On a New Relative Invariant Covering Dimension^{*}

D.N. GEORGIOU, A.C. MEGARITIS

Department of Mathematics, University of Patras, 26500 Patras, Greece georgiou@math.upatras.gr, megariti@master.math.upatras.gr

Presented by Francisco Montalvo

Received September 22, 2010

Abstract: In [7] (see also [2, p. 35]) two relative covering dimensions, denoted by dim and dim^{*}, defined and studied. In [3] and [4] we studied these dimensions and we gave some properties including subspace, sum, partition, compactification, and product theorems. Also, we gave partial answers for the questions which are given in [7]. Here we give and study a new relative covering dimension, denoted by r-dim, which is different from dim and dim^{*}. Finally, we give some questions concerning the new relative dimension r-dim.

Key words: Covering dimension, relative dimension.

AMS Subject Class. (2010): 54B99, 54C25.

1. INTRODUCTION AND PRELIMINARIES

The first infinite cardinal is denoted by ω . We also consider two symbols, "-1" and " ∞ ", for which we suppose that:

- (i) $-1 < n < \infty$ for every $n \in \omega$;
- (ii) $\infty + n = n + \infty = \infty$ and -1 + n = n + (-1) = n for every $n \in \omega \cup \{-1, \infty\}$.

By a class of subsets we mean a class consisting of pairs (Q, X), where Q is a subset of a topological space X.

Let A and B be two disjoint subsets of a topological space X. We say that a subset L of X is a partition between A and B if there exist two open subsets U and W of X such that (1) $A \subseteq U$, $B \subseteq W$, (2) $U \cap W = \emptyset$, and (3) $X \setminus L = U \cup W$.

Let X be a topological space. A cover of X is a non-empty set of subsets of X, whose union is X. A cover c of X is said to be open (respectively, closed) if all elements of c is open (respectively, closed). A family $r = \{R_t : t \in T\}$ of subsets of X is said to be a refinement of a family $c = \{C_s : s \in S\}$ of

263

^{*} Work supported by the Caratheodory Programme of the University of Patras.

subsets of X if each element of r is contained in an element of c, that is for every $t \in T$ there exists $s(t) \in S$ such that $R_t \subseteq C_{s(t)}$.

Define the order of a family r of subsets of a space X as follows:

- (a) $\operatorname{ord}(r) = -1$ if and only if r consists the empty set only;
- (b) $\operatorname{ord}(r) = n$, where $n \in \omega$, if and only if the intersection of any n + 2 distinct elements of r is empty and there exist n + 1 distinct elements of r, whose intersection is not empty;
- (c) $\operatorname{ord}(r) = \infty$, if and only if for every $n \in \omega$ there exist n distinct elements of r, whose intersection is not empty.

The given below definitions are actually the definitions of dimensions dim and dim^{*} given in [7] (see also [2]) for regular spaces.

DEFINITION 1.1. We denote by dim the (unique) function with as domain the class of all subsets and as range the set $\omega \cup \{-1, \infty\}$, satisfying the following condition:

 $\dim(Q, X) \le n, \quad \text{where } n \in \{-1\} \cup \omega,$

if and only if for every finite open cover c of the space X there exists a finite family r_Q of open subsets of Q refinement of c which is a cover of Q and $\operatorname{ord}(r_Q) \leq n$.

DEFINITION 1.2. We denote by dim^{*} the (unique) function with as domain the class of all subsets and as range the set $\omega \cup \{-1, \infty\}$, satisfying the following condition:

 $\dim^*(Q, X) \le n, \quad \text{where } n \in \{-1\} \cup \omega,$

if and only if for every finite open cover c of the space X there exists a finite family r of open subsets of X refinement of c such that $Q \subseteq \bigcup \{V : V \in r\}$ and $\operatorname{ord}(r) \leq n$.

In [3] and [4] we studied the above dimensions and we gave some properties including subspace, sum, partition, compactification, and product theorems. Also, we gave partial answers for the questions which are given in [7]. In this paper, we give and study a new relative covering dimension.

2. The New Relative covering dimension

DEFINITION 2.1. We denote by r-dim the (unique) function that has as domain the class of all subsets and as range the set $\omega \cup \{-1, \infty\}$ satisfying the following condition

$$\operatorname{r-dim}(Q,X) \le n \,, \qquad \text{where } n \in \{-1\} \cup \omega \,,$$

if and only if for every finite family c of open subsets of X such that

$$Q \subseteq \cup \{U : U \in c\},\$$

there exists a finite family r of open subsets of X refinement of c such that

$$Q \subseteq \cup \{V \, : \, V \in r\}$$

and $\operatorname{ord}(r) \leq n$.

Remark. We observe that if $\operatorname{r-dim}(Q, X) \leq n$, where $n \in \omega$, then for every finite family c of open subsets of X such that $Q \subseteq \bigcup \{U : U \in c\}$ there exists a finite family r_Q of open subsets of Q refinement of c which is a cover of Q and $\operatorname{ord}(r_Q) \leq n$.

PROPOSITION 2.2. Let Q be a subset of a topological space X. The following statements are true:

(a)

$$\dim(Q) \le \operatorname{r-dim}(Q, X)$$

where $\dim(Q)$ is the covering dimension of the subset Q of X. Moreover, if the subset Q of X is open, then

$$\dim(Q) = \operatorname{r-dim}(Q, X) \,.$$

(b) $\dim(Q, X) \leq \dim^*(Q, X) \leq \operatorname{r-dim}(Q, X)$.

(c) If the subset Q of X is closed, then

$$\dim^*(Q, X) = \operatorname{r-dim}(Q, X) \le \dim(X),$$

where $\dim(X)$ is the covering dimension of X.

Proof. (a) Let r-dim $(Q, X) = n \in \omega \cup \{-1, \infty\}$. The inequality is clear if n = -1 or $n = \infty$. Let $n \in \omega$. We prove that dim $(Q) \leq n$. Let $c_Q = \{U_1^Q, \ldots, U_m^Q\}$ be a finite open cover of the space Q. For every $i = 1, \ldots, m$ there exists an open subset U_i of X such that $U_i^Q = Q \cap U_i$. We consider the family $c = \{U_1, \ldots, U_m\}$. Then, the family c is a finite family of open subsets of X such that $Q \subseteq \bigcup_{i=1}^m U_i$. Since r-dim(Q, X) = n, there exists a finite family r of open subsets of X refinement of c such that $Q \subseteq \cup \{V : V \in r\}$ and $\operatorname{ord}(r) \leq n$. We set $r_Q = \{Q \cap V : V \in r\}$. Then, the family r_Q is a finite open cover of Q refinement of c_Q such that $\operatorname{ord}(r_Q) \leq n$. Thus, dim $(Q) \leq n$.

Now, we suppose that the subset Q of X is open. Clearly, it suffices to prove the inequality

$$r-\dim(Q, X) \le \dim(Q). \tag{1}$$

Let $\dim(Q) = n \in \omega \cup \{-1, \infty\}$. The inequality (1) is clear if n = -1 or $n = \infty$. Let $n \in \omega$. We prove that $\operatorname{r-dim}(Q, X) \leq n$. Let c be a finite family of open subsets of X such that $Q \subseteq \cup \{U : U \in c\}$. Then, the family $c_Q = \{Q \cap U : U \in c\}$ is a finite open cover of the space Q. Since $\dim(Q) = n$, there exists a finite open cover r_Q of Q refinement of c_Q such that $\operatorname{ord}(r_Q) \leq n$. Obviously, the family r_Q is a refinement of c. Also, since the subspace Q of X is open, every element of the family r_Q is open subset of X. Thus, $\operatorname{r-dim}(Q, X) \leq n$.

(b) It is known that $\dim(Q, X) \leq \dim^*(Q, X)$ (see [7]). So it suffices to prove the inequality

$$\dim^*(Q, X) \le \operatorname{r-dim}(Q, X).$$
(2)

Let $\operatorname{r-dim}(Q, X) = n \in \omega \cup \{-1, \infty\}$. The inequality (2) is clear if n = -1 or $n = \infty$. Let $n \in \omega$. We prove that $\dim^*(Q, X) \leq n$. Let c be a finite open cover of the space X. Obviously, $Q \subseteq \cup \{U : U \in c\}$. Since $\operatorname{r-dim}(Q, X) = n$ there exists a finite family r of open subsets of X refinement of c such that $Q \subseteq \cup \{V : V \in r\}$ and $\operatorname{ord}(r) \leq n$. Thus, $\dim^*(Q, X) \leq n$.

(c) Suppose that the subset Q of X is closed. By (b) it suffices to prove the inequality

$$\operatorname{r-dim}(Q, X) \le \operatorname{dim}^*(Q, X).$$
(3)

Let $\dim^*(Q, X) = n \in \omega \cup \{-1, \infty\}$. The inequality (3) is clear if n = -1 or $n = \infty$. Let $n \in \omega$. We prove that $\operatorname{r-dim}(Q, X) \leq n$. Let c be a finite family of open subsets of X such that $Q \subseteq \cup \{U : U \in c\}$. Since the subspace Q of X is closed, the family $c \cup \{X \setminus Q\}$ is a finite open cover of the space X. Also, since $\dim^*(Q, X) = n$, there exists a finite family r of open subsets of X refinement of $c \cup \{X \setminus Q\}$ such that $Q \subseteq \cup \{V : V \in r\}$ and $\operatorname{ord}(r) \leq n$.

Then, the family $r' = r \setminus \{V \in r : V \subseteq X \setminus Q\}$ is a refinement of c such that $Q \subseteq \cup \{V : V \in r'\}$ and $\operatorname{ord}(r') \leq n$. Thus, $\operatorname{r-dim}(Q, X) \leq n$. Also, it is clear that $\operatorname{r-dim}(Q, X) \leq \dim(X)$.

EXAMPLES. (1) Let (X, τ) be a topological space, where $X = \{a, b, c, d\}$ and

$$\tau = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}.$$

Let $Q = \{a, c\}$. We observe that $r-\dim(Q, X) = 1$ and

$$\dim(Q, X) = \dim^*(Q, X) = \dim(X) = 0.$$

(2) Let X be the space of the real numbers and $Q = \{0\}$. Then, $r-\dim(Q, X) = 0$ and $\dim(X) = 1$.

(3) Let X = [-1, 1] and $Q = \{-1, 1\}$. The family consisting of all sets of the form [-1, b) for b > 0, (a, 1] for a < 0, and (a, b) is a basis for some topology in X. It is easy to see that dim(Q) = 0 and r-dim(Q, X) = 1.

The relations between the dimension-like functions of the type dim are summarized in the following diagram, where " \rightarrow " means " \leq " and " \rightarrow " means that "in general \nleq ":

$$\dim(X)$$

$$\downarrow \uparrow$$

$$\dim^{*}(Q, X) \xrightarrow{} \operatorname{r-dim}(Q, X)$$

$$\downarrow \uparrow$$

$$\downarrow \uparrow$$

$$\dim(Q, X) \xrightarrow{} \dim(Q) .$$

It is known that (see [3], [4] and [7]) there exist examples such that in the above diagram the invariants $\dim(X)$, $\dim(Q, X)$, $\dim^*(Q, X)$, and $\dim(Q)$ to be different.

PROPOSITION 2.3. For every subset Q of a space X the following conditions are equivalent:

- (1) $\operatorname{r-dim}(Q, X) \le n$.
- (2) For every finite family c of open subsets of X with $Q \subseteq \bigcup \{U : U \in c\}$ there exists a family r of open subsets of X refinement of c such that $Q \subseteq \bigcup \{V : V \in r\}$ and $\operatorname{ord}(r) \leq n$.

(3) For every finite family $\{U_1, U_2, \ldots, U_m\}$ of open subsets of X with $Q \subseteq \bigcup_{i=1}^m U_i$ there exists a family $\{V_1, V_2, \ldots, V_m\}$ of open subsets of X such that

$$V_i \subseteq U_i \quad \text{for } i = 1, \dots, m ,$$
$$Q \subseteq \cup_{i=1}^m V_i \quad \text{and} \quad \operatorname{ord}(\{V_1, V_2, \dots, V_m\}) \le n .$$

(4) For every family $\{U_1, U_2, \ldots, U_{n+2}\}$ of open subsets of X with $Q \subseteq \bigcup_{i=1}^{n+2} U_i$ there exists a family $\{V_1, V_2, \ldots, V_{n+2}\}$ of open subsets of X such that

 $V_i \subseteq U_i$ for $i = 1, \dots, n+2$, $Q \subseteq \bigcup_{i=1}^{n+2} V_i$ and $\bigcap_{i=1}^{n+2} V_i = \emptyset$.

Proof. $(1) \Rightarrow (2)$ It is obvious.

 $(2) \Rightarrow (3)$ Let $c = \{U_1, \ldots, U_m\}$ be a finite family of open subsets of X such that $Q \subseteq \bigcup_{i=1}^m U_i$. By assumption there exists a family r of open subsets of X refinement of c such that $Q \subseteq \bigcup \{V : V \in r\}$ and $\operatorname{ord}(r) \leq n$. For every $V \in r$ we choose an element l(V) of $\{1, \ldots, m\}$ such that $V \subseteq U_{l(V)}$ and we set

$$V_i = \cup \{ V \in r : l(V) = i \}, \quad i = 1, \dots, m.$$

It is clear that $\{V_1, \ldots, V_m\}$ is a family of open subsets of X such that $V_i \subseteq U_i$ for $i = 1, \ldots, m, Q \subseteq \bigcup_{i=1}^m V_i$, and $\operatorname{ord}(\{V_1, \ldots, V_m\}) \leq n$.

 $(3) \Rightarrow (4)$ It is obvious.

 $(4) \Rightarrow (1)$ Let $c = \{U_1, \ldots, U_m\}$ be a finite family of open subsets of X such that $Q \subseteq \bigcup_{i=1}^m U_i$. We prove that there exists a family $\{V_1, \ldots, V_m\}$ of open subsets of X such that

$$V_i \subseteq U_i$$
 for $i = 1, \dots, m$, $Q \subseteq \bigcup_{i=1}^m V_i$ and $\operatorname{ord}(\{V_1, \dots, V_m\}) \le n$.

If $m \leq n+1$, then the required family $\{V_1, \ldots, V_m\}$ of open subsets of X is the family $\{U_1, \ldots, U_m\}$. Let us suppose that $m \geq n+2$. We consider the family $g = \{G_1, \ldots, G_{n+2}\}$, where $G_i = U_i$ for $i = 1, \ldots, n+1$ and $G_{n+2} = \bigcup_{i=n+2}^m U_i$. Obviously, $Q \subseteq \bigcup_{i=1}^{n+2} G_i$. Therefore, by assumption there exists a family $\{H_1, \ldots, H_{n+2}\}$ of open subsets of X such that $H_i \subseteq G_i$ for $i = 1, \ldots, n+2$, $Q \subseteq \bigcup_{i=1}^{n+2} H_i$, and $\bigcap_{i=1}^{n+2} H_i = \emptyset$. We consider the family $w = \{W_1, \ldots, W_m\}$, where $W_i = H_i$ for $i = 1, \ldots, n+1$ and $W_i = U_i \cap H_{n+2}$ for $i = n+2, \ldots, m$. It is clear that w is a family of open subsets of X such that

$$W_i \subseteq U_i$$
 for $i = 1, \dots, m$, $Q \subseteq \bigcup_{i=1}^m W_i$ and $\bigcap_{i=1}^{n+2} W_i = \emptyset$.

268

If the intersection of any n + 2 distinct elements of w is empty, then the required family $\{V_1, \ldots, V_m\}$ of open subsets of X is the family w. We suppose that there exists a subset $A = \{i_1, \ldots, i_{n+2}\}$ of $\{1, \ldots, m\}$ such that $\bigcap_{i \in A} W_i \neq \emptyset$ and let $p = \{P_1, \ldots, P_m\}$ be the same family w reordered so that

$$P_1 = W_{i_1}, \dots, P_{n+2} = W_{i_{n+2}}$$

Since p = w and $\bigcap_{i=1}^{n+2} W_i = \emptyset$, there exists a subset $B_1 \neq \{1, \ldots, n+2\}$ of $\{1, \ldots, m\}$ with n+2 elements such that $\bigcap_{i \in B_1} P_i = \emptyset$. Applying the above construction to p we find a family $w' = \{W'_1, \ldots, W'_m\}$ of open subsets of X such that

$$W'_i \subseteq P_i \quad \text{for } i = 1, \dots, m, \qquad Q \subseteq \cup_{i=1}^m W'_i \quad \text{and} \quad \cap_{i=1}^{n+2} W'_i = \emptyset.$$

We observe that

$$W_1' \subseteq W_{i_1}, \dots, W_{n+2}' \subseteq W_{i_{n+2}}$$

If the intersection of any n + 2 distinct elements of w' is empty, then the required family $\{V_1, \ldots, V_m\}$ of open subsets of X is the family w'. We suppose that there exists a subset $A' = \{i'_1, \ldots, i'_{n+2}\}$ of $\{1, \ldots, m\}$ such that $\bigcap_{i \in A'} W'_i \neq \emptyset$ and let $p' = \{P'_1, \ldots, P'_m\}$ be the same family w' reordered so that

$$P'_1 = W'_{i'_1}, \dots, P'_{n+2} = W'_{i'_{n+2}}.$$

Since p' = w' and $\bigcap_{i=1}^{n+2} W'_i = \emptyset$, there exists a subset $B_2 \neq \{1, \ldots, n+2\}$ of $\{1, \ldots, m\}$ with n+2 elements such that $\bigcap_{i \in B_2} P'_i = \emptyset$. Applying the above construction to p' we find a family $w'' = \{W''_1, \ldots, W''_m\}$ of open subsets of X such that

$$W_i'' \subseteq P_i'$$
 for $i = 1, \dots, m$, $Q \subseteq \bigcup_{i=1}^m W_i''$ and $\bigcap_{i=1}^{n+2} W_i'' = \emptyset$.

We observe that

$$W_1'' \subseteq W_{i_1'}', \dots, W_{n+2}'' \subseteq W_{i_{n+2}'}'.$$

Since the family $\{U_1, \ldots, U_m\}$ is finite, after a finite number of repetitions of the above process we find a family $\{V_1, \ldots, V_m\}$ of open subsets of X such that

$$V_i \subseteq U_i$$
 for $i = 1, \dots, m$, $Q \subseteq \bigcup_{i=1}^m V_i$ and $\operatorname{ord}(\{V_1, \dots, V_m\}) \le n$.

Thus, $\operatorname{r-dim}(Q, X) \leq n$.

3. Subspace theorems

In this section we give subspace theorems for the dimension r-dim.

PROPOSITION 3.1. Let K and Q be two subspaces of a space X with $K \subseteq Q$. If K is a closed subspace of X or $Q \setminus K$ is an open subspace of X, then

$$\operatorname{r-dim}(K, X) \leq \operatorname{r-dim}(Q, X)$$
.

Proof. Suppose that the subset $Q \setminus K$ of X is open. Let

$$\operatorname{r-dim}(Q, X) = n \in \omega \cup \{-1, \infty\}.$$

The inequality is clear if n = -1 or $n = \infty$. Let $n \in \omega$. We prove that $r\operatorname{-dim}(K, X) \leq n$. Let c be a finite family of open subsets of X such that $K \subseteq \bigcup \{U : U \in c\}$. Since the subspace $Q \setminus K$ of X is open, the family $c \cup \{Q \setminus K\}$ consists of open subsets of X such that

$$Q \subseteq \cup \{U : U \in c\} \cup \{Q \setminus K\}$$

Also, since r-dim(Q, X) = n, there exists a finite family r of open subsets of X refinement of $c \cup \{Q \setminus K\}$ such that $Q \subseteq \cup \{V : V \in r\}$ and $\operatorname{ord}(r) \leq n$. Then, the family

$$r' = r \setminus \{ V \in r : V \subseteq Q \setminus K \}$$

is a refinement of c such that $K \subseteq \cup \{V : V \in r'\}$ and $\operatorname{ord}(r') \leq n$. Thus, $r\operatorname{-dim}(K, X) \leq n$.

PROPOSITION 3.2. Let Y be a subspace of a space X and $Q \subseteq Y$. Then,

$$\operatorname{r-dim}(Q, Y) \le \operatorname{r-dim}(Q, X)$$
 .

Proof. Let $\operatorname{r-dim}(Q, X) = n \in \omega \cup \{-1, \infty\}$. The inequality is clear if n = -1 or $n = \infty$. Let $n \in \omega$. We prove that $\operatorname{r-dim}(Q, Y) \leq n$. Let $c_Y = \{U_1^Y, \ldots, U_m^Y\}$ be a finite family of open subsets of Y such that $Q \subseteq \bigcup_{i=1}^m U_i^Y$. For every $i = 1, \ldots, m$, there exists an open subset U_i of X such that $U_i^Y = Y \cap U_i$. We set $c = \{U_1, \ldots, U_m\}$. The family c is a finite family of open subsets of X such that $Q \subseteq \bigcup_{i=1}^m U_i$. Since $\operatorname{r-dim}(Q, X) = n$, there exists a finite family r of open subsets of X refinement of c such that $Q \subseteq \bigcup_{V = 1}^m V_V : V \in r\}$ and $\operatorname{ord}(r) \leq n$. We consider the family

$$r_Y = \left\{ V^Y \equiv Y \cap V : V \in r \right\}.$$

Since $Q \subseteq Y$, the family r_Y is a finite family of open subsets of Y refinement of c_Y such that

$$Q \subseteq \cup \{ V^Y : V^Y \in r_Y \} \,.$$

Also, since the family r_Y is refinement of the family r and $\operatorname{ord}(r) \leq n$, we have that $\operatorname{ord}(r_Y) \leq n$. Thus, $r\operatorname{-dim}(Q, Y) \leq n$.

4. Sum theorems

In this section we give sum theorems for the dimension r-dim.

PROPOSITION 4.1. Let Q be a subspace of a space X. If $X = X_1 \cup X_2$, where $Q \subseteq X_1 \cap X_2$, $\operatorname{r-dim}(Q, X_1) \leq n$, and $\operatorname{r-dim}(Q, X_2) \leq n$, then $\operatorname{r-dim}(Q, X) \leq n$.

Proof. Let $c = \{U_1, \ldots, U_m\}$ be a finite family of open subsets of X with $Q \subseteq \bigcup_{i=1}^m U_i$. By Proposition 2.3 (3) it suffices to prove that there exists a finite family s of open subsets of X shrinking of c such that $Q \subseteq \bigcup \{V : V \in s\}$ and $\operatorname{ord}(s) \leq n$. Since the family $\{X_1 \cap U_1, \ldots, X_1 \cap U_m\}$ is a finite family of open subsets of X_1 with $Q \subseteq \bigcup_{i=1}^m (X_1 \cap U_i)$ and $\operatorname{r-dim}(Q, X_1) \leq n$, by Proposition 2.3 (3) there exists a family $\{V_1^1, \ldots, V_m^1\}$ of open subsets of X_1 such that $V_i^1 \subseteq X_1 \cap U_i$ for $i = 1, \ldots, m$, $Q \subseteq \bigcup_{i=1}^m V_i^1$, and $\operatorname{ord}(\{V_1^1, \ldots, V_m^1\}) \leq n$. For $i = 1, \ldots, m$ there exists an open subset V_i of X such that $V_i^1 = X_1 \cap V_i$. We set

$$W_i = U_i \cap V_i$$
, $i = 1, \ldots, m$.

Obviously, we have $W_i \subseteq U_i$ for i = 1, ..., m and $Q \subseteq \bigcup_{i=1}^m W_i$. Moreover, since $X_1 \cap W_i = U_i \cap V_i^1 \subseteq V_i^1$ for i = 1, ..., m and $\operatorname{ord}(\{V_1^1, ..., V_m^1\}) \leq n$, we have

$$\operatorname{ord}(\{X_1 \cap W_1, \dots, X_1 \cap W_m\}) \le n.$$
(4)

The family $\{X_2 \cap W_1, \ldots, X_2 \cap W_m\}$ is a finite family of open subsets of X_2 with $Q \subseteq \bigcup_{i=1}^m (X_2 \cap W_i)$. Also, since r-dim $(Q, X_2) \leq n$, by Proposition 2.3 (3) there exists a family $\{V_1^2, \ldots, V_m^2\}$ of open subsets of X_2 such that $V_i^2 \subseteq X_2 \cap W_i$ for $i = 1, \ldots, m$, $Q \subseteq \bigcup_{i=1}^{m+1} V_i^2$, and $\operatorname{ord}(\{V_1^2, \ldots, V_m^2\}) \leq n$. For $i = 1, \ldots, m$ there exists an open subset V_i' of X such that $V_i^2 = X_2 \cap V_i'$. We consider the family $s = \{H_1, \ldots, H_m\}$, where $H_i = W_i \cap V_i'$, $i = 1, \ldots, m$. Obviously, we have $H_i \subseteq W_i \subseteq U_i$ for $i = 1, \ldots, m$ and $Q \subseteq \bigcup_{i=1}^m H_i$. Moreover, since $X_2 \cap H_i = W_i \cap V_i^2 \subseteq V_i^2$ for $i = 1, \ldots, m$ and $\operatorname{ord}(\{V_1^2, \ldots, V_m^2\}) \leq n$, we have

$$\operatorname{ord}(\{X_2 \cap H_1, \dots, X_2 \cap H_m\}) \le n.$$
(5)

We prove that $\operatorname{ord}(s) \leq n$. Let $H_{i_1}, \ldots, H_{i_{n+2}}$ be pairwise distinct elements of s, and $x \in H_{i_1} \cap \ldots \cap H_{i_{n+2}} \neq \emptyset$. Since $X = X_1 \cup X_2$, $x \in X_1$ or $x \in X_2$. If $x \in X_1$, then

$$x \in (X_1 \cap H_{i_1}) \cap \ldots \cap (X_1 \cap H_{i_{n+2}}) \subseteq (X_1 \cap W_{i_1}) \cap \ldots \cap (X_1 \cap W_{i_{n+2}}),$$

which contradicts the relation (4). If $x \in X_2$, then

$$x \in (X_2 \cap H_{i_1}) \cap \ldots \cap (X_2 \cap H_{i_{n+2}}),$$

which contradicts the relation (5). Thus, $\operatorname{ord}(s) \leq n$ and, therefore, $\operatorname{r-dim}(Q, X) \leq n$.

COROLLARY 4.2. Let Q be a subspace of a space X. For every subset A of X such that $Q \subseteq A$ we have

$$\operatorname{r-dim}(Q, X) \le \max\left\{\operatorname{r-dim}(Q, A), \operatorname{r-dim}(Q, (X \setminus A) \cup Q)\right\}.$$

Proof. Follows by Proposition 4.1 for $X_1 = A$ and $X_2 = (X \setminus A) \cup Q$.

COROLLARY 4.3. Let Q be a subspace of a space X. If $X = X_1 \cup X_2$, where $Q \subseteq X_1 \cap X_2$, then

$$\operatorname{r-dim}(Q, X) = \max\left\{\operatorname{r-dim}(Q, X_1), \operatorname{r-dim}(Q, X_2)\right\}.$$

Proof. Let r-dim $(Q, X_1) = n_1$ and r-dim $(Q, X_2) = n_2$, where $n_1, n_2 \in \omega \cup \{\infty\}$. We set $n = \max\{n_1, n_2\}$. Then, r-dim $(Q, X_1) \leq n$ and r-dim $(Q, X_2) \leq n$. By Proposition 4.1 we have r-dim $(Q, X) \leq n$. Also, by Proposition 3.2, $n_1 \leq \text{r-dim}(Q, X)$ and $n_2 \leq \text{r-dim}(Q, X)$. Thus, $n \leq \text{r-dim}(Q, X)$. By the above, r-dim(Q, X) = n. ■

PROPOSITION 4.4. Let Q_1 and Q_2 be two subsets of a space X. Then,

 $\operatorname{r-dim}(Q_1 \cup Q_2, X) \le \operatorname{r-dim}(Q_1, X) + \operatorname{r-dim}(Q_2, X) + 1.$

Proof. Let

 $\operatorname{r-dim}(Q_1, X) = n_1$ and $\operatorname{r-dim}(Q_2, X) = n_2$.

We prove that

$$r-\dim(Q_1 \cup Q_2, X) \le n_1 + n_2 + 1.$$

Let c be a finite family of open subsets of X with $Q_1 \cup Q_2 \subseteq \bigcup \{U : U \in c\}$. Since r-dim $(Q_1, X) = n_1$, there exists a finite family r_1 of open subsets of X refinement of c such that $Q_1 \subseteq \bigcup \{U : U \in r_1\}$ and $\operatorname{ord}(r_1) \leq n_1$. Moreover, since r-dim $(Q_2, X) = n_2$, there exists a finite family r_2 of open subsets of X refinement of c such that $Q_2 \subseteq \bigcup \{U : U \in r_2\}$ and $\operatorname{ord}(r_2) \leq n_2$. We set $r = r_1 \cup r_2$. Then, r is a family of open subsets of X refinement of c such that

$$Q_1 \cup Q_2 \subseteq \bigcup \{ U : U \in r \}$$
 and $\operatorname{ord}(r) \le n_1 + n_2 + 1.$

5. PARTITION AND PRODUCT THEOREMS

In this section we give partition, product, and compactification theorems for the dimension r-dim.

PROPOSITION 5.1. Let Q be a normal subspace of a space X. If for every family $\{(A_1, B_1), (A_2, B_2), \ldots, (A_{n+1}, B_{n+1})\}$ of n+1 pairs of disjoint subsets of X, where A_i 's are closed in X and B_i 's are closed in Q, there exist partitions L_i between A_i and B_i such that $Q \cap \bigcap_{i=1}^{n+1} L_i = \emptyset$, then $\operatorname{r-dim}(Q, X) \leq n$.

Proof. By Proposition 2.3 (4) it suffices to show that for any family $\{U_1, \ldots, U_{n+2}\}$ of open subsets of X with $Q \subseteq \bigcup_{i=1}^{n+2} U_i$ there exists a family $\{V_1, \ldots, V_{n+2}\}$ of open subsets of X such that

$$V_i \subseteq U_i$$
 for $i = 1, \dots, n+2$, $Q \subseteq \bigcup_{i=1}^{n+2} V_i$ and $\bigcap_{i=1}^{n+2} V_i = \emptyset$.

Let $\{U_1, \ldots, U_{n+2}\}$ be a family of open subsets of X with $Q \subseteq \bigcup_{i=1}^{n+2} U_i$. Since the space Q is normal, there exists a closed cover $\{B_1, \ldots, B_{n+2}\}$ of Q such that $B_i \subseteq U_i \cap Q$ for $i = 1, \ldots, n+2$. We set

$$A_i = X \setminus U_i$$
 for $i = 1, \ldots, n+1$.

The family $\{(A_1, B_1), \ldots, (A_{n+1}, B_{n+1})\}$ consists of n+1 pairs of disjoint subsets of X, where A_i 's are closed in X and B_i 's are closed in Q. Therefore by hypothesis there exist partitions L_i between A_i and B_i such that $Q \cap \bigcap_{i=1}^{n+1} L_i = \emptyset$. That is, there exist open subsets W_i, V_i of X such that:

$$A_i \subseteq W_i, \ B_i \subseteq V_i, \tag{6}$$

$$W_i \cap V_i = \emptyset, \tag{7}$$

$$X \setminus L_i = W_i \cup V_i \quad \text{for } i = 1, \dots, n+1.$$
(8)

We set $V_{n+2} = U_{n+2} \cap \bigcup_{i=1}^{n+1} W_i$. By the definition of A_i 's and (6), (7) we have that $V_i \subseteq U_i$ for i = 1, 2, ..., n+2. We prove that $Q \subseteq \bigcup_{i=1}^{n+2} V_i$. We observe that

$$\bigcup_{i=1}^{n+1} W_i \cup \bigcup_{i=1}^{n+1} V_i = \bigcup_{i=1}^{n+1} (W_i \cup V_i) = \bigcup_{i=1}^{n+1} (X \setminus L_i) = X \setminus \bigcap_{i=1}^{n+1} L_i \supseteq Q.$$
(9)

From (6), (9) and the relation $B_{n+2} \subseteq U_{n+2}$ it follows that

$$\bigcup_{i=1}^{n+2} V_i = \bigcup_{i=1}^{n+1} V_i \cup \left(U_{n+2} \cap \bigcup_{i=1}^{n+1} W_i \right)$$
$$= \left(\bigcup_{i=1}^{n+1} V_i \cup U_{n+2} \right) \cap \left(\bigcup_{i=1}^{n+1} V_i \cup \bigcup_{i=1}^{n+1} W_i \right)$$
$$\supseteq \bigcup_{i=1}^{n+2} B_i \cap Q = Q \cap Q = Q.$$

We prove that $\bigcap_{i=1}^{n+2} V_i = \emptyset$. From (7) we have

$$\bigcap_{i=1}^{n+2} V_i = \bigcap_{i=1}^{n+1} V_i \cap \left(U_{n+2} \cap \bigcup_{i=1}^{n+1} W_i \right) \subseteq \bigcap_{i=1}^{n+1} V_i \cap \bigcup_{i=1}^{n+1} W_i = \emptyset.$$

Remark. It was proved (see Proposition 2.2) that if the subset Q of X is closed, then

$$\dim^*(Q, X) = \operatorname{r-dim}(Q, X).$$

So, by Proposition 2.4, Proposition 3.1, Corollary 3.2, Proposition 3.3, Corollary 3.4, and Proposition 4.2 of [4] we have the following propositions and product theorem for the dimension invariant r-dim.

PROPOSITION 5.2. Let Q be a closed subspace of a normal space X satisfying r-dim $(Q, X) \leq n$. Then, for every family $\{(A_1, B_1), (A_2, B_2), \ldots, (A_{n+1}, B_{n+1})\}$ of n+1 pairs of disjoint closed subsets of X there exist partitions L_i between A_i and B_i such that $Q \cap \bigcap_{i=1}^{n+1} L_i = \emptyset$.

PROPOSITION 5.3. For every closed subspace Q of a normal space X we have

$$\operatorname{r-dim}(Q, X) = \operatorname{r-dim}(Q, \beta X) = \operatorname{r-dim}(\beta Q, \beta X).$$

PROPOSITION 5.4. Let Q^X be a closed subspace of a compact Hausdorff space X and Q^Y a closed subspace of a compact Hausdorff space Y. Then,

$$\operatorname{r-dim}(Q^X \times Q^Y, X \times Y) \leq \operatorname{r-dim}(Q^X, X) + \operatorname{r-dim}(Q^Y, Y).$$

6. QUESTIONS

QUESTION 1. Is it true the property of universality for dimension r-dim? That is, does there exists a universal element in the class IP of all pairs (Q^X, X) , where Q^X is a subset of a space X such that r-dim $(Q^X, X) \leq n$?

QUESTION 2. Is it true the product theorem for r-dim in the realm of all metrizable spaces?

For some other questions on relative covering dimensions see [3] and [4].

Acknowledgements

We are grateful to the referee for a number of helpful suggestions for improvement in the article.

References

- R. ENGELKING, "Theory of Dimensions, Finite and Infinite", Sigma Series in Pure Mathematics, 10, Heldermann Verlag, Lemgo, 1995.
- [2] K.P. HART, JUN-ITI NAGATA, J.E. VAUGHAN, "Encyclopedia of General Topology", Elsevier Science Publishers, B.V., Amsterdam, 2004.
- [3] D.N. GEORGIOU, A.C. MEGARITIS, On the relative dimensions dim and dim^{*} I, Questions Answers Gen. Topology (article in press).
- [4] D.N. GEORGIOU, A.C. MEGARITIS, On the relative dimensions dim and dim^{*} II, Questions Answers Gen. Topology (article in press).
- [5] JUN-ITI NAGATA, "Modern Dimension Theory", Sigma Series in Pure Mathematics, 2, Heldermann Verlag, Berlin, 1983.
- [6] A.R. PEARS, "Dimension Theory of General Spaces", Cambridge University Press, Cambridge, England-New York-Melbourne, 1975.
- [7] J. VALUYEVA, On relative dimension concepts, Questions Answers Gen. Topology 15 (1997), 21-24.