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Abstract : In [7] (see also [2, p. 35]) two relative covering dimensions, denoted by dim and
dim∗, defined and studied. In [3] and [4] we studied these dimensions and we gave some prop-
erties including subspace, sum, partition, compactification, and product theorems. Also, we
gave partial answers for the questions which are given in [7]. Here we give and study a
new relative covering dimension, denoted by r-dim, which is different from dim and dim∗.
Finally, we give some questions concerning the new relative dimension r-dim.
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1. Introduction and preliminaries

The first infinite cardinal is denoted by ω. We also consider two symbols,
“−1” and “∞”, for which we suppose that:

(i) −1 < n < ∞ for every n ∈ ω ;

(ii) ∞ + n = n + ∞ = ∞ and −1 + n = n + (−1) = n for every
n ∈ ω ∪ {−1,∞} .

By a class of subsets we mean a class consisting of pairs (Q,X), where Q is
a subset of a topological space X.

Let A and B be two disjoint subsets of a topological space X. We say
that a subset L of X is a partition between A and B if there exist two open
subsets U and W of X such that (1) A ⊆ U , B ⊆ W , (2) U ∩W = ∅, and (3)
X \ L = U ∪W .

Let X be a topological space. A cover of X is a non-empty set of subsets
of X, whose union is X. A cover c of X is said to be open (respectively, closed)
if all elements of c is open (respectively, closed). A family r = {Rt : t ∈ T}
of subsets of X is said to be a refinement of a family c = {Cs : s ∈ S} of
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subsets of X if each element of r is contained in an element of c, that is for
every t ∈ T there exists s(t) ∈ S such that Rt ⊆ Cs(t).

Define the order of a family r of subsets of a space X as follows:

(a) ord(r) = −1 if and only if r consists the empty set only ;

(b) ord(r) = n, where n ∈ ω, if and only if the intersection of any n + 2
distinct elements of r is empty and there exist n + 1 distinct elements
of r, whose intersection is not empty ;

(c) ord(r) = ∞, if and only if for every n ∈ ω there exist n distinct elements
of r, whose intersection is not empty.

The given below definitions are actually the definitions of dimensions dim
and dim∗ given in [7] (see also [2]) for regular spaces.

Definition 1.1. We denote by dim the (unique) function with as domain
the class of all subsets and as range the set ω∪{−1,∞}, satisfying the following
condition:

dim(Q,X) ≤ n , where n ∈ {−1} ∪ ω ,

if and only if for every finite open cover c of the space X there exists a finite
family rQ of open subsets of Q refinement of c which is a cover of Q and
ord(rQ) ≤ n.

Definition 1.2. We denote by dim∗ the (unique) function with as domain
the class of all subsets and as range the set ω∪{−1,∞}, satisfying the following
condition:

dim∗(Q,X) ≤ n , where n ∈ {−1} ∪ ω ,

if and only if for every finite open cover c of the space X there exists a finite
family r of open subsets of X refinement of c such that Q ⊆ ∪{V : V ∈ r}
and ord(r) ≤ n.

In [3] and [4] we studied the above dimensions and we gave some properties
including subspace, sum, partition, compactification, and product theorems.
Also, we gave partial answers for the questions which are given in [7]. In this
paper, we give and study a new relative covering dimension.
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2. The new relative covering dimension

Definition 2.1. We denote by r-dim the (unique) function that has as
domain the class of all subsets and as range the set ω ∪ {−1,∞} satisfying
the following condition

r-dim(Q,X) ≤ n , where n ∈ {−1} ∪ ω ,

if and only if for every finite family c of open subsets of X such that

Q ⊆ ∪{U : U ∈ c} ,

there exists a finite family r of open subsets of X refinement of c such that

Q ⊆ ∪{V : V ∈ r}

and ord(r) ≤ n.

Remark. We observe that if r-dim(Q,X) ≤ n, where n ∈ ω, then for every
finite family c of open subsets of X such that Q ⊆ ∪{U : U ∈ c} there exists
a finite family rQ of open subsets of Q refinement of c which is a cover of Q
and ord(rQ) ≤ n.

Proposition 2.2. Let Q be a subset of a topological space X. The fol-
lowing statements are true:

(a)

dim(Q) ≤ r-dim(Q,X) ,

where dim(Q) is the covering dimension of the subset Q of X. Moreover,
if the subset Q of X is open, then

dim(Q) = r-dim(Q,X) .

(b) dim(Q,X) ≤ dim∗(Q,X) ≤ r-dim(Q,X) .

(c) If the subset Q of X is closed, then

dim∗(Q,X) = r-dim(Q,X) ≤ dim(X) ,

where dim(X) is the covering dimension of X.
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Proof. (a) Let r-dim(Q,X) = n ∈ ω ∪ {−1,∞}. The inequality is clear
if n = −1 or n = ∞. Let n ∈ ω. We prove that dim(Q) ≤ n. Let cQ =

{UQ
1 , . . . , UQ

m} be a finite open cover of the space Q. For every i = 1, . . . ,m

there exists an open subset Ui of X such that UQ
i = Q ∩ Ui. We consider the

family c = {U1, . . . , Um}. Then, the family c is a finite family of open subsets
of X such that Q ⊆ ∪m

i=1Ui. Since r-dim(Q,X) = n, there exists a finite
family r of open subsets of X refinement of c such that Q ⊆ ∪{V : V ∈ r}
and ord(r) ≤ n. We set rQ = {Q∩V : V ∈ r}. Then, the family rQ is a finite
open cover of Q refinement of cQ such that ord(rQ) ≤ n. Thus, dim(Q) ≤ n.

Now, we suppose that the subset Q of X is open. Clearly, it suffices to
prove the inequality

r-dim(Q,X) ≤ dim(Q) . (1)

Let dim(Q) = n ∈ ω ∪ {−1,∞}. The inequality (1) is clear if n = −1 or
n = ∞. Let n ∈ ω. We prove that r-dim(Q,X) ≤ n. Let c be a finite
family of open subsets of X such that Q ⊆ ∪{U : U ∈ c}. Then, the
family cQ = {Q ∩ U : U ∈ c} is a finite open cover of the space Q. Since
dim(Q) = n, there exists a finite open cover rQ of Q refinement of cQ such
that ord(rQ) ≤ n. Obviously, the family rQ is a refinement of c. Also, since
the subspace Q of X is open, every element of the family rQ is open subset of
X. Thus, r-dim(Q,X) ≤ n.

(b) It is known that dim(Q,X) ≤ dim∗(Q,X) (see [7]). So it suffices to
prove the inequality

dim∗(Q,X) ≤ r-dim(Q,X) . (2)

Let r-dim(Q,X) = n ∈ ω ∪ {−1,∞}. The inequality (2) is clear if n = −1 or
n = ∞. Let n ∈ ω. We prove that dim∗(Q,X) ≤ n. Let c be a finite open
cover of the space X. Obviously, Q ⊆ ∪{U : U ∈ c}. Since r-dim(Q,X) = n
there exists a finite family r of open subsets of X refinement of c such that
Q ⊆ ∪{V : V ∈ r} and ord(r) ≤ n. Thus, dim∗(Q,X) ≤ n.

(c) Suppose that the subset Q of X is closed. By (b) it suffices to prove
the inequality

r-dim(Q,X) ≤ dim∗(Q,X) . (3)

Let dim∗(Q,X) = n ∈ ω ∪ {−1,∞}. The inequality (3) is clear if n = −1 or
n = ∞. Let n ∈ ω. We prove that r-dim(Q,X) ≤ n. Let c be a finite family
of open subsets of X such that Q ⊆ ∪{U : U ∈ c}. Since the subspace Q
of X is closed, the family c ∪ {X \ Q} is a finite open cover of the space X.
Also, since dim∗(Q,X) = n, there exists a finite family r of open subsets of
X refinement of c ∪ {X \ Q} such that Q ⊆ ∪{V : V ∈ r} and ord(r) ≤ n.



on a new relative invariant covering dimension 267

Then, the family r′ = r \ {V ∈ r : V ⊆ X \Q} is a refinement of c such that
Q ⊆ ∪{V : V ∈ r′} and ord(r′) ≤ n. Thus, r-dim(Q,X) ≤ n.

Also, it is clear that r-dim(Q,X) ≤ dim(X).

Examples. (1) Let (X, τ) be a topological space, where X = {a, b, c, d}
and

τ =
{
∅ , {b}, {a, b}, {b, c}, {a, b, c}, X

}
.

Let Q = {a, c}. We observe that r-dim(Q,X) = 1 and

dim(Q,X) = dim∗(Q,X) = dim(X) = 0 .

(2) Let X be the space of the real numbers and Q = {0}. Then,
r-dim(Q,X) = 0 and dim(X) = 1.

(3) Let X = [−1, 1] and Q = {−1, 1}. The family consisting of all sets
of the form [−1, b) for b > 0, (a, 1] for a < 0, and (a, b) is a basis for some
topology in X. It is easy to see that dim(Q) = 0 and r-dim(Q,X) = 1.

The relations between the dimension-like functions of the type dim are
summarized in the following diagram, where “→” means “≤ ” and “9” means
that “ in general � ” :

dim(X)

�
��

dim∗(Q,X)

OO

�
��

// r- dim(Q,X)

�
��

�oo

dim(Q,X)

OO

// dim(Q) .

OO

�oo

It is known that (see [3], [4] and [7]) there exist examples such that in the
above diagram the invariants dim(X), dim(Q,X), dim∗(Q,X), and dim(Q)
to be different.

Proposition 2.3. For every subset Q of a space X the following condi-
tions are equivalent:

(1) r-dim(Q,X) ≤ n.

(2) For every finite family c of open subsets of X with Q ⊆ ∪{U : U ∈ c}
there exists a family r of open subsets of X refinement of c such that
Q ⊆ ∪{V : V ∈ r} and ord(r) ≤ n.
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(3) For every finite family {U1, U2, . . . , Um} of open subsets of X with Q ⊆
∪m
i=1Ui there exists a family {V1, V2, . . . , Vm} of open subsets of X such

that

Vi ⊆ Ui for i = 1, . . . ,m ,

Q ⊆ ∪m
i=1Vi and ord({V1, V2, . . . , Vm}) ≤ n .

(4) For every family {U1, U2, . . . , Un+2} of open subsets of X with Q ⊆
∪n+2
i=1 Ui there exists a family {V1, V2, . . . , Vn+2} of open subsets of X

such that

Vi ⊆ Ui for i = 1, . . . , n+ 2 , Q ⊆ ∪n+2
i=1 Vi and ∩n+2

i=1 Vi = ∅ .

Proof. (1) ⇒ (2) It is obvious.
(2) ⇒ (3) Let c = {U1, . . . , Um} be a finite family of open subsets of X

such that Q ⊆ ∪m
i=1Ui. By assumption there exists a family r of open subsets

of X refinement of c such that Q ⊆ ∪{V : V ∈ r} and ord(r) ≤ n. For every
V ∈ r we choose an element l(V ) of {1, . . . ,m} such that V ⊆ Ul(V ) and we
set

Vi = ∪{V ∈ r : l(V ) = i} , i = 1, . . . ,m .

It is clear that {V1, . . . , Vm} is a family of open subsets of X such that Vi ⊆ Ui

for i = 1, . . . ,m, Q ⊆ ∪m
i=1Vi, and ord({V1, . . . , Vm}) ≤ n.

(3) ⇒ (4) It is obvious.
(4) ⇒ (1) Let c = {U1, . . . , Um} be a finite family of open subsets of X

such that Q ⊆ ∪m
i=1Ui. We prove that there exists a family {V1, . . . , Vm} of

open subsets of X such that

Vi ⊆ Ui for i = 1, . . . ,m , Q ⊆ ∪m
i=1Vi and ord({V1, . . . , Vm}) ≤ n .

If m ≤ n + 1, then the required family {V1, . . . , Vm} of open subsets of X
is the family {U1, . . . , Um}. Let us suppose that m ≥ n + 2. We consider
the family g = {G1, . . . , Gn+2}, where Gi = Ui for i = 1, . . . , n + 1 and
Gn+2 = ∪m

i=n+2Ui. Obviously, Q ⊆ ∪n+2
i=1 Gi. Therefore, by assumption there

exists a family {H1, . . . , Hn+2} of open subsets of X such that Hi ⊆ Gi for
i = 1, . . . , n + 2, Q ⊆ ∪n+2

i=1 Hi, and ∩n+2
i=1 Hi = ∅. We consider the family

w = {W1, . . . ,Wm}, where Wi = Hi for i = 1, . . . , n+ 1 and Wi = Ui ∩Hn+2

for i = n+ 2, . . . ,m. It is clear that w is a family of open subsets of X such
that

Wi ⊆ Ui for i = 1, . . . ,m , Q ⊆ ∪m
i=1Wi and ∩n+2

i=1 Wi = ∅ .
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If the intersection of any n + 2 distinct elements of w is empty, then
the required family {V1, . . . , Vm} of open subsets of X is the family w. We
suppose that there exists a subset A = {i1, . . . , in+2} of {1, . . . ,m} such that
∩i∈AWi ̸= ∅ and let p = {P1, . . . , Pm} be the same family w reordered so that

P1 = Wi1 , . . . , Pn+2 = Win+2 .

Since p = w and ∩n+2
i=1 Wi = ∅, there exists a subset B1 ̸= {1, . . . , n + 2} of

{1, . . . ,m} with n + 2 elements such that ∩i∈B1Pi = ∅. Applying the above
construction to p we find a family w′ = {W ′

1, . . . ,W
′
m} of open subsets of X

such that

W ′
i ⊆ Pi for i = 1, . . . ,m , Q ⊆ ∪m

i=1W
′
i and ∩n+2

i=1 W ′
i = ∅ .

We observe that

W ′
1 ⊆ Wi1 , . . . ,W

′
n+2 ⊆ Win+2 .

If the intersection of any n + 2 distinct elements of w′ is empty, then the
required family {V1, . . . , Vm} of open subsets of X is the family w′. We sup-
pose that there exists a subset A′ = {i′1, . . . , i′n+2} of {1, . . . ,m} such that
∩i∈A′W ′

i ̸= ∅ and let p′ = {P ′
1, . . . , P

′
m} be the same family w′ reordered so

that

P ′
1 = W ′

i′1
, . . . , P ′

n+2 = W ′
i′n+2

.

Since p′ = w′ and ∩n+2
i=1 W

′
i = ∅, there exists a subset B2 ̸= {1, . . . , n + 2} of

{1, . . . ,m} with n + 2 elements such that ∩i∈B2P
′
i = ∅. Applying the above

construction to p′ we find a family w′′ = {W ′′
1 , . . . ,W

′′
m} of open subsets of X

such that

W ′′
i ⊆ P ′

i for i = 1, . . . ,m , Q ⊆ ∪m
i=1W

′′
i and ∩n+2

i=1 W ′′
i = ∅ .

We observe that

W ′′
1 ⊆ W ′

i′1
, . . . ,W ′′

n+2 ⊆ W ′
i′n+2

.

Since the family {U1, . . . , Um} is finite, after a finite number of repetitions of
the above process we find a family {V1, . . . , Vm} of open subsets of X such
that

Vi ⊆ Ui for i = 1, . . . ,m , Q ⊆ ∪m
i=1Vi and ord({V1, . . . , Vm}) ≤ n .

Thus, r-dim(Q,X) ≤ n.
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3. Subspace theorems

In this section we give subspace theorems for the dimension r-dim.

Proposition 3.1. Let K and Q be two subspaces of a space X with
K ⊆ Q. If K is a closed subspace of X or Q \K is an open subspace of X,
then

r-dim(K,X) ≤ r-dim(Q,X) .

Proof. Suppose that the subset Q \K of X is open. Let

r-dim(Q,X) = n ∈ ω ∪ {−1,∞} .

The inequality is clear if n = −1 or n = ∞. Let n ∈ ω. We prove that
r-dim(K,X) ≤ n. Let c be a finite family of open subsets of X such that
K ⊆ ∪{U : U ∈ c}. Since the subspace Q \ K of X is open, the family
c ∪ {Q \K} consists of open subsets of X such that

Q ⊆ ∪{U : U ∈ c} ∪ {Q \K} .

Also, since r-dim(Q,X) = n, there exists a finite family r of open subsets of
X refinement of c ∪ {Q \K} such that Q ⊆ ∪{V : V ∈ r} and ord(r) ≤ n.
Then, the family

r′ = r \ {V ∈ r : V ⊆ Q \K}

is a refinement of c such that K ⊆ ∪{V : V ∈ r′} and ord(r′) ≤ n. Thus,
r-dim(K,X) ≤ n .

Proposition 3.2. Let Y be a subspace of a space X and Q ⊆ Y . Then,

r-dim(Q,Y ) ≤ r-dim(Q,X) .

Proof. Let r-dim(Q,X) = n ∈ ω ∪ {−1,∞}. The inequality is clear if
n = −1 or n = ∞. Let n ∈ ω. We prove that r-dim(Q,Y ) ≤ n. Let
cY = {UY

1 , . . . , UY
m} be a finite family of open subsets of Y such that Q ⊆

∪m
i=1U

Y
i . For every i = 1, . . . ,m, there exists an open subset Ui of X such

that UY
i = Y ∩ Ui. We set c = {U1, . . . , Um}. The family c is a finite

family of open subsets of X such that Q ⊆ ∪m
i=1Ui. Since r-dim(Q,X) = n,

there exists a finite family r of open subsets of X refinement of c such that
Q ⊆ ∪{V : V ∈ r} and ord(r) ≤ n. We consider the family

rY =
{
V Y ≡ Y ∩ V : V ∈ r

}
.
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Since Q ⊆ Y , the family rY is a finite family of open subsets of Y refinement
of cY such that

Q ⊆ ∪
{
V Y : V Y ∈ rY

}
.

Also, since the family rY is refinement of the family r and ord(r) ≤ n, we
have that ord(rY ) ≤ n. Thus, r-dim(Q,Y ) ≤ n.

4. Sum theorems

In this section we give sum theorems for the dimension r-dim.

Proposition 4.1. Let Q be a subspace of a space X. If X = X1 ∪
X2, where Q ⊆ X1 ∩ X2, r-dim(Q,X1) ≤ n, and r-dim(Q,X2) ≤ n, then
r-dim(Q,X) ≤ n.

Proof. Let c = {U1, . . . , Um} be a finite family of open subsets of X with
Q ⊆ ∪m

i=1Ui. By Proposition 2.3 (3) it suffices to prove that there exists a finite
family s of open subsets of X shrinking of c such that Q ⊆ ∪{V : V ∈ s} and
ord(s) ≤ n. Since the family {X1∩U1, . . . , X1∩Um} is a finite family of open
subsets of X1 with Q ⊆ ∪m

i=1(X1 ∩ Ui) and r-dim(Q,X1) ≤ n, by Proposition
2.3 (3) there exists a family {V 1

1 , . . . , V
1
m} of open subsets of X1 such that

V 1
i ⊆ X1 ∩ Ui for i = 1, . . . ,m, Q ⊆ ∪m

i=1V
1
i , and ord({V 1

1 , . . . , V
1
m}) ≤ n. For

i = 1, . . . ,m there exists an open subset Vi of X such that V 1
i = X1 ∩ Vi. We

set
Wi = Ui ∩ Vi , i = 1, . . . ,m .

Obviously, we have Wi ⊆ Ui for i = 1, . . . ,m and Q ⊆ ∪m
i=1Wi. Moreover,

since X1 ∩Wi = Ui ∩ V 1
i ⊆ V 1

i for i = 1, . . . ,m and ord({V 1
1 , . . . , V

1
m}) ≤ n,

we have
ord({X1 ∩W1, . . . , X1 ∩Wm}) ≤ n . (4)

The family {X2∩W1, . . . , X2∩Wm} is a finite family of open subsets ofX2 with
Q ⊆ ∪m

i=1(X2∩Wi). Also, since r-dim(Q,X2) ≤ n, by Proposition 2.3 (3) there
exists a family {V 2

1 , . . . , V
2
m} of open subsets of X2 such that V 2

i ⊆ X2 ∩Wi

for i = 1, . . . ,m, Q ⊆ ∪m+1
i=1 V 2

i , and ord({V 2
1 , . . . , V

2
m}) ≤ n. For i = 1, . . . ,m

there exists an open subset V ′
i of X such that V 2

i = X2 ∩ V ′
i . We consider

the family s = {H1, . . . , Hm}, where Hi = Wi ∩ V ′
i , i = 1, . . . ,m. Obviously,

we have Hi ⊆ Wi ⊆ Ui for i = 1, . . . ,m and Q ⊆ ∪m
i=1Hi. Moreover, since

X2 ∩ Hi = Wi ∩ V 2
i ⊆ V 2

i for i = 1, . . . ,m and ord({V 2
1 , . . . , V

2
m}) ≤ n, we

have
ord({X2 ∩H1, . . . , X2 ∩Hm}) ≤ n . (5)
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We prove that ord(s) ≤ n. Let Hi1 , . . . , Hin+2 be pairwise distinct elements
of s, and x ∈ Hi1 ∩ . . . ∩Hin+2 ̸= ∅. Since X = X1 ∪X2, x ∈ X1 or x ∈ X2.
If x ∈ X1, then

x ∈ (X1 ∩Hi1) ∩ . . . ∩ (X1 ∩Hin+2) ⊆ (X1 ∩Wi1) ∩ . . . ∩ (X1 ∩Win+2) ,

which contradicts the relation (4). If x ∈ X2, then

x ∈ (X2 ∩Hi1) ∩ . . . ∩ (X2 ∩Hin+2) ,

which contradicts the relation (5). Thus, ord(s) ≤ n and, therefore,
r-dim(Q,X) ≤ n.

Corollary 4.2. Let Q be a subspace of a space X. For every subset A
of X such that Q ⊆ A we have

r-dim(Q,X) ≤ max
{
r-dim(Q,A), r-dim(Q, (X \A) ∪Q)

}
.

Proof. Follows by Proposition 4.1 for X1 = A and X2 = (X \A) ∪Q.

Corollary 4.3. Let Q be a subspace of a space X. If X = X1 ∪ X2,
where Q ⊆ X1 ∩X2, then

r-dim(Q,X) = max
{
r-dim(Q,X1), r-dim(Q,X2)

}
.

Proof. Let r-dim(Q,X1) = n1 and r-dim(Q,X2) = n2, where n1, n2 ∈ ω ∪
{∞}. We set n = max{n1, n2}. Then, r-dim(Q,X1) ≤ n and r-dim(Q,X2) ≤
n. By Proposition 4.1 we have r-dim(Q,X) ≤ n. Also, by Proposition 3.2,
n1 ≤ r-dim(Q,X) and n2 ≤ r-dim(Q,X). Thus, n ≤ r-dim(Q,X). By the
above, r-dim(Q,X) = n.

Proposition 4.4. Let Q1 and Q2 be two subsets of a space X. Then,

r-dim(Q1 ∪Q2, X) ≤ r-dim(Q1, X) + r-dim(Q2, X) + 1 .

Proof. Let

r-dim(Q1, X) = n1 and r-dim(Q2, X) = n2 .

We prove that

r-dim(Q1 ∪Q2, X) ≤ n1 + n2 + 1 .
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Let c be a finite family of open subsets of X with Q1 ∪Q2 ⊆ ∪{U : U ∈ c}.
Since r-dim(Q1, X) = n1, there exists a finite family r1 of open subsets of X
refinement of c such that Q1 ⊆ ∪{U : U ∈ r1} and ord(r1) ≤ n1. Moreover,
since r-dim(Q2, X) = n2, there exists a finite family r2 of open subsets of X
refinement of c such that Q2 ⊆ ∪{U : U ∈ r2} and ord(r2) ≤ n2. We set
r = r1∪ r2. Then, r is a family of open subsets of X refinement of c such that

Q1 ∪Q2 ⊆ ∪{U : U ∈ r} and ord(r) ≤ n1 + n2 + 1 .

5. Partition and product theorems

In this section we give partition, product, and compactification theorems
for the dimension r-dim.

Proposition 5.1. Let Q be a normal subspace of a space X. If for every
family {(A1, B1), (A2, B2), . . . , (An+1, Bn+1)} of n+1 pairs of disjoint subsets
of X, where Ai’s are closed inX and Bi’s are closed inQ, there exist partitions
Li between Ai and Bi such that Q ∩

∩n+1
i=1 Li = ∅, then r-dim(Q,X) ≤ n.

Proof. By Proposition 2.3 (4) it suffices to show that for any family {U1,
. . . , Un+2} of open subsets of X with Q ⊆ ∪n+2

i=1 Ui there exists a family
{V1, . . . , Vn+2} of open subsets of X such that

Vi ⊆ Ui for i = 1, . . . , n+ 2 , Q ⊆ ∪n+2
i=1 Vi and ∩n+2

i=1 Vi = ∅ .

Let {U1, . . . , Un+2} be a family of open subsets of X with Q ⊆ ∪n+2
i=1 Ui. Since

the space Q is normal, there exists a closed cover {B1, . . . , Bn+2} of Q such
that Bi ⊆ Ui ∩Q for i = 1, . . . , n+ 2. We set

Ai = X \ Ui for i = 1, . . . , n+ 1 .

The family {(A1, B1), . . . , (An+1, Bn+1)} consists of n + 1 pairs of disjoint
subsets ofX, where Ai’s are closed inX and Bi’s are closed in Q. Therefore by
hypothesis there exist partitions Li between Ai and Bi such thatQ∩

∩n+1
i=1 Li =

∅. That is, there exist open subsets Wi, Vi of X such that:

Ai ⊆ Wi , Bi ⊆ Vi , (6)

Wi ∩ Vi = ∅ , (7)

X \ Li = Wi ∪ Vi for i = 1, . . . , n+ 1 . (8)
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We set Vn+2 = Un+2 ∩∪n+1
i=1 Wi. By the definition of Ai’s and (6), (7) we have

that Vi ⊆ Ui for i = 1, 2, . . . , n + 2. We prove that Q ⊆ ∪n+2
i=1 Vi. We observe

that

n+1∪
i=1

Wi ∪
n+1∪
i=1

Vi =

n+1∪
i=1

(Wi ∪ Vi) =

n+1∪
i=1

(X \ Li) = X \
n+1∩
i=1

Li ⊇ Q . (9)

From (6), (9) and the relation Bn+2 ⊆ Un+2 it follows that

n+2∪
i=1

Vi =

n+1∪
i=1

Vi ∪
(
Un+2 ∩

n+1∪
i=1

Wi

)

=

( n+1∪
i=1

Vi ∪ Un+2

)
∩
( n+1∪

i=1

Vi ∪
n+1∪
i=1

Wi

)

⊇
n+2∪
i=1

Bi ∩Q = Q ∩Q = Q .

We prove that ∩n+2
i=1 Vi = ∅. From (7) we have

n+2∩
i=1

Vi =

n+1∩
i=1

Vi ∩
(
Un+2 ∩

n+1∪
i=1

Wi

)
⊆

n+1∩
i=1

Vi ∩
n+1∪
i=1

Wi = ∅ .

Remark. It was proved (see Proposition 2.2) that if the subset Q of X is
closed, then

dim∗(Q,X) = r-dim(Q,X) .

So, by Proposition 2.4, Proposition 3.1, Corollary 3.2, Proposition 3.3, Corol-
lary 3.4, and Proposition 4.2 of [4] we have the following propositions and
product theorem for the dimension invariant r-dim.

Proposition 5.2. Let Q be a closed subspace of a normal space X sat-
isfying r-dim(Q,X) ≤ n. Then, for every family {(A1, B1), (A2, B2), . . . ,
(An+1, Bn+1)} of n + 1 pairs of disjoint closed subsets of X there exist par-
titions Li between Ai and Bi such that Q ∩

∩n+1
i=1 Li = ∅.

Proposition 5.3. For every closed subspace Q of a normal space X we
have

r-dim(Q,X) = r-dim(Q, βX) = r-dim(βQ, βX) .
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Proposition 5.4. Let QX be a closed subspace of a compact Hausdorff
space X and QY a closed subspace of a compact Hausdorff space Y . Then,

r-dim
(
QX ×QY , X × Y

)
≤ r-dim

(
QX , X

)
+ r-dim

(
QY , Y

)
.

6. Questions

Question 1. Is it true the property of universality for dimension r-dim?
That is, does there exists a universal element in the class IP of all pairs(
QX , X

)
, where QX is a subset of a space X such that r-dim

(
QX , X

)
≤ n?

Question 2. Is it true the product theorem for r-dim in the realm of all
metrizable spaces?

For some other questions on relative covering dimensions see [3] and [4].
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