) since some of them will be necessary later on when defining
the 1-cells and the 2-cells of the 2-category Mndalg.

Proposition 2.33. Adjoint squares yield a double category, hereafter de-
noted by AdFun.
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Proof. See [17, pp. 146 – 149].

Let (J, λ,H) : F aG // F ′aG′ be an adjoint square, then its Ad-domain
and Ad-codomain in AdFun are F aG and F ′aG′, respectively, and its Fun-
domain and Fun-codomain in AdFun are J and H, respectively. The Ad-
identities and Fun-identities are represented by the following adjoint squares

C C

C′ C′

oo 1
>
1

//

J

²²

J

²²oo 1
>
1

//

(
J J

J J

)
and C D

C D

oo G

>
F

//

1

²²

1

²²oo G

>
F

//

(
F η

ε G

)

The Ad-composition of two adjoint squares

(J, λ, H) : F aG // F ′aG′ and (H, δ,M) : LaR // L′aR′

is the adjoint square

(LF aGR, (J, δ
ad◦ λ,M), L′F ′aG′R′),

where δ
ad◦ λ is the matrix

δ
ad◦ λ =

(
(δ0F )(L′λ0) (G′δ1F )λ1

δ2(L′λ2R) (G′δ3)(λ3R)

)
.

And, finally, the Fun-composition of two adjoint squares

(J, λ, H) : F aG // F ′aG′ and (J ′, λ′,H ′) : F ′aG′ // F ′′aG′′

is the adjoint square

(F aG, (J ′J, λ′
fn◦ λ,H ′H), F ′′aG′′),

where λ′
fn◦ λ is the matrix

λ′
fn◦ λ =

(
(H ′λ0)(λ′0J) (G′H ′ε′HF )(λ′1λ1)

(λ′2λ2)(F ′′J ′η′JG) (λ′3H)(J ′λ3)

)
.
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If in the double category AdFun we take as adjunctions the identities, then
we obtain the ordinary 2-category Cat. If, on the other hand, in AdFun we
take as functors the identities, then we obtain the 2-category Adj which has
as 0-cells categories, as 1-cells from C to D adjunctions F aG, and as 2-cells
from F aG to F ′ aG′ adjoint squares (1, λ, 1) : F aG // F ′ aG′, or, what
is equivalent, conjugate pairs (λ0, λ3) (for this concept see [23, pp. 99 – 100]),
which we represent as

C

F
##

F ′
;; D

G
$$

G′
:: C.Â ÂÂ ÂKS λ0

ÂÂ ÂÂ
®¶ λ3

Observe that the 2-category Adj is the conjugate (in the sense of [2]) of the
2-category of categories, adjunctions, and conjugate pairs in [23, p. 104].

Before defining the concept of compatible pair with a pair of adjoint
squares which will be used below, we notice that to give a natural trans-
formation σ from J to J ′ is equivalent to give an adjoint square where the
involved adjunctions are identities.

Definition 2.34. Let (J, λ, H) and (J ′, λ′,H ′) be two adjoint squares
from F aG to F ′ aG′ and σ : J +3 J ′, τ : H +3 H ′ a pair of natural trans-
formations. Then we will say that the pair (σ, τ) is compatible with λ and λ′

if the following equation is fulfilled λ′
ad◦ σ = τ

ad◦ λ.

Next, since it will be used afterwards to define the algebraic morphisms
from a monad to another, we state, for a pair of monads and an adjunction
between the underlying categories of the monads, the existence of a commuta-
tive square of bijections between four sets of natural transformations obtained
from the monads and the adjunction, as well as conditions of compatibility
on the matrices of natural transformations arranged in the pattern of the just
named commutative square of bijections.

Proposition 2.35. Let (C,T) and (C′,T′) be two monads and (J,K, η, ε)
an adjunction from C to C′. Then for the following diagram

C C

C′ C′

T //

T ′
//

OO

KaJ
²²

OO

KaJ
²²
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there exists, by Corollary I,6.6 stated by Gray in [17, p. 143], a commutative
square of bijections

Nat(JT, T ′J)
∼= //

∼=
²²

Nat(T, KT ′J)

∼=
²²

Nat(JTK, T ′) ∼=
// Nat(TK, KT ′)

Furthermore, the following conditions on the natural transformations in the
matrix

λ =

(
λ0 : JT +3 T ′J λ1 : T +3 KT ′J
λ2 : JTK +3 T ′ λ3 : TK +3 KT ′

)

are compatible with the above bijections:

(1) The natural transformations λ0 : JT +3 T ′J such that

1

··
T //

J
²²

J
²²

||||z£ λ0

T ′
//

ÂÂ ÂÂ
®¶ η

=

1 //

J
²²

J
²²1 //

T ′

JJ

||||z£ J

ÂÂ ÂÂ
®¶ η′

T //

J
²²

T //

J
²²

||||z£ λ0 J
²²

||||z£ λ0

T ′ //

T ′

IIT ′ //
ÂÂ ÂÂ
®¶ µ′

=

TT

··
T //

J
²²

J
²²

||||z£ λ0

T ′
//

ÂÂ ÂÂ
®¶ µ

(2) The natural transformations λ1 : T +3 KT ′J such that

1

··
T //

J
²²

T ′
//

K

OO

ÂÂ ÂÂ
®¶ η

ÂÂ ÂÂ
®¶ λ1 =

1 //

J
²² 1 //

T ′

JJ

K

OO
ÂÂ ÂÂ
® ¶ η

ÂÂ ÂÂ
® ¶ η′

T //

J
²²

1 // T //

J
²²

T ′
//

T ′

JJ

K

OO

1
//

T ′
//

K

OO
ÂÂ ÂÂ
®¶ λ1

ÂÂ ÂÂ
®¶ ε

ÂÂ ÂÂ
®¶ λ1

ÂÂ ÂÂ
®¶ µ′

=

TT

··
T //

J
²²

T ′
//

K

OO

ÂÂ ÂÂ
®¶ µ

ÂÂ ÂÂ
®¶ λ1
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(3) The natural transformations λ2 : JTK +3 T ′ such that

1

··
T //

J
²²

T ′
//

K

OO

ÂÂ ÂÂ
®¶ η

ÂÂ ÂÂ
®¶ λ2 =

1 //

J
²²

K

OO

1 //

T ′

JJ

ÂÂ ÂÂ
®¶ ε

ÂÂ ÂÂ
®¶ η′

T // 1 //

J
²²

T //

J
²²

K

OO

T ′
//

T ′

JJ
1

//

K

OO

T ′
//

ÂÂ ÂÂ
®¶ λ2

ÂÂ ÂÂ
®¶ η

ÂÂ ÂÂ
®¶ λ2

ÂÂ ÂÂ
®¶ µ′

=

TT

··
T //

J
²²

K

OO

T ′
//

ÂÂ ÂÂ
®¶ µ

ÂÂ ÂÂ
®¶ λ2

(4) The natural transformations λ3 : TK +3 KT ′ such that

1

··
T //

BBBB ¿$λ3K

OO

T ′
//

K

OO

ÂÂ ÂÂ
®¶ η

=

1 //

K

OO

1 //

T ′

JJ

K

OO
BBBB ¿$ K

ÂÂ ÂÂ
®¶ η′

T //

BBBB ¿$λ3

T //

BBBB ¿$λ3K

OO

T ′
//

T ′

II

K

OO

T ′
//

K

OO

ÂÂ ÂÂ
®¶ µ′

=

TT

··

BBBB ¿$λ3

T //

K

OO

T ′
//

K

OO

ÂÂ ÂÂ
®¶ µ

Definition 2.36. Let (C,T) and (C′,T′) be two monads. An algebraic
morphism or, to abbreviate, an alg-morphism, from (C,T) to (C′,T′) is
an adjoint square (T, λ, T ′) : J aK // J aK, also denoted in what follows
by (J a K, λ) : (C,T) // (C′,T′), such that its components are compat-
ible with the conditions in Proposition 2.35. Identities and compositions
of alg-morphisms are defined, respectively, as the Ad-identities and the Ad-
compositions of its underlying adjoint squares.

From the above definition it follows, immediately, that if (J a K, λ) is
an alg-morphism, then (J, λ0) is a Kl-morphism from (C,T) to (C′,T′) and
(K,λ3) an EM-morphism from (C,T) to (C′,T′)

C C

C′ C′

T //

T ′
//

J
²²

J
²²

vvvvwÄ
λ0

C C

C′ C′

T //

T ′
//

OO

K

OO

K
HHHH Â'
λ3
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Reciprocally, if (J, λ) is a Kl-morphism from (C,T) to (C′,T′) and the
functor J has a right adjoint K, then λ determines an alg-morphism from
(C,T) to (C′,T′). In the same way, if (K, λ) is an EM-morphism from (C,T)
to (C′,T′) and K has a left adjoint J , then λ determines an alg-morphism
from (C,T) to (C′,T′).

We now give an example of the concept of alg-morphism which has to do
with the theory of closure spaces.

Example 2.37. As we know, to every continuous mapping j from (A,C)
to (B, D) there corresponds a morphism of Kleisli (j[·], λ) from (Sub(A),C)
to (Sub(B),D). But the functor j[·] from Sub(A) to Sub(B) has a right
adjoint, precisely j−1[·], i.e., the formation of j-inverse images, therefore λ
gives rise to an alg-morphism from (Sub(A),C) to (Sub(B),D). At the end
of this section, we provide additional examples of the concept of alg-morphism
connected with the fields of many-sorted universal algebra and of many-sorted
closure spaces.

Definition 2.38. Let (J aK, λ) and (J ′ aK ′, λ′) be two alg-morphisms
from (C,T) to (C′,T′). An algebraic transformation or, to abbreviate, an
alg-transformation, from (J a K, λ) to (J ′ a K ′, λ′) is an adjoint square

(1, Ξ, 1) : J aK // J aK such that µ′
ad◦ (Ξ

fn◦ λ) = µ′
ad◦ (λ′

fn◦ Ξ). We will
use the notation Ξ: (J aK, λ) /o _ // (J ′ aK ′, λ′) to indicate that the algebraic
square (1, Ξ, 1) : J aK // J aK is an alg-transformation from (J aK,λ) to
(J ′aK ′, λ′).

For every alg-morphism (J a K, λ) : (C,T) // (C′,T′), the identity at
(J aK, λ) is the adjoint square determined by the matrix

(
Jη′ Kη′J ◦ η

η′ ◦ ε η′K

)
.

The vertical composition of two alg-transformations as in the diagram

(C,T)

(J aK, λ)

%%
(J ′aK ′, λ′) //

(J ′′aK ′′, λ′′)

99
(C′,T′),

²OÂ
²² Ξ

²OÂ
²² Ξ′

denoted by Ξ′ ◦̃ Ξ, is the adjoint square µ′
ad◦ (Ξ′

fn◦ Ξ).



kleisli and eilenberg-moore constructions 27

The horizontal composition of two alg-transformations as in the diagram

(C,T)

(J aK,λ)
**

(J ′aK ′, λ′)

44 (C
′,T′)

(J ′′aK ′′, λ′′)
++

(J ′′′aK ′′′, λ′′′)
33
(C′′,T′′),²OÂ

²² Ξ
²OÂ
²² Ξ′

denoted by Ξ′ ∗̃ Ξ, is the adjoint square

µ′
ad◦ (λ′′

fn◦ Ξ′)
ad◦ Ξ = µ′

ad◦ (Ξ′
fn◦ λ′′′)

ad◦ Ξ.

As was the case for the alg-morphisms, Ξ: (J a K, λ) /o _ // (J ′ a K ′, λ′) is
an alg-transformation if, and only if, Ξ0 is a Kl-transformation, or Ξ3 is an
EM-transformation.

At the end of this section, we give examples of alg-transformations which
come from the fields of many-sorted universal algebra and of many-sorted
closure spaces.

Definition 2.39. Let (J aK, λ) and (J ′ aK ′, λ′) be two alg-morphisms
from (C,T) to (C′,T′). An Street transformation or, to abbreviate, an St-
transformation, from (J a K,λ) to (J ′ a K ′, λ′) is an adjoint square
(1, Ξ, 1) : J aK // J aK such that

C C C

C′ C′ C′

T // 1 //

T ′
//

1
//

J

²²

a

OO

K J

²²

a

OO

K J ′

²²

a

OO

K ′λ Ξ =

C C C

C′ C′ C′

1 // T //

1
//

T ′
//

J

²²

a

OO

K J ′

²²

a

OO

K ′ J ′

²²

a

OO

K ′Ξ λ′

To give a Street transformation is equivalent to give a pair of natural
transformations (σ, τ), with σ : J ′ +3 J and τ : K +3 K ′, such that σ is a
KS-transformation and τ an EMS-transformation. It is immediate that each
Street transformation gives rise to one algebraic transformation, although not
every algebraic transformation can be obtained from a Street transformation.

The Street transformations are natural transformations between the un-
derlying functors of the corresponding alg-morphisms that have the additional
property of being compatible with the structures of the involved monads, but,
unlike the algebraic transformations, they do not make any essential use of
the monad structure of which is equipped the codomain.
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Proposition 2.40. Monads, alg-morphisms, and alg-transformations
yield a 2-category, hereafter denoted by Mndalg, and there are canonical
2-embeddings JKl from Mndalg into MndKL and JEM from Mndalg into
MndEM. Moreover, the Street transformations between alg-morphisms yield
a sub-2-category Mndalg,St of Mndalg.

If we leave out the 2-cells, then it happens that the category Mndalg

of monads and algebraic morphisms is isomorphic to
∫ Adj(G ◦ Mnd), the

category obtained by applying the Ehresmann-Grothendieck construction (see
[8, pp. 89 – 91] and [18, pp. (sub.) 175 – 177]) to a contravariant functor, G ◦
Mnd, from the category Adj, of categories and adjunctions (an extensive
treatment of the category Adj can be found in [23, pp. 103 – 104] to Cat. But
before proving it, since it will be used afterwards to define Mnd (a key step in
obtaining the proof itself), we next recall that each category C gives rise to a
2-category, Mnd(C), of monads on C. Concretely, Mnd(C) has (1) as objects
the monads on C, (2) for two monads T = (T, η, µ) and T′ = (T ′, η′, µ′) on C,
as morphism of monads from T = (T, η, µ) to T′ = (T ′, η′, µ′) those natural
transformation λ : T +3 T ′ such that λ◦η = η′ and λ◦µ = µ′◦(λ∗λ), and (3)
for two monads T, T′ on C and two morphisms of monads λ, λ′ from T to T′,
as transformations from λ to λ′ those natural transformations Ξ: 1C

+3 T ′,
denoted by Ξ: λ /o _ // λ′, making commutative the following diagram

T
Ξλ //

λ′Ξ
²²

T ′T ′

µ′
²²

T ′T ′
µ′

// T ′

Before stating the result to be proved, i.e., that Mndalg
∼=

∫ Adj(G◦Mnd),
we give an example of an interesting 2-category of groups which is 2-embedded
into a 2-category of the type Mnd(C).

Example 2.41. Let G be a group. Then G determines a monad G =
(G × (·), η, µ) on Set where: (1) G × (·) is the functor from Set to Set that
sends X to G × X and ϕ : X // Y to idG × ϕ : G × X // G × Y , (2) η
the natural transformation from IdSet to G × (·) that sends a set X to the
mapping ηX : X // G×X that to x ∈ X assigns (1, x), and (3) µ the natural
transformation from (G× (·)) ◦ (G× (·)) to G× (·) that to a set X associates
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the mapping µX : G × (G ×X) // G ×X that to (a, (b, x)) ∈ G × (G ×X)
assigns (ab, x) ∈ G×X.

On the other hand, if f : G // H is a homomorphism of groups, then
f determines a natural transformation λf from the functor G × (·) to the
functor H × (·) that to a set X assigns the mapping λf

X = f × idX from
G × X to H × X, and λf is, in fact, a morphism from the monad G to
the monad H = (H × (·), η′, µ′). Finally, if f, g : G // H are two conjugate
morphisms of groups, i.e., if there exists an a ∈ H such that, for every x ∈ G,
af(x) = g(x)a, then a determines a natural transformation Ξa from IdSet to
H × (·), by associating to a set X the mapping Ξa

X from X to H × X that
sends x ∈ X to (a, x). Notice that Ξa is, in fact, a transformation from λf to
λg since the following equality holds

G×X
Ξa

G×X //

λf
X

²²

H × (G×X)

idH × λf
X

²²
H ×X

Ξa
H×X

// H × (H ×X)

µ′X

²²
H ×X

=

G×X
λg

X //

idG × Ξa
X

²²

H ×X

idH × Ξa
X

²²
G× (H ×X)

λg
H×X

// H × (H ×X)

µ′X

²²
H ×X

Let us denote by Grpinn the 2-category which has as objects groups, as 1-cells
morphisms of groups, and as 2-cells from f to g, with f, g : G // H, those
inner automorphisms of H transforming f into g. Then it is easy to check
that there is a 2-embedding of Grpinn into Mnd(Set).

It may be readily verified, after a ghastly but wholly straightforward set
of computations, the following lemma.

Lemma 2.42. Let J = (J,K, η, ε) be an adjunction from C to C′. Then
J gives rise to a 2-functor

Mnd(J) : Mnd(C′) // Mnd(C)

defined by setting: (1) if T = (T, η, µ) is a monad on C′, then

Mnd(J)(T) = (KTJ,KηJ,KµJ ◦KTεTJ),
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(2) if λ : T //T′ is a morphism of monads on C′, then Mnd(J)(λ) = KλJ ,
and (3) if Ξ: λ /o _ // λ′ is a transformation, with λ, λ′ : T //T′ morphisms of
monads on C′, then Mnd(J)(Ξ) = KΞJ ◦ η.

Now we extend the above construction, Mnd, to a contravariant functor
from the category Adj, of categories and adjunctions (recall that a detailed
exposition of the category Adj is given in [23, pp. 103 – 104], to the category
2-Cat, of 2-categories and 2-functors.

Proposition 2.43. There exists a contravariant functor Mnd from Adj
to 2-Cat defined by assigning to a category C the 2-category Mnd(C) and
to an adjunction J = (J,K, η, ε) from C to C′ the 2-functor

Mnd(J) : Mnd(C′) // Mnd(C).

Proof. It is immediate that the identities are preserved. Concerning the
composition of adjunctions, if J = (J,K, η, ε) is an adjunction from C to
C′, J′ = (J ′,K ′, η′, ε′) an adjunction from C′ to C′′, and T′′ = (T ′′, η′′, µ′′)
a monad on C′′, then it is clear that (Mnd(J) ◦ Mnd(J′))(T′′) is equal to
Mnd(J′ ◦ J)(T′′). For example, for the multiplication, we have that

µ(Mnd(J)◦Mnd(J′))(T′′) = K(K ′µJ ′ ◦K ′Tε′TJ ′)J ◦KK ′TJ ′εK ′TJ ′J

= KK ′µJ ′J ◦KK ′Tε′TJ ′J ◦KK ′TJ ′εK ′TJ ′J

= KK ′µJ ′J ◦KK ′T (ε′ ◦ J ′εK ′)TJ ′J

= µMnd(J′◦J)(T′′).

As a consequence of the foregoing results, we obtain, by applying the
construction of Ehresmann-Grothendieck to the composition of Mnd with the
forgetful functor G from 2-Cat to Cat, the category

∫ Adj(G◦Mnd). Its objets
are all monads (C,T). Its morphisms from (C,T) to (C′,T′) are all pairs (J, λ)
where J = (J,K, η, ε) is an adjunction from C to C′ and λ : T // Mnd(J)(T′)
a morphism of monads in Mnd(C). This category has, in addition, an obvious
projection functor πAdj from

∫ Adj(G ◦Mnd) to Adj.
Following these preliminary results, we now prove that Mndalg is isomor-

phic to
∫ Adj(G ◦Mnd).

Proposition 2.44. The category
∫ Adj(G ◦ Mnd) is isomorphic to the

category Mndalg of monads and algebraic morphisms.
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Proof. Both categories have the same objects. Moreover, a morphism
(J, λ) from (C,T) to (C,T′) in the category

∫ Adj(G ◦ Mnd) gives rise to
an adjoint square by means of the transposes of λ. By Proposition 2.35, the
conjugate pairs of such adjoint squares are, respectively, morphisms of Kleisli
and of Eilenberg-Moore, hence, the adjoint square is an algebraic morphism.

Reciprocally, given a morphism in Mndalg, its underlying adjunction to-
gether with the 1-th component of its underlying adjoint square, give rise to
a morphism in

∫ Adj(G ◦Mnd).

From here it follows immediately the following corollary.

Corollary 2.45. The forgetful functor from Mndalg to Adj (or, what

is equivalent, the projection functor πAdj from
∫ Adj(G ◦Mnd) to Adj) which

sends a monad (C,T) to C and an alg-morphism (J aK,λ) from (C,T) to
(C′,T′) to its underlying adjunction, is a fibration.

Remark 2.46. It does not seem to exist, however, any 2-category struc-
ture on Adj such that the construction of Ehresmann-Grothendieck for 2-
functors in 2-Cat yields the 2-category of monads, alg-morphisms, and alg-
transformations (or, in particular, transformations of Street).

Since it will used in the following example, we agree to denote, for a
Grothendieck universe V such that U ∈ V , by MndV,alg the 2-category with
objects the monads (C,T) such that C is in V , 1-cells the alg-morphisms, and
2-cells the alg-transformations between alg-morphisms.

Example 2.47. There exists a natural embedding of the 2-category Sigpd,
of signatures, polyderivors, and transformations between polyderivors, defined
in [6], into the 2-category MndV,alg. The embedding sends: (1) a many-sorted
signature Σ to the monad (SetS ,TΣ), where, we recall, TΣ = (TΣ, η, µ) is the
standard monad derived from the adjunction TΣ a GΣ between the category
Alg(Σ) and the category SetS , with TΣ = GΣ ◦TΣ, (2) a polyderivor d from
Σ to Λ to the alg-morphism

SetS SetS

SetT SetT

TΣ //

TΛ

//

OO

∆\
ϕa∐†

ϕ

²²

OO

∆\
ϕa∐†

ϕ

²²

λ
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also denoted by Td = (
∐†

ϕa∆\
ϕ, λ), from (SetS ,TΣ) to (SetT ,TΛ), where the

component λ1 of the matrix λ at X is the underlying many-sorted mapping of(
θ†\ϕ (η∐†

ϕ X)
)], the canonical extension to TΣ(X) of the many-sorted mapping

∆\
ϕ(η∐†

ϕ X) ◦ (η†\ϕ )X : X // ∆\
ϕ(TΛ(

∐†
ϕ X)),

as stated in [6], and (3) a transformation ξ from d to d′ to the alg-transfor-
mation

SetS SetS

SetT SetT

1 //

TΛ

//

OO

∆\
ϕa∐†

ϕ

²²

OO

∆\
ϕ′a∐†

ϕ′

²²

ξ

also denoted by Tξ, from Td to Td′ , where the component ξ0 of the matrix ξ
at X is the many-sorted mapping ξX , as stated in [6].

Let us notice that since there exists a forgetful 2-functor from the 2-
category Spfpd, of many-sorted specifications, pd-specification morphisms,
and transformations between pd-specification morphisms, defined in [6], to
Sigpd and a 2-embedding of Sigpd into MndV,alg, we have that Spfpd and
MndV,alg are connected by a faithful 2-functor.

From this 2-embedding and taking into account the work by Street in [30],
it follows that the polyderivors together with the transformations between
polyderivors are a concrete foundation for a two-dimensional many-sorted uni-
versal algebra.

Remark 2.48. The semantical equivalence of any two many-sorted speci-
fications, understood, by convention, as meaning the categorical equivalence
of the canonically associated categories of models, can not be properly re-
flected at the purely syntactical level of the many-sorted specifications and
many-sorted specification morphisms, i.e., can not be mathematically defined
in the category Spf . And this is so, essentially, as a consequence of the fact of
not having actually equipped Spf with a (non trivial) structure of 2-category.
Thus, if one remains anchored in the tradition of viewing Spf as being, sim-
ply, a category, then the only reasonable way of classifying many-sorted spec-
ifications from within the category Spf is through the categorical concept of
isomorphism, and not, due to structural impossibility, by means of some other
notion of equivalence between many-sorted specifications, itself being strictly



kleisli and eilenberg-moore constructions 33

weaker than that of isomorphism (as it would be the case if instead of having
a category, we had a 2-category). Therefore, what is really needed to settle
the problem of the equivalence between many-sorted specifications (i.e., the
problem of determining whether or not two many-sorted specifications yield
equivalent categories) is to have at one’s disposal some way of comparing
many-sorted specifications that goes, strictly, beyond the mere isomorphisms,
in the same way as equivalences go beyond the isomorphisms when comparing
categories among them. An adequate way of providing a solution to the just
mentioned problem is by constructing suitable 2-categories of many-sorted sig-
natures and many-sorted specifications, through the appropriate definitions of
the 2-cells between the 1-cells, e.g., Sigpd and Spfpd. This two-dimensionality,
by supplying one additional degree of freedom, generates a richer world, that
opens the possibility to deal not only with isomorphic but also with adjoint
and equivalent many-sorted specifications. Thus carrying further the previous
development which was incomplete because of its restriction to categories.

We close this section by showing that MClSp, the category of many-sorted
closure spaces and continuous mappings between many-sorted closure spaces
(also called morphisms between many-sorted closure spaces), defined in [7]
(into which is embedded the category ClSp, of closure spaces and continuous
mappings between closure spaces) is a subcategory of the underlying category
of the 2-category Mndalg (and also a sub-2-category of the 2-category Mndalg,
since the concept of category falls under that of 2-category).

Example 2.49. Let (S, A,C) be a many-sorted closure space, where S is
a set of sorts, A = (As)s∈S an S-sorted set, i.e., an object of SetS and C an
S-closure operator on A (see [7] for more details). In the sequel, (Sub(A),C)
denotes the monad associated to (S, A, C), where Sub(A) is the category
determined by the ordered set (Sub(A),⊆), with Sub(A) = {X∈ US : X⊆ A}
the set of all sub-S-sorted sets of A, where X ⊆ A means, in this context, that,
for all s ∈ S, Xs ⊆ As, and C the monad on Sub(A) obtained from C. Let
(S,A, C) and (T,B,D) be many-sorted closure spaces. Then an alg-morphism
from (Sub(A),C) to (Sub(B),D) is an adjoint square

Sub(A) Sub(A)

Sub(B) Sub(B)

C //

D
//

OO

f∗af∗
²²

OO

f∗af∗
²²
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C //

D
//

f∗
²²

f∗
²²

µii

C //

D
//

f∗
²²

f∗
OO

.³³

C //

D
//

f∗
OO

f∗
²²

.³³

C //

D
//

f∗
OO

f∗
OO

U,,

i.e., an adjunction f∗ a f∗ from Sub(A) to Sub(B) such that one of the
following four equivalent conditions is fulfilled:

(1) for each X ⊆ A, f∗(C(X)) ⊆ D(f∗(X));

(2) for each X ⊆ A, C(X) ⊆ f∗(D(f∗(X)));

(3) for each Y ⊆ B, f∗(C(f∗(Y ))) ⊆ D(Y );

(4) for each Y ⊆ B, C(f∗(Y )) ⊆ f∗(D(Y )).

In the sequel, (f∗, f∗) stands for an alg-morphism from (Sub(A),C) to
(Sub(B),D). From this it follows that a continuous mapping between many-
sorted closure spaces (see [7] for the definition of the concept of continuous
mapping) is a particular case of the concept of alg-morphism. In fact, if
(ϕ, j) is a continuous mapping from (S, A, C) to (T, B,D), then the adjunc-
tions j[·] a j−1[·] from Sub(A) to Sub((Bϕ(s))s∈S) and

⋃
ϕ,B a ∆ϕ,B from

Sub((Bϕ(s))s∈S) to Sub(B) (reference for the latter adjunction is [7]) deter-
mine an alg-morphism

((ϕ, j)∗, (ϕ, j)∗) = (
⋃

ϕ,B ◦j[·], j−1[·] ◦∆ϕ,B)

from (Sub(A),C) to (Sub(B),D). Therefore the category MClSp is a sub-
category of the underlying category of the 2-category Mndalg. Let us notice
that not every alg-morphism between the monads associated to many-sorted
closure spaces is obtained from pairs of adjunctions of the form j[·] a j−1[·]
and

⋃
ϕ,B a ∆ϕ,B. One obtains examples of this phenomenon by means of

the alg-morphisms determined by the consequence operators of Hall and of
Bénabou (concerning many-sorted equational logic and defined in [5]).
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Example 2.50. Since Mndalg is a 2-category, we can also consider the
concept of alg-transformation between alg-morphisms from the monad associ-
ated to a many-sorted closure space to the monad associated to another many-
sorted closure space. An alg-transformation from an alg-morphism (f∗, f∗) to
another alg-morphism (g∗, g∗), both from (Sub(A),C) to (Sub(B),D), is,
simply, an adjoint square

Sub(A) Sub(A)

Sub(B) Sub(B)

1 //

D
//

OO

f∗af∗
²²

OO

g∗ag∗
²²

1 //

D
//

f∗
²²

g∗
²²

²ff

1 //

D
//

f∗
²²

g∗
OO

.³³

1 //

D
//

f∗
OO

g∗
²²

.³³

1 //

D
//

f∗
OO

g∗
OO

X//

Thus from (f∗, f∗) to (g∗, g∗) there exists an alg-transformation if, and only
if, one of the following four equivalent conditions is fulfilled:

(1) for each X ⊆ A, g∗(X) ⊆ D(f∗(X));

(2) for each X ⊆ A, X ⊆ g∗(D(f∗(X)));

(3) for each Y ⊆ B, g∗(f∗(Y )) ⊆ D(Y );

(4) for each Y ⊆ B, f∗(Y ) ⊆ g∗(D(Y )).

Remark 2.51. The forgetful functor from MClSp to MSet, the category
of many-sorted sets and many-sorted mappings, i.e., the category with objects
all pairs (S,A), where S is a set and A an S-sorted set and morphisms from
(S,A) to (T,B) all pairs (ϕ, f), where ϕ : S // T and f : A // (Bϕ(s))s∈S ,
has left and right adjoints and constructs limits and colimits. Therefore all
of the results stated by Feitosa and D’Ottaviano in [10] (compare with those
stated a long time ago by Brown in [3], by Brown and Suszko in [4], and by
Porte in [28], especially those in Chapter 12, pp. 83–96) that have to do with
closure spaces, continuous mappings, optimal and co-optimal lifts, and com-
pleteness and co-completeness of the category ClSp fall, as a very particular
case, under those for the category MClSp, since their “logics” are nothing
more nor less than ordinary (not many-sorted) closure spaces. Besides, by
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defining the appropriate subcategories of MClSp, the many-sorted counter-
parts of the remaining results in [10] are also, easily, provable from the above
generalized theory about many-sorted closure spaces and morphisms between
them.

3. Adjunctions and monads

Our main concern in this section is to obtain from a 2-category Ad, of
adjunctions, two new 2-categories of adjunctions, AdKl and AdEM, which
will allow us to extend to two 2-functors the classical, and well-known, con-
struction that assigns to an adjunction a monad, and all in such a way that
the classical constructions of Kleisli and Eilenberg-Moore are left and right
biadjoints, respectively, for these 2-functors. Moreover, the morphisms and
transformations of Kleisli and of Eilenberg-Moore between monads will be
characterized, respectively, as the image of morphisms and transformations
of Kleisli and of Eilenberg-Moore between the adjunctions. Finally, we define
a 2-category Adalg, of adjunctions, algebraic squares, and algebraic transfor-
mations, and prove that there exists a canonical 2-functor Mdalg from Adalg

to Mndalg.

Definition 3.1. Let F a G be an adjunction from C to D, F ′ a G′ an
adjunction from C′ to D′, and (J, δ,H), (J ′, δ′, H ′) two adjoint squares from
F a G to F ′ a G′. Then a transformation from (J, δ,H) to (J ′, δ′,H ′) is a
natural transformation τ from H to H ′.

Proposition 3.2. Adjunctions, adjoint squares, and transformations be-
tween adjoint squares yield a 2-category, hereafter denoted by Ad.

Proof. It is sufficient to define the identities as

C D

C D

oo G

>
F

//

1

²²

1

²²oo G

>
F

//

(
F η

ε G

)
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and the composition in Ad of two adjoint squares

(J, λ, H) : F aG // F ′aG′ and (J ′, λ′,H ′) : F ′aG′ // F ′′aG′′,

as the adjoint square

(F aG, (J ′J, λ′
fn◦ λ,H ′H), F ′′aG′′),

where λ′
fn◦ λ is the matrix

λ′
fn◦ λ =

(
(H ′λ0)(λ′0J) (G′H ′ε′HF )(λ′1λ1)

(λ′2λ2)(F ′′J ′η′JG) (λ′3H)(J ′λ3)

)
.

Moreover, for the transformations of adjoint squares there are identities, hor-
izontal compositions, and vertical compositions, defined like those of its un-
derlying natural transformations.

Definition 3.3. Let F a G be an adjunction from C to D, F ′ a G′ an
adjunction from C′ to D′, and (J, δ,H), (J ′, δ′, H ′) two adjoint squares from
F aG to F ′ aG′. Then a transformation τ from (J, δ,H) to (J ′, δ′,H ′) is a
transformation of Street if there exists a natural transformation σ : J +3 J ′

such that the pair (σ, τ) is compatible with the respective adjoint squares.
Since the transformations of Street are stable under composition, we obtain
the corresponding sub-2-category AdSt of Ad determined by the transforma-
tions of Street.

Not every adjoint square, understood as a morphism of adjunctions, gives
rise to a morphism between the monads associated to the corresponding ad-
junctions. However, for a definite class of adjoint squares such an association
is possible.

Definition 3.4. We say that an adjoint square (J, δ,H) from F aG to
F ′ a G′ is an adjoint square of Kleisli or, for brevity, a Kl-square, if its 0-
th component, δ0, is a natural isomorphism. Since the Kl-squares are stable
under composition, we obtain the sub-2-category AdKl of Ad which has as
0-cells those of Ad, as 1-cells the Kl-squares, and as 2-cells those of Ad.

We next prove that from the 2-category AdKl to Mndc
Kl, the conjugate

2-category of MndKl, there exists a 2-functor which assigns to an adjunction
its corresponding monad, to a Kl-square a Kl-morphism of monads, and to a
transformation of Kl-squares a Kl-transformation. But before doing that we
state the following lemma.
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Lemma 3.5. Let (J, δ,H) : F a G // F ′ a G′ be a Kl-square. Then the
following diagrammatic equations are fulfilled

1

ÀÀ
F // G //

F ′
//

G′
//

J
²²

H
²²

J
²²

vvvvv~δ−1
0

ÂÂ ÂÂ
®¶ η

vvvvv~
δ3 =

1 //

1 //

F ′
(( G′

KK

J
²²

J
²²

vvvvv~J

ÂÂ ÂÂ
®¶ η′

G // F //

G′ // F ′ //

1

AA

H
²²

J
²²

H
²²

vvvvv~
δ3

ÂÂ ÂÂ
®¶ ε′

vvvvv~δ−1
0 =

1 //

1
//

G
66

F

¶¶

H
²²

H
²²

vvvvv~H

ÂÂ ÂÂ
®¶ ε

Proof. For the first equation it is sufficient to remark that

1

¿¿
F // G //

F ′
//

G′
//

J
²²

H
²²

J
²²

xxxxx¡δ−1
0

ÂÂ ÂÂ
®¶ η

xxxxx¡
δ3 =

1

¿¿
F // G //

Foo

F ′oo

F ′
//

G′
//

J

²²

1
²²

1
²²

H
²²

J
²²

1
²²

1
²²

´́́´¥¯δ−1
0

ÂÂ ÂÂ
®¶ η

FFFF^f
δ0

____ks
ε

____ks
η′

=

1 //

1 //

F ′
'' G′

LL

J
²²

J
²²

xxxxx¡J

ÂÂ ÂÂ
®¶ η′

The proof of the second equation is formally identical.
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Proposition 3.6. There exists a 2-functor MdKl from the 2-category
AdKl to the 2-category Mndc

Kl which sends: (1) an adjunction (F aG, η, ε)
to the monad (G ◦ F, η, GεF ), (2) a Kl-square (J, δ,H) to the Kl-morphism
(J, λδ), where λδ is Gδ−1

0 ◦ δ3F , and (3) a transformation τ from (J ′, δ′,H ′)
to (J, δ,H) to the Kl-transformation Ξτ = G′δ−1

0 ◦G′τF ◦ δ′3F ◦ J ′η.

Proof. Let (J, δ,H) : F aG // F ′ aG′ be a Kl-square. From Lemma 3.5
it is a simple matter to verify that the natural transformation

C D C

C′ D′ C′

F // G //

F ′
//

G′
//

J
²²

H
²²

J
²²

yyyyx¡
δ−1
0 yyyyx¡

δ3

is a Kl-morphism of monads.
The compatibility with the identity and the compositions is immediate.
By Lemma 3.5, Ξτ is a transformation, since

F
++WWWWWW

G
++WWWWWW

F
++WWWWWW

G
++WWWWWW

F ′ ++WWWWWW

G′ ++WWWWWW

F ′ ++WWWWWW

G′ ++WWWWWW

1

;;

J

ÃÃ
H

ÃÃ
J

ÃÃ
H

ÃÃ

H ′

~~
J ′

~~

¡¡¡¡|¥
δ−1
0

¡¡¡¡|¥
δ3

¡¡¡¡|¥
δ−1
0

____ksτ
¡¡¡¡|¥

δ′3

´́́´¥¯ ε′

=

F
++VVVVVV
G ..

F

¹¹1VVVVV

++VVVVV
G

++VVVVVV

F ′ ++VVVVVV

1 ++VVVVVVVVVVVVV

G′ ++VVVVVV

J

ÃÃ
H

ÃÃ H

ÃÃ

H ′

~~
J ′

~~

~~~~{¤
δ−1
0

~~~~{¤
H

____ksτ
~~~~{¤

δ′3

%% %%
±¹ ε

=

F
++VVVVVV
G ..

F

¹¹1VVVVV

++VVVVV
G

++VVVVVV

F ′ ++VVVVVV

1 ++VVVVVVVVVVVVV

G′ ++VVVVVV

J

ÃÃ
H

ÃÃ

H ′

~~ H ′

~~
J ′

~~

~~~~{¤
δ−1
0

____ksτ
~~~~{¤H ′

~~~~{¤
δ′3

%% %%
±¹ ε

=

F
++WWWWWW

G
++WWWWWW

F
++WWWWWW

G
++WWWWWW

F ′ ++WWWWWW

G′ ++WWWWWW

F ′ ++WWWWWW

G′ ++WWWWWW

1

;;

J

ÃÃ
H

ÃÃ

H ′

~~
J

~~
H ′

~~
J ′

~~

¡¡¡¡|¥
δ−1
0

____ksτ
¡¡¡¡|¥

δ′3
¡¡¡¡|¥

δ′0
−1

¡¡¡¡|¥
δ′3

´́́´¥¯ ε′

The compatibility with the 2-identities is immediate. Also the compati-
bility with the horizontal composition is immediate, making use of the alter-
native definition of the horizontal composition of Kl-transformations. For the
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vertical composition, we have that

F
**VVVVVVV

G
**VVVVVVV

F
**VVVVVVV

G
**VVVVVVV

F ′ **VVVVVVV

G′ **VVVVVVV

F ′ **VVVVVVV

G′ **VVVVVVV

1

::

J

%%
H

%%

H ′

²²
J ′

²²
H ′

²²

H ′′

yy
J ′′

yy

~~~~{¤
δ−1
0

____ksτ ||||z£
δ′3

||||z£
δ′0
−1

____ksτ
′

||||z£
δ′′3

³³³³¥¯ ε′

=

F
++VVVVVVV

G
++VVVVVVV

F ′ ++VVVVVVV

G′ ++VVVVVVV

J

%%
H

%%

H ′

²²

H ′′

yy
J

xx

~~~~{¤
δ−1
0

____ksτ
′

____ks τ ~~~~z£
δ′′3

The transformations of Street between Kl-squares are carried into Kl-trans-
formations of monads under the action of the 2-functor MdKl, and we denote
by MdKS the bi-restriction of MdKl to AdKS and MndKS. The action of
MdKS on a transformation of Street (σ, τ) is the mapping

C

D

C

C′

D′

C′

F
**VVVVVVVVVVV

G
**VVVVVVVVVVV

F ′ **UUUUUUUUUUU

G′ **UUUUUUUUUUU

J ′

¦¦

J

¼¼ H ′

¥¥

H

½½ J ′

¥¥

J

½½

mmmmrz
δ′0
−1

mmmmrz
δ−1
0

mmmmrz
δ′3

mmmmrz
δ3

____ksσ

____ksτ

____ksσ
7−→

C

C

C′

C′

G ◦ F
,,YYYYYYYYYYYYYYYYY

G′ ◦ F ′ ,,XXXXXXXXXXXXXXXXX

J ′

¦¦

J

¼¼ J ′

¥¥

J

½½

pppps{
λδpppps{

λδ′____ksσ

____ksσ

Remark 3.7. The 2-functor MdKl is obtained by composing the 2-functor
from AdKl to Kl that forgets all components of the Kl-squares with the ex-
ception of the first one, and the 2-isomorphism between Kl and Mndc

Kl.

Our next objective is to prove that the 2-functor MdKl has a left biadjoint
which is, essentially, obtained by composing the 2-isomorphism from Mndc

Kl

to Kl with the 2-functor which embeds Kl into AdKl by assigning: (1) to
an object of Kl its corresponding adjunction of Kleisli, (2) to every 1-cell
the Kl-square obtained through the natural transformations transpose of the
identity of the commutative square corresponding to the 1-cell, and (3) leaving
invariant the 2-cells. From this it follows that the full sub-2-category of AdKl

determined by the adjunctions of Kleisli is a co-reflective sub-2-category of
AdKl.
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Proposition 3.8. There exists a 2-functor Kl from the 2-category
Mndc

Kl to the 2-category AdKl which sends: (1) a monad (C,T) to the
canonical adjunction (FT, GT), (2) a Kl-morphism (J, λ) of monads to the
Kl-square (J, δλ,Hλ), where Hλ is the functor associated to λ by the bijection
in Proposition 2.4 and δλ the adjoint square determined by the corresponding
commutative square, and (3) a Kl-transformation Ξ: (J, λ) /o _ // (J ′, λ′) to the
transformation τΞ associated to Ξ by the bijection in Proposition 2.16.

The transformations of Street between Kl-morphisms of monads are car-
ried into transformations of Street between Kl-squares under the action of the
2-functor Kl, and we denote by KlSt the bi-restriction of Kl to MndKS and
AdKS.

Proposition 3.9. The 2-functor Kl is a left biadjoint for the 2-functor
MdKl.

AdKl

MdKl //
> Mndc

Kl

Kl
oo

Proof. We want to prove that for every adjunction there exists a universal
morphism from the 2-functor Kl to it, i.e., that if F aG is an adjunction, with
associated monad T, then there exists a Kl-square

εFaG : FTaGT // F aG

such that, for every monad (A,M) and every Kl-square

(J, δ,H) : FMaGM // F aG,

the Kl-morphism of monads (J, λδ) : (A,M) // (C,T) is, up to isomorphism,
the unique for which there exists an invertible transformation

θδ : (J, δ,H) +3 εFaG ◦Kl(J, λδ)

FMaGM

(J, δ,H)

&&MMMMMMMMMMMMMMMMMMM

Kl(J, λδ)

²²
FTaGT εFaG

// F aG

rrrrt|
θδ

(A,M)

(J, λδ)

²²
(C,T)
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and that, for every transformation τ : (J ′, δ′,H ′) // (J, δ,H), the Kl-trans-
formation Ξτ from (J, λδ) to (J ′, λδ′) is the unique that makes the left-hand
side diagram of the following figure commutative

FMaGM

FTaGT

F aG

(J, δ,H)

¹¹

(J ′, δ′,H ′)

²²

Kl(J, λδ)

»»

Kl(J ′, λδ′)

§§

εFaG **UUUUUUUUUUUUUUUUUUU

\\\\iq
τ

____ks
Kl(Ξτ )

yyyyx¡
θδ

mmmmrz
θδ′

(A,M)

(C,T)

(J, λδ)

»»

(J ′, λδ′)

§§

/o _ //
Ξτ

i.e., such that θδ ◦ τ = εFaGKl(Ξτ ) ◦ θδ′ .

Let F aG be an adjunction from C to D and T its canonically associated
monad. Then, from the functor L : Kl(T) // D, the comparison functor
of Kleisli, we get the Kl-square (1, δL, L) from FT a GT to F a G, by the
commutativity of the following diagram

C
FT //

1

²²

Kl(T)
GT //

L

²²

C

1

²²
C

F
// D

G
// C

and the fact that the identity natural transformations in the squares of the
above diagram are mutually conjugate. The Kl-square (1, δL, L) is the value
of the counit of the biadjunction looked for on F aG. LetM be a monad on A
and (J, δ,H) a Kl-square from FMaGM to F aG. Then MdKl(J, δ,H) = (J, λδ)
is a Kl-morphism of monads. Let (J, δλδ

,Hλδ
) be its image under the functor

Kl. Then we have the situation described by the following diagram
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A Kl(M) A

C Kl(T) C

C D C

FM // GM //

FT // GT //

F
//

G
//

J

²²

Hλδ

²²

J

²²
J

ºº.
..

..
..

..
..

..
..

..

H

ºº.
..

..
..

..
..

..
..

..

J

¸,̧
,,

,,
,,

,,
,,

,,
,,

,,

1 !!CC
CC

CC
CC

L !!CC
CC

CC
C

1 ÂÂ>
>>

>>
>>

´́́´¥¯δ3

ssssu}
(δλδ

)3

=
δL
3

A A

C C

M //

T
//

J

ºº0
00

00
00

00
00

00
00

0

J

ºº0
00

00
00

00
00

00
00

0

····§±λδ

Let θδ be the mapping that to a Kl(M)-object a assigns the D-morphism

(δ−1
0 )a : HFM(a) // FJ(a).

Thus defined θδ is a natural isomorphism between the functors H and L◦Hλδ
.

Let us verify that it is an invertible transformation in the 2-category AdKl.
Let f : a // a′ be a Kl(M)-morphism. The functor Hλδ

assigns to f the
Kl(T)-morphism which corresponds to the following C-morphism

J(a)
J(f)

// JGMFM(a′)
(λδ)a′ // GFJ(a′),

and the comparison functor of Kleisli L assigns to every Kl(T)-morphism g
from c to c′ the D-morphism L(g) = εF (c′) ◦F (g) : F (c) // F (c′), as depicted
in the following diagram

F (c)
F (g)

// FGF (c′)
εF (c′) // F (c′).

Therefore L ◦Hλδ
(f) is the D-morphism from FJ(a) to FJ(a′) in the com-

mutative diagram

FJ(a)
FJ(f)

// FJGMFM(a′)
(Fλδ)a′ //

(Fδ3FM)a′
''OOOOOOOOOOOOOOOOOO

FGFJ(a′)
(εFJ)a′ // FJ(a′)

FGHFM(a′)

(FGδ−1
0 )a′

OO

(εHFM)a′
// HFM(a′)

(δ−1
0 )a′

OO
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But it happens that εH ◦ Fδ3 = HεM ◦ δ0GM

GM //

H

¼¼
44

44
44

44
44

J

¼¼
44

44
44

44
44

G // F //

1

>>

³³³³¥¯δ3

ÂÂ ÂÂ
®¶ ε

=

1

ÃÃ
GM // FM //

F
//

J

¼¼
44

44
44

44
44

H

¼¼
44

44
44

44
44

Â ÂÂ ÂKS εM

³³³³
DLδ0

therefore L ◦Hλδ
(f) is

FJGMFM(a′)

(δ0GMFM)a′

²²

FJ(a)

FJ(f) 33hhhhhhhhhhhhh
HFM(a′)

(δ−1
0 )a′ // FJ(a′)

HFMGMFM(a′)
(HεMFM)a′

33gggggggggggg

On the other hand, we have that FM(f) = (ηM)M(a′) ◦ f = FM((ηM)a′) ¦ f ,
and, therefore, that

(HεMFM)a′ ◦HFM(f) = (HεMFM)a′ ◦HFM((ηM)a′) ◦H(f)

= idHFM(a′) ◦H(f) = idH(a′) ◦H(f) = H(f) .

Consequently the following diagram commutes

FJ(a)

GF ED
L ◦Hλδ

(f)

²²FJ(f)
// FJTM(a′)

(δ0TM)a′
// HFMTM(a′)

(HεMFM)a′
// HFM(a′)

(δ−1
0 )a′

// FJ(a′)

H(a)

(δ−1
0 )a

OO

HFM(f)

//

@A BC
H(f)

OO
HFMTM(a′)

(δ−1
0 TM)a′

OO

1

;;vvvvvvvvvvvvvvvvv

(HεMFM)a′
// H(a′)

1

``BBBBBBBBBBBBBBB

(δ−1
0 )a′

OO
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where TM stands for GMFM and, by the definition of the functor FM from
A to Kl(M), for each A-object a, it happens that H(a) = HFM(a). Thus
θδ is an invertible transformation from (J, δ,H) to (1, δL, L) ◦ (J, δλδ

,Hλδ
).

Furthermore, if (J ′, λ′) : (A,M) // (C,T) is a Kl-morphism and θ′ an in-
vertible transformation from (J, δ,H) to (1, δL, L) ◦ (J ′, δλ′ ,Hλ′), then (J, λδ)
and (J ′, λ′) are isomorphic. This is because MdKl(θ′ ◦ θ−1

δ ) is an invertible
Kl-transformation in MndKl from (J, λδ) to (J ′, λ′) as shown by the following
diagram

(J, λδ) = (J, λHλδ
) = MdKl((1, δL, L) ◦ (J, δλδ

,Hλδ
))

MdKl(θ−1
δ )

²²
MdKl(J, δ,H)

MdKl(θ′)
²²

MdKl((1, δL, L) ◦ (J ′, δλ′ ,Hλ′)) = (J ′, λHλ′ ) = (J ′, λ′)

Next, let τ : (J ′, δ′,H ′) // (J, δ,H) be a transformation. Then MdKl(τ)
is, precisely, the Kl-transformation Ξτ = Gδ−1

0 ◦GτFM ◦δ′3FM ◦J ′ηM, obtained
as shown in the following diagram

A
Kl(M)

A

C
D

C

1

ÁÁ

FM
++XXXXXXXXX

GM
++XXXXXXXXX

F ++XXXXXXXXXXX

G ++XXXXXXXXXXX

J

¼¼
H

¼¼

H ′

¦¦
J ′

¦¦

llllrz
δ−1
0

llllrz
δ′3____ks

τ

ÁÁ ÁÁ ®¶ ηM

Let us put τΞτ
= Kl(MdKl(τ)). We claim that θδ ◦τ = εFaGτΞτ ◦θδ′ . However,

to state this equation it is sufficient to verify that τ ◦ θδ = LτΞτ ◦ θδ′ , i.e., that
the following diagram commutes
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Kl(M)

Kl(T)

D

H

¹¹

H ′

²²

Hλδ

¼¼

Hλδ′

¦¦

L
))TTTTTTTTTTTTTTTTTT

eeeenvτ
^̂̂̂jrτ

Ξτ

mmmmrz
θδ iiiipx

θδ′

For every Kl(M)-object a, τΞτ

a is the Kl(T)-morphism that corresponds to
the C-morphism Ξτ

a, hence we have that

LτΞτ
(a) = L(Ξτ

a) = L(Gδ−1
0 ◦GτFM ◦ δ′3FM ◦ J ′ηM)a,

i.e., the action at a of the natural transformation of the diagram

1

ÃÃFM // GM //

F
//

G
//

F
//

1

>>

J

''

H

''

H ′

¶¶

J ′

¶¶

ÂÂ ÂÂ
®¶ ηM

uuuuv~
δ′3

^̂̂̂ksτyyyyx¡
δ−1
0

ÂÂ ÂÂ
®¶ ε

and that, therefore, is equal to

FJ ′GMFM

Fδ′3FM

²²

FGHFM

FGδ−1
0

²²

FJ ′

FJ ′ηM
55lllllllllllll

FJ

FGH ′FM

FGτFM
uuuuuuu

::uuuuuuuu

FGFJ
εFJ

66lllllllllllll
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But δ′3FM ◦ J ′ηM = Gδ0 ◦ ηJ ′, since

1

ÀÀ
FM // GM //

G
//

H ′

´´

J ′

´´

uuuuv~
δ′3

ÂÂ ÂÂ
®¶ ηM

=

FM //

F // G //

1

AA

J ′

´´

H ′

´´

uuuu
6>

δ′0

Â ÂÂ ÂKS η

hence the considered natural transformation is

FJ ′
FηJ ′ // FGFJ ′

FGδ0 // FGH ′FM

FGτFM

²²
FGHFM

FGδ−1
0 // FGFJ

εFJ // FJ

i.e., the natural transformation of the diagram

FM //

F // G // F //

J ′

,,

H ′

,,

H

¶¶

1

##

1

;;

uuuu
6>

δ′0 rrrr
5=τ

Â ÂÂ ÂKS ε

Â ÂÂ ÂKS η

J ++

F

©©

oooo
3;δ−1

0

which is equal to δ−1
0 ◦ τFM ◦ δ′0. Then we have that

(θδ ◦ τ)a = (δ−1
0 )a ◦ τa = (δ−1

0 )a ◦ (τFM)a

= (δ−1
0 ◦ τFM ◦ δ′0 ◦ δ′−1

0 )a

= (LτΞτ ◦ θδ′)a.
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Let us verify, finally, that the uniqueness is also fulfilled. If Ξ is a Kl-trans-
formation from (J, λδ) to (J ′, λδ′) such that θδ ◦ τ = LτΞ ◦ θδ′ , then

MdKl(τΞτ
) ◦MdKl(θδ′) = MdKl(1L ◦ τΞτ ◦ θδ′)

= MdKl(1L ◦ τΞ ◦ θδ′)

= MdKl(τΞ) ◦MdKl(θδ′),

but MdKl(θδ′) is an isomorphism and, consequently, we have that

Ξτ = MdKl(τΞτ
) = MdKl(τΞ) = Ξ .

On the ground of an argument by symmetry it is obvious that everything
we have done in this section based on the Kleisli construction, from Definition
3.4, about the concept of Kl-square, to Proposition 3.9, about the fact that
the 2-functor Kl is a left biadjoint for the 2-functor MdKl, has a parallel
development founded on the Eilenberg-Moore construction. For this reason
we next restrict ourselves to state the counterparts of the above concepts
and constructions and to leave it to the reader to verify the corresponding
propositions.

Definition 3.10. We say that an adjoint square (K, δ,H) from F ′aG′ to
F aG is an adjoint square of Eilenberg-Moore or, for brevity, an EM-square,
if its 3-th component, δ3, is a natural isomorphism. Since the EM-squares
are stable under composition, we obtain the sub-2-category AdEM of Ad
which has as 0-cells those of Ad, as 1-cells the EM-squares, and as 2-cells
those of Ad.

We next show that from the 2-category AdEM to Mndt
EM, the transpose

2-category of MndEM, there exists a 2-functor which assigns to an adjunction
its corresponding monad, to an EM-square an EM-morphism of monads, and
to a transformation of EM-squares an EM-transformation. But before doing
that we state without proof the following lemma (which is, for the EM-squares,
the counterpart of Lemma 3.5).

Lemma 3.11. Let (K, δ,H) : F ′ aG′ // F aG be an EM-square. Then
the following diagrammatic equations are fulfilled
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1

ÀÀ
F // G //

F ′
//

G′
//

K

OO

H

OO

K

OO
HHHH Ã(
δ0

ÂÂ ÂÂ
®¶ η

HHHH Ã(
δ−1
3 =

1 //

1 //

F ′
(( G′

KK

K

OO

K

OO
HHHH Ã(K

ÂÂ ÂÂ
®¶ η′

G // F //

G′ // F ′ //

1

AA

H

OO

K

OO

H

OO
HHHH Ã(
δ−1
3

ÂÂ ÂÂ
®¶ ε′

HHHH Ã(
δ0 =

1 //

1
//

G
66

F

¶¶

H

OO

H

OO
EEEE Á&H

ÂÂ ÂÂ
®¶ ε

Proposition 3.12. There exists a 2-functor MdEM from the 2-category
AdEM to the 2-category Mndt

EM which sends: (1) an adjunction (F aG, η, ε)
to the monad (G◦F, η, GεF ), (2) an EM-square (K, δ,H) to the EM-morphism
(K,λδ), where λδ = δ−1

3 F ′ ◦Gδ0, and (3) a transformation τ from (J, δ,H) to
(J ′, δ′,H ′) to the EM-transformation Ξτ = δ′3

−1F ′ ◦GτF ′ ◦Gδ0 ◦ ηK.

Proof. Since the method of proof is formally identical to that we have
already used, for the case of Kleisli, in Proposition 3.6, the proof is left to the
reader.

The transformations of Street between EM-squares are carried into EM-
transformations of monads under the action of the 2-functor MdEM, and we
denote by MdEMS the bi-restriction of MdEM to AdKS and MndEMS.

Remark 3.13. The 2-functor MdEM is obtained by composing the
2-functor from AdEM to EM that forgets all components of the EM-
squares with the exception of the first one, and the 2-isomorphism between
EM and Mndt

EM.

The 2-functor MdEM has a right biadjoint, EM, which is, essentially,
obtained by composing the 2-isomorphism from Mndt

EM to EM with the
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2-functor which embeds EM into AdEM by assigning to an object of EM its
corresponding adjunction of Eilenberg-Moore, to every 1-cell the EM-square
obtained through the natural transformations transpose of the identity of the
commutative square corresponding to the 1-cell, and leaving invariant the 2-
cells. From this it follows that the full sub-2-category of AdEM determined
by the adjunctions of Eilenberg-Moore is a reflective sub-2-category of AdEM.

Proposition 3.14. There exists a 2-functor EM from the 2-category
Mndt

EM to the 2-category AdEM which sends: (1) a monad (C,T) to the
canonical adjunction (FT, GT), (2) an EM-morphism of monads (K, λ) to
the EM-square (K, δλ,Hλ), where Hλ is the functor associated to λ by the
bijection in Proposition 2.21 and δλ the adjoint square determined by the
corresponding commutative square, and (3) an EM-transformation Ξ from
(K,λ) to (K ′, λ′) to the transformation τΞ associated to Ξ by the bijection in
Proposition 2.29.

The transformations of Street between EM-morphisms of monads are car-
ried into transformations of Street between EM-squares, under the action of
the 2-functor EM, and we denote by EMSt the bi-restriction of EM to MndEMS

and AdEMS.

Proposition 3.15. The 2-functor EM is a right biadjoint for the 2-
functor MdEM.

AdEM

MdEM

//> Mndt
EM

EMoo

Proof. Since the method of proof is formally identical to that we have
already used, for the case of Kleisli, in Proposition 3.9, the proof is left to the
reader.

An adjoint square (J, λ,H) : F a G // F ′ a G′ can simultaneously be a
Kl-square and an EM-square, in which case we call it a KlEM-square. Let us
notice that then the following diagram commutes

C
F //

J
²²

D
G //

H
²²

C

J
²²

C′
F ′

// D′
G′

// C′
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and that the pair (J,H) is a transformation of adjunctions as defined by
Mac Lane in [23]. Adjunctions, KlEM-squares, and transformations yield a
2-category, hereafter denoted by Adtn, and it is the common sub-2-category
of AdKl and AdEM.

For the concept of monad we also have a corresponding notion of KlEM-
square as stated in the following definition.

Definition 3.16. Let (C,T) and (C′,T′) be two monads. A KlEM-
square from (C,T) to (C′,T′) is a functor J : C // C′ such that: (1) the
following square commutes

C
T //

J
²²

C

J
²²

C′
T ′

// C′

(2) Jη = η′J , and (3) µ′J = Jµ.

Such a KlEM-square is a Kl-morphism from (C,T) to (C′,T′) and also an
EM-morphism from (C′,T′) to (C,T). Moreover, the KlEM-squares yield a
2-category, hereafter denoted by Mndtn, which is the common sub-2-category
of Mndc

Kl and Mndt
EM.

From Adtn to Mndtn there exists a 2-functor Mdtn (obtained by bi-
restriction to Adtn and Mndtn). Likewise, it is easy to check that the mor-
phism of adjunctions of Kleisli (respectively, of Eilenberg-Moore) determined
by a KlEM-square between monads is a transformation of adjunctions, there-
fore the 2-functors Kl and EM can both be bi-restricted, respectively, to 2-
functors Kltn and EMtn from Mndtn to Adtn, and that, consequently, Kltn is
a left biadjoint and EMtn a right biadjoint for the 2-functor Mdtn.

The existence of transformations, as defined by Mac Lane in [23], between
adjunctions (associated to algebraic theories) is not, however, the only possible
in algebraic contexts. It often happens that there are pairs of adjunctions
such that their underlying categories are also, in its turn, mutually related
by adjunctions. In this connection we point out that the following three
statements are equivalent: (1) there exist a Kl-square from F aG to F ′ aG′

and an EM-square from F ′ aG′ to F aG, such that the underlying functors
are, two by two, mutually adjoints, (2) there exists a Kl-square from F aG to
F ′ aG′ such that the underlying functors have right adjoints, and (3) there
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exists an EM-square from F ′aG′ to F aG such that the underlying functors
have left adjoints.

The above situation has a more concise description in terms of an square
composed by adjunctions, and it is, in fact, equivalent to the existence of a
certain natural isomorphism in such an square.

Definition 3.17. An algebraic square is a diagram of categories and ad-
junctions as in

C D

C′ D′

oo G

>
F

//OO

KaJ

²²

OO

IaH

²²oo G′

>
F ′

//

(α, β)

where (α, β) is a conjugate pair of natural isomorphisms from H ◦ F aG ◦ I
to F ′ ◦ J aK ◦G′.

C D′ C
H ◦ F

&&

F ′ ◦ J
88

G ◦ I
&&

K ◦G′
88Â ÂÂ ÂKS α

ÂÂ ÂÂ
®¶ β

Proposition 3.18. Given an algebraic square as in Definition 3.17, each
one of the natural isomorphisms

α : F ′J +3 HF, β−1 : KG′ +3 GI, α−1 : HF +3 F ′J, and β : GI +3 KG′

gives rise to an adjoint square

C D

C′ D′

oo G

>
F

//

J
²²

H
²²oo G′

>
F ′

//

λα

F //

J

²²

H

²²

F ′
//

||||
:Bα

F //

J

²²

H

²²

G′
oo

____ +3
λα

1

Goo

J

²²

H

²²

F ′
//

____ +3
λα

2

Goo

J

²²

H

²²

G′
oo

BBBB ¿$
λα

3
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C D

C′ D′

oo G

>
F

//OO

K

OO

I

oo G′

>
F ′

//

λβ−1

F //

K

OO

I

OO

F ′
//

BBBB ¿$
λβ−1

0

Goo

K

OO

I

OO

F ′
//

____ +3
λβ−1

1

F //

K

OO

I

OO

G′
oo

____ +3
λβ−1

2

Goo

K

OO

I

OO

G′
oo

||||
:Bβ−1

C D

C′ D′

F //
OO

KaJ
²²

OO

IaH
²²

F ′
//

λα−1

F //

J

²²

H

²²

F ′
//

||||z£
α−1

F //

J

²²

I

OO

F ′
//

ÂÂ ÂÂ
®¶ λα−1

1

F //

K

OO

H

²²

F ′
//

ÂÂ ÂÂ
®¶ λα−1

2

F //

K

OO

I

OO

F ′
//

BBBB ¿$
λα−1

3

C D

C′ D′

oo G
OO

KaJ
²²

OO

IaH
²²

oo
G′

λβ

Goo

H

²²

J

²²

G′
oo

BBBB ¿$
λβ

0

Goo

H

²²

K

OO

G′
oo

ÂÂ ÂÂ
®¶ λβ

1

Goo

I

OO

J

²²

G′
oo

ÂÂ ÂÂ
®¶ λβ

2

Goo

K

OO

I

OO

G′
oo

||||z£
β

Moreover, each one of the natural transformations in the above diagrams
univocally determines the remaining natural transformations.
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Remark 3.19. The concept of algebraic squares can be defined alternative,
but equivalently, as a diagram of adjunctions and functors as in 3.17, together
with a matrix

λ =

(
λ0 λ1

λ2 λ3

)

of adjoint squares which is compatible with the involved adjunctions, where
the compatibility is defined by stipulating that (λ0,0, λ2,3) and (λ1,3, λ3,3) are
inverse natural isomorphisms and (λ0,0, λ1,3) and (λ2,3, λ3,3) conjugate pairs.

Definition 3.20. Let

C

(α, β)

F
//>

J

²²

a

D
Goo

H

²²

a

C′

F ′
//>

K

OO

D′
G′

oo

I

OO
and C

(α′, β′)

F
//>

J ′

²²

a

D
Goo

H ′

²²

a

C′

F ′
//>

K ′

OO

D′
G′

oo

I ′

OO

be two algebraic squares. An algebraic transformation from the former to
the latter is a conjugate pair τ = (τ0 : H ′ +3 H, τ1 : I +3 I ′) from H a I to
H ′aI ′. We agree that a diagram of the shape

C
F aG

**UUUUUUUUUUUUUUUUUUUUUU

J aK

½½

J ′aK ′

¥¥

D

H aI

½½

H ′aI ′

¥¥

C′

F ′aG′ **UUUUUUUUUUUUUUUUUUUUU

D′

τ

(α, β) (α′, β′)

represents an algebraic transformation between two algebraic squares
as above.

Proposition 3.21. Adjunctions, algebraic squares, and algebraic trans-
formations yield a 2-category, hereafter denoted by Adalg.
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Proof. Identities and compositions of transformations are defined as those
of its conjugate pairs.

Definition 3.22. Let us consider two algebraic squares as in Definition
3.20. Then a transformation of Street from the former to the latter is a
pair (σ, τ), where σ = (σ0, σ1) is a conjugate pair of J a K in J ′ a K ′ and
τ = (τ0, τ1) a conjugate pair of H aI in H ′aI ′, compatible with the algebraic
squares, i.e., such that

C C D

C′ C′ D′

1a1 // F aG //

1a1
//

F ′aG′
//

J ′aK ′

²²

J aK

²²

H aI

²²

yyyyx¡ yyyyx¡
(σ0, σ1) (α, β)

=

C C D

C′ C′ D′

F aG // 1a1 //

F ′aG′
//

1a1
//

J ′aK ′

²²

H ′aI ′

²²

H aI

²²

yyyyx¡ yyyyx¡
(α, β) (τ0, τ1)

We agree that a diagram of the shape

C
F aG

**UUUUUUUUUUUUUUUUUUUUUU

J aK

¼¼

J ′aK ′

¦¦

D

H aI

¼¼

H ′aI ′

¦¦

C′

F ′aG′
**TTTTTTTTTTTTTTTTTTTTTT

D′

σ

τ

(α, β) (α′, β′)

represents a transformation of Street between two algebraic squares as above.
Identities and compositions of transformations of Street are defined by

means of those of its conjugate pairs.

From the above definition it follows, immediately, that to every transfor-
mation of Street there corresponds an algebraic transformation (by forgetting
its first component). The sub-2-category of Adalg determined by the trans-
formations of Street is denoted by Adalg,St.

We notice that to every algebraic square there correspond two adjoint
squares: one of Kleisli and another of Eilenberg-Moore. In addition, every
transformation between algebraic squares determines two transformation: one
between the associated squares of Kleisli and another between the associated
Eilenberg-Moore squares.
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It also happens that to every Kl-square such that its underlying functors
have right adjoints there corresponds an algebraic square, and if between two
such Kl-squares we have a transformation, then it, in its turn, gives rise to a
transformation between the associated algebraic squares.

We point out that the situation for the EM-squares is, abstractly, identical
to that of the Kl-squares, i.e., to every EM-square such that its underlying
functors have left adjoints there corresponds an algebraic square, and if be-
tween two such EM-squares we have a transformation, then it, in its turn,
gives rise to a transformation between the associated algebraic squares.

Proposition 3.23. From the 2-category Adalg to the 2-category Adc
Kl

there exists a 2-functor

C

D

C

D

C′

D′

C′

D′

F aGUUUUUUUUU

**UUUUUUUUU

Adalg

F ′aG′ **UUUUUUUUUUUUUUUUU

J aK

½½

J ′aK ′

¥¥
H aI

½½

H ′aI ′

¥¥

(α, β) (α′, β′)
τ

F aGUUUUUUUUU

**UUUUUUUUU

F ′aG′ **UUUUUUUUUUUUUUUUU

Adc
Kl

J

½½

J ′

¥¥
H

½½

H ′

¥¥

IKl //

λα λα′

____ks
τ0

7−→

where λα and λα′ are, respectively, the adjoint squares determined by α and
α′. The 2-functor IKl is injective on the objects, pseudo-injective on the
morphisms, i.e., for every Kl-square its fiber consists of isomorphic algebraic
squares, and faithful and full on the 2-cells.

Proof. The 2-functor IKl is: (1) pseudo-injective on the morphisms since for
adjunctions J aK and J aK ′, we have that K ∼= K ′ and, therefore, J aK and
J aK ′ are isomorphic in Adalg, (2) faithful on the 2-cells since the conjugate
pairs are unique, and (3) full on the 2-cells since every transformation between
algebraic morphisms gives rise to a corresponding conjugate pair.

Proposition 3.24. From the 2-category Adalg to the 2-category Adt
EM

there exists a 2-functor
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C

D

C

D

C′

D′

C′

D′

F aGVVVVVVVVV

**VVVVVVVVV

Adalg

F ′aG′ **VVVVVVVVVVVVVVVVVV

J aK

¼¼

J ′aK ′

¦¦ H aI

¼¼

H ′aI ′

¦¦

(α, β) (α′, β′)
τ

F aGVVVVVVVVV

**VVVVVVVVV

F ′aG′
VVVVVVVVV

**VVVVVVVVV

Adt
EM

K

DD

K ′

ZZ

I

DD

I ′

ZZ

IEM //

λβ−1
λβ′−1

____ +3τ1
7−→

where λβ−1
and λβ′−1

are, respectively, the adjoint squares determined by β−1

and β′−1. The 2-functor IEM is injective on the objects, pseudo-injective on
the morphisms, and faithful and full on the 2-cells.

Finally, we have the following proposition.

Proposition 3.25. From the 2-category Adalg to the 2-category Mndalg

there exists a 2-functor

C

D

C

C

C′

D′

C′

C′

F aGVVVVVVVVV

**VVVVVVVVV

Adalg

F ′aG′ **VVVVVVVVVVVVVVVVVV

J aK

¼¼

J ′aK ′

¦¦ H aI

¼¼

H ′aI ′

¦¦

(α, β) (α′, β′)
τ

G ◦ FVVVVVVVVV

**VVVVVVVVV

G′ ◦ F ′ **VVVVVVVVVVVVVVVVVV

Mndalg

J aK

¼¼

J ′aK ′

¦¦ J aK

¼¼

J ′aK ′

¦¦

Mdalg //

λ(α,β) λ(α′,β′)/o _ //Ξτ7−→

where λ(α,β) is the adjoint square
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C C

C′ C′

G ◦ F //

G′ ◦ F ′
//

OO

KaJ
²²

OO

KaJ
²²

F // G //

J

²²

H

²²

J

²²

F ′
//

G′
//

££££|¥α−1
££££|¥

λα
3

F // G //

J

²²

H

²²

K

OO

F ′
//

G′
//

££££|¥α−1 ÂÂ ÂÂ
®¶ λβ

1

F // G //

K

OO

H

²²

J

²²

F ′
//

G′
//

ÂÂ ÂÂ
®¶ λ

α−1

2
££££|¥

λβ
0

F // G //

K

OO

I

OO

K

OO

F ′
//

G′
//

<<<< ½"
λβ−1

0 <<<< ½"
β

λ(α′,β′) the corresponding adjoint square, and Ξτ the algebraic transformation

from λ(α,β) to λ(α′,β′) defined as follows Ξτ = (λβ′ fn◦ τ
fn◦λα−1

)
ad◦ η, and obtained

as shown in the following diagram

C C

C D D C

C′ D′ D′ C′

1 //

F // 1 // G //

F ′
//

1
//

G′
//

OO

1a1

²²

OO

1a1

²²

OO

KaJ

²²

OO

IaH

²²

OO

I ′aH ′

²²

OO

K ′aJ ′

²²

(
η η

η η

)

λα−1 τ λβ′

Proof. By Proposition 3.18, the natural transformations in the image of an
algebraic square are mutually transpose and constitute, therefore, an algebraic
morphism of monads. Alternatively, an easy verification shows that λ(α,β) =

λβ ad◦ λα−1
.

The proof that Ξτ is, effectively, an algebraic transformation is formally
identical to the proofs that Ξτ0 and Ξτ3 are, respectively, transformations of
monads of Kleisli and of Eilenberg-Moore.
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The preservation of identities and compositions follows likewise from those
of its components.

Remark 3.26. The 2-functor Mdalg has not, generally, a left adjoint. How-
ever, for some sub-2-categories of Mndalg, Mdalg has a left adjoint. For ex-
ample, for the full sub-2-category of Mndalg determined by the categories of
the form SetS where S is a set (of sorts), Mdalg has a left adjoint, as stated
in [6].

Example 3.27. To every many-sorted signature Σ = (S, Σ) there corre-
sponds the adjunction TΣ a GΣ from SetS to Alg(Σ). To every polyderivor
d from Σ to Λ, which, as stated in [6], yields an adjunction dpd

∗ a d∗pd from
Alg(Σ) to Alg(Λ), there corresponds an algebraic square between the asso-
ciated adjunctions. Finally, to every transformation ξ : d /o _ // e from a poly-
derivor d to another e, both from Σ to Λ, there corresponds a transformation
between the algebraic squares associated to the polyderivors. This follows
from the fact, stated in [6], that to every transformation ξ : d /o _ // e there cor-
responds a natural transformation Algpd(ξ) from the functor d∗pd to the functor
e∗pd, which, in its turn, leads to the corresponding 2-cell in Adalg. Therefore
we have two canonical 2-embeddings of the 2-categories Sigpd and Spfpd into
the 2-category Adalg.

Remark 3.28. We think that our work can be transferred, without any
conceptual problems, to the setting of 2-categories. However, we have pre-
ferred to formulate the results of this article in the present way, since this
presentation might be clearer, more accessible, and even in this generality it
covers already enough examples and applications.
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