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Abstract: In [7] (see also [2, p. 35]) two relative covering dimensions, denoted by dim and
dim”*, defined and studied. In [3] and [4] we studied these dimensions and we gave some prop-
erties including subspace, sum, partition, compactification, and product theorems. Also, we
gave partial answers for the questions which are given in [7]. Here we give and study a
new relative covering dimension, denoted by r-dim, which is different from dim and dim*.
Finally, we give some questions concerning the new relative dimension r-dim.
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1. INTRODUCTION AND PRELIMINARIES

The first infinite cardinal is denoted by w. We also consider two symbols,
“—1” and “oc0”, for which we suppose that:

(i) =1 <n < oo for every n € w;

(i) o+n =mn+o00 =00 and —14+n =n+(-1) = n for every
ne€wU{-100}.

By a class of subsets we mean a class consisting of pairs (Q, X ), where @ is
a subset of a topological space X.

Let A and B be two disjoint subsets of a topological space X. We say
that a subset L of X is a partition between A and B if there exist two open
subsets U and W of X such that (1) ACU, BC W, (2) UNW =0, and (3)
X\L=UUW.

Let X be a topological space. A cover of X is a non-empty set of subsets
of X, whose union is X. A cover ¢ of X is said to be open (respectively, closed)
if all elements of ¢ is open (respectively, closed). A family r = {R; : t € T}
of subsets of X is said to be a refinement of a family ¢ = {Cs : s € S} of
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subsets of X if each element of r is contained in an element of ¢, that is for
every t € T there exists s(t) € S such that R C Cyy).
Define the order of a family r of subsets of a space X as follows:

(a) ord(r) = —1 if and only if r consists the empty set only ;

(b) ord(r) = n, where n € w, if and only if the intersection of any n + 2
distinct elements of r is empty and there exist n + 1 distinct elements
of r, whose intersection is not empty ;

(c) ord(r) = oo, if and only if for every n € w there exist n distinct elements
of r, whose intersection is not empty.

The given below definitions are actually the definitions of dimensions dim
and dim* given in [7] (see also [2]) for regular spaces.

DEFINITION 1.1. We denote by dim the (unique) function with as domain
the class of all subsets and as range the set wU{—1, 0o}, satisfying the following
condition:

dim(Q, X) <n, where n € {-1} Uw,

if and only if for every finite open cover ¢ of the space X there exists a finite
family 7o of open subsets of () refinement of ¢ which is a cover of ) and
ord(rg) < n.

DEFINITION 1.2. We denote by dim* the (unique) function with as domain
the class of all subsets and as range the set wU{—1, 0o}, satisfying the following
condition:

dim*(Q, X) < n, where n € {-1} Uw,

if and only if for every finite open cover ¢ of the space X there exists a finite
family 7 of open subsets of X refinement of ¢ such that @ C U{V : V € r}
and ord(r) < n.

In [3] and [4] we studied the above dimensions and we gave some properties
including subspace, sum, partition, compactification, and product theorems.
Also, we gave partial answers for the questions which are given in [7]. In this
paper, we give and study a new relative covering dimension.
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2. THE NEW RELATIVE COVERING DIMENSION

DEFINITION 2.1. We denote by r-dim the (unique) function that has as
domain the class of all subsets and as range the set w U {—1,00} satisfying
the following condition

r-dim(Q, X) <n, where n € {1} Uw,
if and only if for every finite family ¢ of open subsets of X such that
QCU{U :UE€c},
there exists a finite family r of open subsets of X refinement of ¢ such that
QCWV :Ver}
and ord(r) < n.

Remark. We observe that if r-dim(Q, X)) < n, where n € w, then for every
finite family ¢ of open subsets of X such that @ C U{U : U € c} there exists
a finite family 7 of open subsets of ) refinement of ¢ which is a cover of Q)
and ord(rg) < n.

PROPOSITION 2.2. Let Q be a subset of a topological space X. The fol-
lowing statements are true:

(a)
dim(Q) < r-dim(Q, X),

where dim(Q) is the covering dimension of the subset ) of X. Moreover,
if the subset Q of X is open, then

dim(Q) = r-dim(Q, X) .
(b) dim(@, X) < dim*(Q, X) < r-dim(Q, X) .
(c) If the subset Q of X is closed, then
dim*(Q, X) = r-dim(Q, X) < dim(X),

where dim(X) is the covering dimension of X.
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Proof. (a) Let r-dim(Q,X) =n € wU{—1,00}. The inequality is clear
if n =—-1orn =o00. Let n €w. We prove that dim(Q) < n. Let ¢g =
{UlQ, ce Ufna} be a finite open cover of the space ). For every i = 1,...,m
there exists an open subset U; of X such that UZ-Q = Q NU;. We consider the
family ¢ = {Uy, ..., Uy }. Then, the family c is a finite family of open subsets
of X such that @ C U”,U;. Since r-dim(Q, X) = n, there exists a finite
family 7 of open subsets of X refinement of ¢ such that @ C U{V : V € r}
and ord(r) < n. Weset rg = {QNV : V € r}. Then, the family rg is a finite
open cover of @) refinement of cg such that ord(rg) < n. Thus, dim(Q) < n.

Now, we suppose that the subset ) of X is open. Clearly, it suffices to
prove the inequality

r-dim(Q, X) < dim(Q) . (1)

Let dim(Q) = n € wU{—1,00}. The inequality (1) is clear if n = —1 or
n = oco. Let n € w. We prove that r-dim(Q,X) < n. Let ¢ be a finite
family of open subsets of X such that @ C U{U : U € c¢}. Then, the
family co = {Q NU : U € ¢} is a finite open cover of the space (). Since
dim(Q) = n, there exists a finite open cover rg of @ refinement of c¢g such
that ord(rg) < n. Obviously, the family rq is a refinement of c. Also, since
the subspace @) of X is open, every element of the family r¢ is open subset of
X. Thus, r-dim(Q, X) < n.
(b) It is known that dim(Q, X) < dim*(Q, X) (see [7]). So it suffices to
prove the inequality
dim*(Q, X) < r-dim(Q, X) . (2)

Let r-dim(Q, X) = n € wU {—1,00}. The inequality (2) is clear if n = —1 or
n = oco. Let n € w. We prove that dim*(Q, X) < n. Let ¢ be a finite open
cover of the space X. Obviously, @ C U{U : U € c}. Since r-dim(Q, X) =n
there exists a finite family r of open subsets of X refinement of ¢ such that
Q CU{V : V er}and ord(r) <n. Thus, dim*(Q, X) <n.
(c) Suppose that the subset @ of X is closed. By (b) it suffices to prove
the inequality
r-dim(Q, X) < dim*(Q, X) . (3)

Let dim*(Q, X) = n € wU {—1,00}. The inequality (3) is clear if n = —1 or
n = o0o. Let n € w. We prove that r-dim(Q, X) < n. Let ¢ be a finite family
of open subsets of X such that @ C U{U : U € c¢}. Since the subspace @
of X is closed, the family ¢ U{X \ Q} is a finite open cover of the space X.
Also, since dim*(Q, X) = n, there exists a finite family r of open subsets of
X refinement of ¢ U {X \ @} such that @ C U{V : V € r} and ord(r) < n.
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Then, the family " = r\{V €r : V.C X \ @} is a refinement of ¢ such that
Q CU{V : V er'} and ord(r’) < n. Thus, r-dim(Q, X) < n.
Also, it is clear that r-dim(Q, X ) < dim(X). §

ExAMPLES. (1) Let (X, 7) be a topological space, where X = {a,b,c,d}
and
7= {0, {0}, {a,b},{b,c}, {a,b,c}, X} .
Let Q = {a,c}. We observe that r-dim(Q, X) = 1 and

dim(Q, X) = dim*(Q, X) = dim(X) =0.

(2) Let X be the space of the real numbers and @ = {0}. Then,
r-dim(Q, X) = 0 and dim(X) = 1.

(3) Let X = [—1,1] and @ = {—1,1}. The family consisting of all sets
of the form [—1,b) for b > 0, (a,1] for a < 0, and (a,b) is a basis for some
topology in X. It is easy to see that dim(Q) = 0 and r-dim(Q, X) = 1.

The relations between the dimension-like functions of the type dim are
summarized in the following diagram, where “—” means “ <” and “-” means
that “in general €7 :

It is known that (see [3], [4] and [7]) there exist examples such that in the
above diagram the invariants dim(X), dim(Q, X), dim*(Q, X), and dim(Q)
to be different.

PROPOSITION 2.3. For every subset (Q of a space X the following condi-
tions are equivalent:

(1) r-dim(Q, X) < n.

(2) For every finite family ¢ of open subsets of X with Q@ C U{U : U € ¢}
there exists a family r of open subsets of X refinement of ¢ such that

Q CU{V : Ver} and ord(r) < n.
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(3) For every finite family {U;,Us, ..., Up} of open subsets of X with Q C
U™, U; there exists a family {V1,Va, ...,V } of open subsets of X such
that

ViCU; fori=1,...,m,
QCuUrL,V; and ord{V1,Va,...,Vin}) <n

(4) For every family {U1,Us,...,Uy42} of open subsets of X with Q C
n+2U there exists a fam11y {V1,Va,...,Vhia} of open subsets of X
such that

ViCU; fori=1,...,n+2, QCUM"2V; and nNM“2V;=0.

Proof. (1) = (2) It is obvious.

(2) = (3) Let ¢ = {Ui,...,Uy} be a finite family of open subsets of X
such that Q C U™, U;. By assumption there exists a family 7 of open subsets
of X refinement of ¢ such that Q@ C U{V : V € r} and ord(r) < n. For every
V€ r we choose an element [(V) of {1,...,m} such that V' C Uy, and we
set

Vi=UW{Ver:(V)=i}, i=1,....m

It is clear that {V1,...,V},} is a family of open subsets of X such that V; C U;
fori=1,...,m, QCU ", Vi, and ord({Vi1,...,V}) < n.

(3) = (4) It is obvious.

(4) = (1) Let ¢ = {Uy,...,Uy} be a finite family of open subsets of X
such that @ C U™,U;. We prove that there exists a family {V1,...,V},} of
open subsets of X such that

ViCU; fori=1,....m, QCU™V, and ord({Vi,...,Vin}) <n.

If m < n+ 1, then the required family {V1,...,V,,} of open subsets of X
is the family {Uy,...,Uy,}. Let us suppose that m > n + 2. We consider
the family ¢ = {G1,...,Gp42}, where G; = U; for i = 1,...,n + 1 and
G2 = U, ,U;. Obviously, @ C U?;lgGi. Therefore, by assumption there
exists a family {Hi,..., H,12} of open subsets of X such that H; C G; for
i=1,...,.n+2, Q C UZH'IQHZ, and ﬂ;”er (). We consider the family
w:{Wl,... m} where W; = H; fori=1,... ., n+1and W; = U; N Hy42
fori =n+2,...,m. It is clear that w is a family of open subsets of X such
that

W, CU; fori=1,...,m, QC U™ W, and N2, =0.
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If the intersection of any n + 2 distinct elements of w is empty, then
the required family {Vi,...,V},} of open subsets of X is the family w. We
suppose that there exists a subset A = {i1,...,ip+2} of {1,...,m} such that
NieaW; # (0 and let p = { Py, ..., Py} be the same family w reordered so that

Plzml,--.,Pn+2:Win+2.

Since p = w and Q?LQW@- = (), there exists a subset By # {1,...,n + 2} of
{1,...,m} with n + 2 elements such that N;ep, P, = 0. Applying the above

construction to p we find a family v’ = {W7,..., W} } of open subsets of X
such that
Wi/gpi for i:l,...,m, qu;’ilwg and m?:fW{:@-

We observe that
Wi CWi,....Wy s CW; ..

If the intersection of any n + 2 distinct elements of w’ is empty, then the
required family {V4,...,V,,} of open subsets of X is the family w’. We sup-
pose that there exists a subset A’ = {i,...,4;, o} of {1,...,m} such that
NicarW/! # 0 and let p’ = {P],..., P/} be the same family v’ reordered so
that
/ ! / !/

Plz ,L»/l,..., n+2:Wi;+2‘
Since p' = w' and NJZ2W/ = ), there exists a subset By # {1,...,n + 2} of
{1,...,m} with n + 2 elements such that N;ep, P/ = 0. Applying the above

construction to p’ we find a family w” = {W/, ..., W/ } of open subsets of X
such that
W/ CP fori=1,...,m, Qcur,w/ and O?IIQ W/ =10.

We observe that
1 ! 1 !
W E Wl Wiy SV

Since the family {Uy,...,Uy,} is finite, after a finite number of repetitions of
the above process we find a family {Vi,...,V;,} of open subsets of X such
that

ViCU; fori=1,....m, QCU™V, and ord({Vi,...,Vin}) <n.

Thus, r-dim(Q, X) < n. 1
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3. SUBSPACE THEOREMS
In this section we give subspace theorems for the dimension r-dim.

ProrosiTIiON 3.1. Let K and (Q be two subspaces of a space X with
K C Q. If K is a closed subspace of X or Q \ K is an open subspace of X,
then
r-dim(K, X) < r-dim(Q, X) .

Proof. Suppose that the subset @ \ K of X is open. Let
r-dim(Q, X) =n € wU {—1,00}.

The inequality is clear if n = —1 or n = oco. Let n € w. We prove that
r-dim(K, X) < n. Let ¢ be a finite family of open subsets of X such that
K C U{U : U € c¢}. Since the subspace @ \ K of X is open, the family
cU{Q \ K} consists of open subsets of X such that

QCU{U : UectU{Q\K}.

Also, since r-dim(Q, X ) = n, there exists a finite family r of open subsets of

X refinement of cU {Q \ K} such that @ C U{V : V € r} and ord(r) < n.
Then, the family
r=r\{Ver:VCQ\K}

is a refinement of ¢ such that K C U{V : V € '} and ord(r’) < n. Thus,
r-dim(K, X) <n. 1

ProPOSITION 3.2. Let Y be a subspace of a space X and Q CY. Then,
r-dim(Q@,Y) < r-dim(Q, X) .

Proof. Let r-dim(Q, X) = n € wU {—1,00}. The inequality is clear if

n=—-1lorn = oco. Letn € w We prove that r-dim(Q,Y) < n. Let
cy = {UY,...,UY} be a finite family of open subsets of Y such that Q C
U;-ZIUiY. For every i = 1,...,m, there exists an open subset U; of X such

that UiY =YnNnU;. Wesetc= {Uy,...,Uy}. The family c is a finite
family of open subsets of X such that @ C U, U;. Since r-dim(Q, X) = n,
there exists a finite family r of open subsets of X refinement of ¢ such that
Q CU{V : V er} and ord(r) < n. We consider the family

ry ={V¥=YnV:Ver}.
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Since @ C Y, the family ry is a finite family of open subsets of Y refinement

of cy such that
QCU{VY 1 VY ery}.

Also, since the family ry is refinement of the family r and ord(r) <
have that ord(ry) < n. Thus, r-dim(Q,Y) < n. 1

AN
S

=

a

4. SUM THEOREMS
In this section we give sum theorems for the dimension r-dim.

ProPOSITION 4.1. Let () be a subspace of a space X. If X = X; U
Xo, where Q@ C X7 N X, r-dim(Q, X1) < n, and r-dim(Q, X2) < n, then
r-dim (@, X) < n.

Proof. Let ¢ = {Uy,...,Upy} be a finite family of open subsets of X with
@ C U™, U;. By Proposition 2.3 (3) it suffices to prove that there exists a finite
family s of open subsets of X shrinking of ¢ such that @ C U{V : V € s} and
ord(s) < n. Since the family {X;NUj,..., X1 NUp} is a finite family of open
subsets of X; with @ C U™, (X; NU;) and r-dim(Q, X1) < n, by Proposition
2.3 (3) there exists a family {Vi},...,V,1} of open subsets of X such that
VicxinUfori=1,...,m, Q CU™ V! and ord({V{},...,V,}}) < n. For
1 =1,...,m there exists an open subset V; of X such that Vi1 =X1NV;. We
set

W, =U;NV;, i=1,...,m.

Obviously, we have W; C U; for ¢ = 1,...,m and Q C U2, W;. Moreover,
since Xy NW; =U; NV CVefori=1,...,mand ord({V{},...,V,}}) <n,
we have

OI‘d({XlﬂWh,XlﬂWm}) <n. (4)

The family { XoNW7, ..., XoNW,,} is a finite family of open subsets of Xo with
Q C U™, (X2NW;). Also, since r-dim(Q, X2) < n, by Proposition 2.3 (3) there
exists a family {V;2,...,V,2} of open subsets of X such that V> C Xy N W;
fori=1,....,m, QC U?i‘{lvf and ord({VZ,...,V2}) <n. Fori=1,...,m
there exists an open subset V/ of X such that V> = X5 N V/. We consider
the family s = {Hi,..., Hp}, where H; = W; N V/, i =1,...,m. Obviously,
we have H; C W; C U; for i = 1,...,m and Q C U™, H;. Moreover, since
XoNH; =W;NnV2CV2fori=1,...,m and ord({V?,...,V2}) < n, we
have

Ord({XgﬁHl,...,XgﬁHm})Sn. (5)
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We prove that ord(s) < n. Let H;,..., H;,, , be pairwise distinct elements

of s,and x € H;y N...NH;, , # 0. Since X = X1 UXy, z € Xj or z € X.
If z € X1, then

re(XiNnHy)N..N(XiNH;, ) S(XainW,)n...0n(X1NnWs,.,),
which contradicts the relation (4). If z € X, then
re(XoNHy)N...N(X2NH;, ),

which contradicts the relation (5). Thus, ord(s) < n and, therefore,
r-dim(Q, X) < n. 1

COROLLARY 4.2. Let Q be a subspace of a space X. For every subset A
of X such that Q C A we have

r-dim(Q, X) < max {r-dim(Q, A), --dim(Q, (X \ A) U Q) } .
Proof. Follows by Proposition 4.1 for X1 = A and Xo = (X \ A)UQ. 1

COROLLARY 4.3. Let Q be a subspace of a space X. If X = X1 U Xo,
where (Q C X1 N X5, then

r-dim(Q, X) = max {r—dim(@, X1), r-dim(Q, XQ)} i
Proof. Let r-dim(Q, X1) = n; and r-dim(Q, X2) = ng, where ny,ny € wU
{o0}. We set n = max{ni,na}. Then, r-dim(Q, X1) < n and r-dim(Q, X2) <
n. By Proposition 4.1 we have r-dim(@, X) < n. Also, by Proposition 3.2,
ny < r-dim(Q@, X) and ny < r-dim(Q, X). Thus, n < r-dim(Q, X). By the
above, r-dim(Q, X) =n. I
PROPOSITION 4.4. Let Q1 and Q2 be two subsets of a space X. Then,
r-dim(@Qq U Q2, X) < r-dim(Q1, X) + r-dim(Q2, X) + 1.
Proof. Let
r-dim(Q1, X) = n and r-dim(Q2, X) = ny.

We prove that
r—dim(Q1 U QQ,X) <ni+ns+1.
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Let ¢ be a finite family of open subsets of X with Q1 U Q2 C U{U : U € c¢}.
Since r-dim(Q1, X) = nq, there exists a finite family r1 of open subsets of X
refinement of ¢ such that @1 C U{U : U € r1} and ord(r1) < n;. Moreover,
since r-dim(Q2, X)) = no, there exists a finite family ry of open subsets of X
refinement of ¢ such that Q2 C U{U : U € rg} and ord(ry) < ng. We set
r =11 Urg. Then, r is a family of open subsets of X refinement of ¢ such that

QiU CU{U : U er} and ord(r) <mnj+n2+1.

5. PARTITION AND PRODUCT THEOREMS

In this section we give partition, product, and compactification theorems
for the dimension r-dim.

PROPOSITION 5.1. Let () be a normal subspace of a space X. If for every
family {(A1, B1), (A2, B2), ..., (An+1, Bny1)} of n+1 pairs of disjoint subsets
of X, where A;’s are closed in X and B;’s are closed in (Q, there exist partitions
L; between A; and B; such that Q N\ L; = 0, then r-dim(Q, X) < n.

Proof. By Proposition 2.3 (4) it suffices to show that for any family {U,
.., Unt2} of open subsets of X with @ C Ut2U; there exists a family
{V1,...,Vhta} of open subsets of X such that

V,CU; fori=1,....,n+2, QCuUM?V;,  and N2V, =0.

Let {Uy,...,Uy+2} be a family of open subsets of X with @ C U;Q?Ui. Since
the space ) is normal, there exists a closed cover {By,..., B,t2} of @ such
that B, CU;NQ fori=1,...,n+ 2. We set

A= X\U; for i=1,...,n+1.

The family {(A41,B1),...,(Ant1,Bnt1)} consists of n + 1 pairs of disjoint
subsets of X, where A;’s are closed in X and B;’s are closed in Q. Therefore by
hypothesis there exist partitions L; between A; and B; such that Qﬁﬂ?jll L; =
(). That is, there exist open subsets W;, V; of X such that:

A CW;, B; CV;, (6)
X\L,=W; UV, fori=1,....,n+1. (8)
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We set Viypo = Upqa N U?:JrllWi. By the definition of A;’s and (6), (7) we have
that V; C U; for i =1,2,...,n+ 2. We prove that Q C U:-L:lei. We observe
that

n+1 n+1 n+1 n+1 n+1
UwivUvi=Uwmiuv) = JE\L)=x\[1L2Q. (9
i=1 =1 i=1 i=1 i=1

From (6), (9) and the relation By42 C Up4o it follows that

n+2 n+1 n+1
Uw:LMm(wmewﬁ
=1 =1

i=1
n+1 n+1 n+1
=<UWUMM)HOJWUUWQ
=1 1=1 =1
n+2
>UBin@=@ne=0.
=1

We prove that NI"2V; = (). From (7) we have

n+2 n+1 n+1 n+1 n+1
ﬂ%—ﬂ%ﬁ@mﬁUWOQQWﬂUM—W
i=1 i=1 =1 i=1 i=1 |

Remark. It was proved (see Proposition 2.2) that if the subset @ of X is

closed, then
dim*(Q, X) = r-dim(Q, X) .

So, by Proposition 2.4, Proposition 3.1, Corollary 3.2, Proposition 3.3, Corol-
lary 3.4, and Proposition 4.2 of [4] we have the following propositions and
product theorem for the dimension invariant r-dim.

PROPOSITION 5.2. Let @ be a closed subspace of a normal space X sat-
isfying r-dim(Q, X) < n. Then, for every family {(A1, B1), (A2, B2),...,
(Ant1,Bnt1)} of n+ 1 pairs of disjoint closed subsets of X there exist par-
titions L; between A; and B; such that Q N ﬂ?;ll L; =0.

PRrROPOSITION 5.3. For every closed subspace ) of a normal space X we
have

r-dim(Q, X) = r-dim(Q, fX) = r-dim(5Q, 5 X) .
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PROPOSITION 5.4. Let QX be a closed subspace of a compact Hausdorff
space X and QY a closed subspace of a compact Hausdorff space Y. Then,

r-dim (Q* x @Y, X xY) < r-dim(Q%, X) + r-dim(Q",Y).

6. QUESTIONS

QUESTION 1. Is it true the property of universality for dimension r-dim?
That is, does there exists a universal element in the class IP of all pairs
(QX, X), where Q¥ is a subset of a space X such that r—dim(QX, X) <n?

QUESTION 2. Is it true the product theorem for r-dim in the realm of all
metrizable spaces?

For some other questions on relative covering dimensions see [3] and [4].
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