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Studies on Dendrites and the Periodic-Recurrent

Property∗

Francisco Balibrea
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Abstract : In this paper we evidence the interest of considering three outstanding examples of
dendrites with different structures, dendrites Fω, W and G3. When a dendrite X contains
a topological copy of one of them, then it is derived important properties. For example,
if X does not contain a topological copy neither Fω nor W , then X is a tree. If X does
not contain a topological copy of G3 then we obtain that X verifies the Periodic-Recurrent
Property (the PR Property) which for dendrites is relevant under the point of view of
Topological Dynamics. As an application of the former results, we give a unified proof of
the fact that compact intervals of the real line [a, b] (a ̸= b), arcs and trees have also the PR
Property.
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1. Introduction, definitions and previous results

The interest on dynamical systems on dendrites has been increasing in last
years mainly because its appearance in Julia and Fatou problems in complex
dynamics. Such interest has extended also to the setting of general continua
of low dimension.

In order to understand the behaviors of dynamical systems (X, f) where
X is a dendrite and f : X → X is continuous (written f ∈ C(X)), we consider
three well known examples of different types of dendrites whose structures are
representative and relevant. This starting point allow us further consideration
of similar problems when X is a general continuum of low dimension like
sin( 1x)-continuum, Warsaw circle, dendroids, etc
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05688-C02-02 from Ministerio de Ciencia e Innovación (Spain), Project 08667/PI-08 Fun-
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Before doing this, it is necessary some introductory definitions and prop-
erties which can be seen in more detail in some references, in particular in [10]
and [2].

Definition 1. A continuum is a non empty, compact, connected metric
space. A sub-continuum is a continuum that is a subset of a continuum.

Definition 2. A metric space is a Peano space if it is locally connected.
A Peano continuum is a Peano space which is a continuum.

Next result is an interesting description of Peano continua.

Theorem 1. (Hahn-Mazurkiewicz) Every Peano continuum is a contin-
uous image of the closed interval [0, 1].

Definition 3. A dendrite is a Peano continuum that does not contain
simple closed curves. A sub-dendrite is a dendrite that is a subset of a dendrite.

Definition 4. Let (X, τ) be a topological space and p ∈ X. Then,

1. If X\{p} is non-connected, then p is a cut point of X. If X\{p} is
connected, p is not a cut point of X.

2. Let β be a cardinal number. It is said that p has an order less or equal
than β (Ord(p,X) ≤ β) whether for every U ∈ τ holding p ∈ U , there is
V ∈ τ such that p ∈ V ⊂ U and ♯(∂(V )) ≤ β, (with ∂(V ) we denote the
boundary of V ). The order of p is β (ord(p,X) = β) if ord(p,X) ≤ β
and for every α < β we have ord(p,X) ≤ α.

3. p is a end point of X if Ord(p,X) = 1. E(X) denotes the set of end
points of X.

4. p is a branching point of X if Ord(p,X) ≥ 3. B(X) denotes the set of
branching points of X.

5. p is a point of order ω of X if for every n ∈ N there is Un ∈ τ such that
p ∈ Un and that for every V ⊂ Un is ♯(∂(V )) > n.

After such definitions we recall the following interesting characterizations.
Their proofs can be seen in [10] or [2].

Theorem 2. (Hahn-Mazurkiewicz) Let X be a continuum having more
than one point. Then it is a dendrite if and only if each point of X is either
a cut or an end point.
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Theorem 3. (Hahn-Mazurkiewicz) Let X be a dendrite, then the set
B(X) is countable.

Definition 5. Let X be a topological space. Then,

1. An arc in X is a topological sub-space of X homeomorphic to [0, 1].

2. A graph in X is a continuum obtained as the finite union of arcs, where
two of them either are disjoint or intersect in one or both end points.

3. A tree in X is a graph that does not contain simple closed curves.

Further we are introducing three particular dendrites which summarize
important properties in relation with two facts; deciding when a dendrite is a
tree and finding conditions for a dendrite to contain an homeomorphic copy
of other topological structure, in particular of other dendrites.

Figure 1: Dendrite Fω for n ≥ 2

2. Dendrites Fω and W

Fω is the graph of the following set in C

Fω = {r exp(2πi
n

) ∈ C : r ∈ [0,
1

n
] for n ∈ N}

which has a unique branching point of order ω (see Figure 1).
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Proposition 1. Let X be a dendrite having a point of order ω. Then X
contains a topological copy of Fω.

Proof. The homeomorphism can be constructed identifying the points of
order ω and enumerating the corresponding branchings to be able of trans-
forming them continuously.

The second dendrite W is

W = ([0, 1]× {0}) ∪ (∪{{ 1
n
} × [0,

1

n
] : n ∈ N})

(see Figure 2). W can be seen in R2 as

W = ab1 ∪ (∪{anbn : n ∈ N})

where a = (0, 0) and for every n are an = ( 1n ,
1
n) and bn = ( 1n , 0), (ab1 denotes

the segment joining the points a and b1 and similarly for anbn). First we give

Figure 2: Dendrite W

a consequence of not having a topological copy of W .

Proposition 2. Let X be a dendrite not containing a topological copy
of W . Then for every arc, J ⊂ X, we have J ∩B(X) is a finite set.

Proof. Let us suppose on contrary that there exists an arc J ⊂ X such
that J ∩ B(X) be infinite. Taking a countable number of such points we
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can define a homeomorphism transforming J into [0, 1] and the points ( 1n , 0)
into the chosen points. From this it is immediate that X would contain a
topological copy of W .

One interesting question is to decide when a dendrite can be a tree.

Theorem 4. Let X be a dendrite. Then X is a tree if and only if X does
not contain a topological copy neither of Fω nor of W .

Proof. If X is a tree, then every sub-continuum is also a tree (see [10]).
By the previous definitions, neither Fω nor W are trees and therefore X
can not contain topological copies of them. By other hand, let us suppose
X does not contain a topological copy of such dendrites. Then all points
of X are of finite order. One possibility is that X contains a finite num-
ber of end points. In such case it would be a graph (see [10]) and since
it is contained in a dendrite then it would be a tree. Let us suppose that
X has an infinite number of end points and choose a convergent non con-
stant sequence (xn)

∞
n=1 of end points of X. Let x = limn→∞xn. Since

ord(x,X) is finite, we can suppose that all points belong to the same com-
ponent of X\{x}. We introduce now an ordering ≺x in the following way:
p ≺x q if p ∈ xq (which means here the unique arc joining x with q). Let
pn = inf≺x{x1, ..., xn}. It results that (pn)

∞
n=1 is a decreasing sequence and

since pn ∈ xxn we have that limn→∞pn = x. Choose now a subsequence
(pnk

)∞k=1 such that pni ̸= pnj for i ̸= j. Let Y be the smallest continuum con-
taining the points xnk

for k ∈ N. Then there is an homeomorphism h : Y → W
such that h(xnk

) = ak and h(pnk
) = bk, therefore X would contain a topolog-

ical copy of W . It finishes the proof.

Corollary 1. Let X be a dendrite having a finite number of branching
points and such that all its points has a finite order. Then X is a tree.

Proof. The dendrite of the statement can not contain a topological copy
neither Fω nor W . Using the former theorem we obtain that X is a tree.

3. Gehman dendrites

Fix n ≥ 3 a positive integer and α1, α2, ..., αi ∈ {0, 1, ..., 2n − 4} = α
chosen numbers. We denote by En

α the compact interval composed of numbers
x ∈ [0, 1] such that the first i digits of x in base 2n−3 are exactly α1, α2, ..., αi,
that is,
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En
α = [

α1

2n− 3
+ ...+

αi

(2n− 3)i
,

α1

2n− 3
+ ...+

αi−1

(2n− 3)i−1
+

αi+1

(2n− 3)i+1
]

When all digits α1, α2, ..., αi are even, we denote by pnα the point of the plane
whose first coordinate is the center of the interval En

α and 1
2i

the second. For

i = 0 we have En = [0, 1] and pn = (12 , 1).

Definition 6. The set

Gn =
∪

{pnα1,α2,...,αi−1
pnα1,α2,...,αi

: i ∈ N, α1, α2, ..., αi ∈ {0, 1, ..., 2n− 4}}

for arbitrary n is the Gehman dendrite of order n. When n = 3, we say that
G3 is simply the Gehman dendrite.

Figure 3: Dendrite G3

Gehman dendrite G3 appeared in the literature as an structure called
infinite binary tree (see [4]). In Figure 3 it is supposed to continue indefinitely
at the bottom. Each branching point is connected to two branching points
down and the upper point has no predecessors. The end points of such infinite
binary tree is a Cantor set C [4]. We may assume that C = {0, 1}∞. It is
valuable to consider the homeomorphism g introduced in [7] in the following
way. For each n ≥ 1 let gn : {0, 1}n → {0, 1}n be the cyclic permutation
given by gn(a1, ..., an) = (b1, ..., bn) where b1 = a1 + 1(mod 2) for 2 ≥ i ≥ n,
bi = ai+1(mod 2) if ai−1 = 1 and bi−1 = 0 and bi−1 = a1, ..., an) for all n ≥ 1.
g is usually called the binary adding machine which has particular properties
when we consider dynamics on dendrites and which will be used further.

Given a dendrite X it is really difficult to test if it contains a topological
copy of G3. The following result gives us a sufficient condition for it.
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Theorem 5. Let X be a dendrite. Let S be a non-empty subset of X
dense in itself and holding the property that S ∩X is a discrete set for every
arc B. Then X contains a topological copy of G3.

Proof. Given p ∈ X, a point x ∈ X is said to be end with respect to S, if
x ∈ (pz ∩ S) and for every s ∈ S, is x /∈ (ps\{s}).

The proof is made in several steps,

Statement 1. Given p ̸= q two points in X, such that q ∈ S, there exists
z ∈ X holding q ∈ pz, z ∈ (pz ∩ S) and z /∈ (ps\ {s}). In particular, z is an
end point with respect to S.

To prove it we introduce T = {x ∈ X : x ∈ (px ∩ S) and q ∈ px} and
define on it a partial ordering, x ≺ y if and only if px ⊂ py. With this
ordering, T has a maximal element. First observe that T ̸= ∅ since q ∈ T .
We use now the Brouwer Maximality Principle to see that a totally ordering
sequence of points has an upper bound. Let (xn)

∞
n=1 a sequence of elements

of T such that xn ≺ xn+1 for every n ∈ N. It means px1 ⊂ px2 ⊂ ... and
since X is a dendrite, then there is x ∈ X such that pxn → px for an arc
px =

∪
{pxn : n ∈ N}. It is clear that x ∈ T and xn ≺ x for every n ∈ N.

Therefore there is a maximal element z in (T,≺). If would exist s ∈ S holding
z ∈ (ps\{s}), then q ∈ pz ⊂ ps. It would have s ∈ T , z ≺ s and z ̸= s
which contradicts the maximality of z. This proves that for every s ∈ S is
z /∈ (ps\{s}) and the proof of the first assertion is over.

Now fix p⋆, q⋆ ∈ S and x0 ∈ (p⋆q⋆\{p⋆, q⋆}). For every n ∈ N we construct
inductively two subsets of X, En = {p(α) : α ∈ {0, 1}n} and Rn = {q(α) :
α ∈ {0, 1}n} with the properties:

1. x0 ∈ p(0)p(1),

2. For every α ∈ {0, 1}n, p(α) is an end point with respect to S,

3. For n ≥ 2 and α ∈ {0, 1}n−1 is p(α, 0) = p(α),

4. If α = (a1, ..., an−1) ∈ {0, 1}n, then q(α) ∈ (x0p(α)\{x0, p(α)}) and
diam(p(α)q(α)) < 1

2n . Moreover if n ≥ 2 then q(a1, ..., an−1) ∈ (x0q(α)\
{q(α)}),

5. If n ≥ 2 and α = (a1, ..., an−1) ∈ {0, 1}n−1, then (x0p(α, 0)∩x0p(α, 1)) =
x0q(α).

To start with the construction, we apply first the Statement 1 to x0 and
p⋆ ∈ S. Then there exists p(0) ∈ X such that p⋆ ∈ x0, p(0) ∈ x0p(0) ∩ S and
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for every s ∈ S is p(0) /∈ (x0s\{s}). Now if we apply again Statement 1 to
x0 and q⋆ ∈ S there exists p(1) ∈ X such that q⋆ ∈ x0p(1), p(1) ∈ x0p(1) ∩ S
and for every s ∈ S is p(1) /∈ (x0s\{s}). Clearly p(0) and p(1) are end points
with respect to S.

We continue with the procedure and construct En and Rn. Once they
have been constructed, they hold the following statements,

Statement 2. Let α = (a1, ..., an) ∈ {0, 1}n and β = (b1, ..., bn) ∈ {0, 1}n
with α ̸= β. Then p(α) ̸= p(β).

By the construction of p(0) and p(1), the statement holds for n = 1 since
p(0) ̸= p(1). Assume n > 1 and that p(α) = p(β). Let r ∈ {1, ...n} such
that (a1, ...ar−1) = (b1, ...br−1) = γ and ar ̸= br. From properties 4 and 5 it
is immediate to see that for r = n we reach a contradiction. Let us suppose
r < n. By properties 3 and 4, q(γ, ar) and q(γ, br) belong to x0p(α) = x0p(β),
that is, q(γ, 0) and q(γ, 1) belong to x0p(α). From it can be supposed that
x0q(γ, 0) ⊂ x0q(γ, 1). Then x0q(γ, 0) ⊂ (x0p(γ, 0) ∩ x0p(γ, 1)) = x0q(γ).
Therefore x0q(γ, 0) ⊂ x0q(γ), but this contradicts property 4 and as a conse-
quence is p(α) ̸= p(β).

Statement 3. If α, β ∈ {0, 1} and α ̸= β, then p(α) /∈ x0p(β).

We suppose that p(α) ∈ x0p(β). Since p(β) ∈ (x0p(β) ∩ S) and p(α) ̸=
p(β) there is s ∈ (x0p(β)∩S) such that s /∈ x0p(α). Then s ∈ (p(α)p(β)\p(α)).
Therefore, p(α) ∈ (x0s\{s}). It contradicts that p(α) is an end point with
respect to S.

To finish the construction, we suppose we have constructed the sets En

and Rn−1 holding the desired conditions. For every α ∈ {0, 1}n we fix a
point q ∈ x0p(α) such that diam(qp(α)) < 1

2n , qp(α) ∩ (
∪
{x0p(β) : β ∈

{0, 1}n\{α}}) = ∅ and q ̸= p(α). Since p(α) is an end point with respect
to S, there is s ∈ (qp(α) ∩ S)\{s}). By hypothesis {s} an isolated point of
x0p(α) ∩ S and by the general characterization of dendrites (see [2]), there
exists a connected by arcs neighborhood U of {s} such that U ∩ x0q = ∅
and U ∩ (x0p(α) ∩ S) = {s}. Besides, there exists z ∈ ((U ∩ S)\{s}) and
therefore z /∈ x0p(α). Then we define q(α) ∈ x0p(α) as the point holding
zq(α) ∩ x0p(α) = {q(α)}. Since U is connected by arcs and s ∈ x0p(α) we
have q(α) ∈ qp(α). Therefore diam(p(α)q(α)) < 1

2n . If q(α) = p(α), then
p(α) ∈ (x0z\{z}), but it contradicts that p(α) is an end point with respect to
S. Therefore, q(α) ̸= p(α) and q(α) ∈ (x0p(α)\{x0, p(α)}).
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By the application of Statement 1 to x0 and z, we have p(α, 1) ∈ X such
that z ∈ x0p(α, 1) and also that p(α, 1) is an end point with respect to S. We
complete the construction taking p(α, 0) = p(α).

Until this point,we have constructed q(α) for every α ∈ {0, 1}n and p(β)
for every β ∈ {0, 1}n+1. The sets were constructed holding the properties
1, 2 and 5 and the first part of 4. It is left to prove the second part of such
property. For this, let α = (a1, ..., an−1) ∈ {0, 1}n−1 and take an ∈ {0, 1} and
we want to prove that q(α) ∈ (x0q(α, an)\{q(α, an)}). By the property 5 we
have q(α)x0 = p(α, an)∩ x0p(α, 1− an) and from the construction of q(α, an)
is qp(α, an) ∩ x0p(α, a − an) = ∅. Then q(α) ∈ (x0p(α, an)\qp(α, an)), but
q(α, an) ∈ qp(α, an). Therefore, q(α) ∈ (x0q(α, an)\{q(α, an)}) and it finishes
the inductive construction.

Let us introduce two sets,

∆ =
∪

{{0, 1}n : n ∈ N}

and

G = (
∪

{x0p(α) : α ∈ Λ})

Then G is a dendrite and we want to prove that it is homeomorphic to the
Gehman dendrite. It can be proved (see [10]) that it is sufficient to prove that
the the set E(G) is homeomorphic to the Cantor set and that all its branching
points are of order three.

Statement 4. E(G) is homeomorphic to the Cantor set.

In [6], can be seen that E(G) = {p(α) : α ∈ Λ}. Then E(G) is compact
and using Theorem 7.14 from [10], it is sufficient to prove that it is totally
disconnected and perfect.

To see that E(G) is totally disconnected, suppose by contrary that there
exists a connected component A containing more than one point. Since E(G)
is closed, then A is a dendrite. That is, there exists an arc B ⊂ A. Let
x be the unique point of B for which is x0x ∩ B = {x}. Let y ∈ (B\{x})
and U a connected by arc neighborhood of y holding U ∩ x0x = ∅. We
choose α ∈ Λ such that p(α) ∈ U . Since x0x ∪ B ∪ yp(α) is connected, then
x0p(α) ⊂ (x0x ∪ B ∪ yp(α)) and then (x0p(α)\{p(α)}) ⊂ (x0x ∪ yp(α)). We
obtain that (x0p(α)\{p(α)}) is connected and x0x ∩ yp(α) = ∅. Therefore,
(x0p(α)\{p(α)}) ⊂ x0x. This implies p(α) ∈ x0x, but p(α) ∈ U and U∩x0x =
∅, which it is a contradiction and the claim is proved.
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Now we claim that E(G) is perfect. Since E(g) is closed, it is sufficient
to prove that does not contain isolated points. This is equivalent to prove
that the set {p(α) : α ∈ Λ} has not isolated points. Let α = (a1, ..., an) ∈ Λ
and ϵ > 0. Now apply the following result which is easy to prove: Let A
be an arc and A ⊂ X, where X is a dendrite, p ∈ A, ϵ > 0, d a distance
in X and B(p, ϵ) the corresponding ball. Then there exists δ > 0 such that
r−1(A ∩ B(p, δ)\{p}) ⊂ B(p, ϵ) (r denotes a retraction on the dendrite X
(see [10]). Apply the former result to the arc x0p(α) and the point p(α) and
let δ the corresponding constant. Since q(α), q(α, 0), q(α, 0, 0), ... converges to
p(α), then there exists β = (α, 0, ..., 0) ∈ Λ such that d(p(α, q(β)) < δ. If A =
x0p(α), then rA(p(β, 1)) = q(β) (where rA denotes the retraction associate
to A), which is a consequence of property 5 since x0p(β, 0) ∩ x0p(β, 1) =
x0q(β) and to the fact that q(β) ̸= p(β, 0), p(β, 0) ̸= p(β, 1) which implies
that x0p(α) ∩ p(β, 1) = {q(β)}. Since q(β) ∈ x0p(α) ∩ (B(p(α, δ)\{p(α}), we
conclude that p(β, 1) ∈ B(p(α), ϵ) and therefore E(G) has not isolated points.

Statement 5. All branching points of G are of order three.

Suppose on the contrary that there exists a point x ∈ G or order at
least four. Then there exist four points x1, x2, x3, x4 ∈ (G\{x}) such that
xxi ∩ xxj = {x} if i ̸= j. Since x /∈ E(G) and E(G) is closed, we can
suppose (xx1 ∪ xx2 ∪ xx3 ∪ xx4) ∪ E(G) = ∅. Let y0 be the unique point in
(xx1 ∪ xx2 ∪ xx3 ∪ xx4) such that x0y0 ∩ (xx1 ∪ xx2 ∪ xx3 ∪ xx4) = {y0}. We
can suppose for example that y0 ∈ xx4. Since x1, x2, x3 /∈ E(G) there exist
α, β, γ ∈ Λ such that x1 ∈ x0p(α), x2 ∈ x0p(β) and x3 ∈ x0p(γ). Adding zeros
if it is necessary, we can assume that α = (a1, ..., am), β = (b1, ..., bm) and γ =
(c1, ..., cm). If α = β, then {x, x1, x2} ⊂ x0p(α). This implies xx1 ⊂ xx2 or
xx2 ⊂ xx1 which is a contradiction. Then it is α ̸= β. Let r ∈ {1, ...,m} the
smallest index such that ar ̸= br and let q1 = x0 if r = 1 or q1 = q(a1, ..., ar−1)
if r ≥ 2. We have (x0p(α)) ∩ x0p(β) = x0q1. It is easy to see that q1 = x and
x0p(α)∩x0p(β) = {x}. In a similar way we obtain β ̸= γ and x0p(β)∩x0p(γ) =
{x}. Using property 5 we have

q(a1, ..., ar) ∈ (x0p(α)\x0q1) ⊂ (x0p(α)\{x})
q(b1, ..., br) ∈ (x0p(β)\x0q1) ⊂ (x0p(β)\{x})
q(c1, ..., cr) ∈ (x0p(γ)\x0q1) ⊂ (x0p(γ)\{x}).

But since (a1, ..., ar) = (b1, ..., br) = (c1, ..., cr) and {ar, br, cr} ∈ {0, 1} then
two of them will be equal which is a contradiction since x0p(α)\{x}, x0p(β)\{x}
and x0p(γ)\{x} are pairwise disjoint. This ends the proof of the claim.
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4. The Periodic Recurrrent Property

In this section we will consider discrete dynamical systems given by the
pair (X, f) whereX is a dendrite and f : X → X a continuous map. Generally
speaking we are dealing with the knowledge of the behavior of all sequences
(fn(x))∞n=0 where fn = f ◦ fn−1 for any n ∈ N and f0 = identity on X.

Definition 7. 1. x ∈ X is a periodic point of minimal period p if
fp(x) = x and f i(x) ̸= f j(x) for i ̸= j and 1 ≤ i, j ≤ p. When
p = 1 we say that p is a fixed point of (X, f).

2. x ∈ X is a recurrent point if for every open neighborhood of U(x) there
exists an n ∈ N such that fn(x) ∈ U(x).

Such type of behaviors means that in strong and weaker way the point x
returns close to x by the action of f .

Let X be a continuum and f ∈ C(X). We recall the following definitions
concerning the behavior of continuous and recurrent points.

Definition 8. 1. The discrete dynamical system (X, f) has the Periodic-
Recurrent Property (PR Property) if P (f) = R(f) (P(f) denotes the set
of all periodic points of (X, f) and R(f) the set of its recurrent points.
In general is P (f) ⊆ R(f)).

2. A continuum X has the PR Property if P (f) = R(f) for all f ∈ C(X).

3. A family X of continua has the PR Property if every X ∈ X has the PR
Property.

In discrete dynamical systems, the PR Property means that the most
interesting dynamical behaviors occur in P (f). For example,

• All non-finite minimal sets are contained in it.

• For the topological entropy h(f) it holds h(f) = h(f |P (f)).

• For every normalized invariant measure µ is µ(P (f)) = 1 and no other
smaller closed invariant subset holds such property.

The problem we are dealing is: have all dendrites the PR Property?
In general the answer is negative (see [7]), for an example on this using

the binary adding machine technique (see section 3). Therefore the most
appropriated question is: what are the condition a dendrite has to fulfilled to
hold the PR Property? In next result we prove that some type of dendrites
have not the PR Property. The proof follows a similar line than in ([6] and [1]).
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Theorem 6. The Gehman dendrite G3 has not the PR Property.

Proof. Let g : C → C from [7] where C is the Cantor set which verifies
P (g) = ∅ and R(g) = C. Since C is homeomorphic to E(G3) we denote
again by g : E(G3) → E(G3) the composition of the first function with the
homeomorphism. Now introduce another function g1 : {p} ∪ E(G3) → {p} ∪
E(G3) given by g1(p) = p and g1|E(G3) = g. In [10] it is proved that every
dendrite is an absolute retract (see [10] for this notion) and therefore there is
an extension of g1 (see for example [8]). Let us denote it by f1 : G

3 → G3.
Let h : [0, 1] → [0, 1] holding h(0) = 0, h(1) = 1 and h(s) > s for every

s ∈ (0, 1) (for example, h(s) =
√
s). Let πx and πy the projections in R2. We

observe that for any t, π−1
y ([t, 1]) is a sub-dendrite of G3. Then there exists a

monotone retraction rt : X → π−1
y ([t, 1]).

For every q ∈ G3, let t = h(πy(q)) and define a map f : G3 → G3

by f(q) = h(πy(q)). It is clear that f is continuous and onto. Moreover,
f |{p} ∪ E(G3) = g1 and f |E(G3) = g. For every q ∈ (G3\({p}) ∪ E(G3)
we have πy(q) < πy(f(q)). That is, if q ∈ G3 is such that 0 < πy(q) < 1,
then f is lifted up and no of such points belong to R(f). We conclude that
R(f) ⊂ ({p}∪E(G3). By the definition is R(g) ⊂ R(f) and p is a fixed point.
Then R(f) = {p} ∪ E(G3). Since P (f) = {p}, it follows that G3 has not the
PR Property.

Theorem 7. Let X be a dendrite. If X contains a topological copy of
G3, then X has not the PR Property.

Proof. Since X contains a topological copy of G3, there exists a monotone
retraction r : X → G3. Let f : X → X the function introduced in the former
theorem. If g = f ◦ r, then it is R(g) = R(f) and P (g) = P (f). Since
P (f) ⊂ R(f) then P (g) ⊂ R(g) and X has not the PR Property.

Corollary 2. For every n ∈ N, the dendriteGn has not the PR Property.

Proof. It is a consequence of the fact that all dendrites of the form Gn

with n ≥ 3 contains a topological copy of G3.

Now we will try to find sufficient conditions for a dendrite to fulfill R(f) =
P (f) for all f ∈ C(X).

Lemma 1. Let X be a dendrite and A ⊂ X an arc. Let f : X → X a
continuous map and let p0 < q0 points in A such that p0 < r(f(p0)) and
r(f(q0)) < q0. Then there exists z ∈ A such that f(z) = z and p0 < z < q0.
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Proof. Let p, q ∈ p0q0 such that p0 < p < q < q0, p < r(f(p)) and
r(f(q)) < q. Consider now the map r ◦ f |A : A → A. Then by the election of
p and q, there exists y ∈ pq such that y = r(f(y)).

Let B = {x ∈ X : f(x)r(f(x))} ∩ r−1(pq). Then it is B ̸= ∅ since
y ∈ B. To prove that B is closed, take a sequence (xn)

∞
n=1 ⊂ B convergent

to a point x ∈ X. We have that f(xn) → f(x) and r(f(xn)) → r(f(x))
by continuity and since X is a dendrite, is f(xn)r(f(xn)) → f(x)r(f(x)).
Therefore x ∈ f(x)r(f(x)) and x ∈ B and then B is closed. Let the family
B = {xr(f(x)) ∈ C(X,X) : x ∈ B}. Let {xnr(f(xn))}∞n=1 a sequence in B
convergent to a D ∈ C(X). Let x ∈ B such that xn → x. Since xnr(f(xn)) →
xr(f(x)), we conclude that D = xr(f(x)) which proves that D ∈ B and B is
closed in the standard topology of C(X,X).

Let µ : C(X,X) → R a Whitney map (see [10]). By the compactness
of B there exists z ∈ B such that µ(xr(f(x))) ≤ µ(zr(f(z))) for every
x ∈ B. We claim that f(z) = z. To prove it, suppose that on the con-
trary is f(Z) ̸= z. Since z ∈ f(z)r(f(z)) we have f(z) /∈ zr(f(z)) and then
f(z) /∈ A. By previous results, there exists an open and connected by arcs
neighborhood of f(z), U , such that U ∩ (A∪ zr(f(z))) = ∅. Then there exists
z1 ∈ (zf(z)\{z, f(z)}) such that zz1 ∩ U = ∅ and f(zz1) ⊂ U . Moreover,
f(z1)r(f(z)) ⊂ f(z)r(f(z))∪U since the last set is a continuum. This implies
that f(z1)r(f(z)) ∩A = {r(f(z))} and therefore r(f(z1)) = r(f(z)).

On other hand, it is easy to see that z1 ∈ B and as a consequence of the
election of z we have µ(z1r(f(z1))) ≤ µ(zr(f(z))) which is a contradiction
since zr(f(z)) is contained properly in z1r(f(z1)). This implies f(z) = z.
Since p ≤ r(z) ≤ q, we conclude that p0 < r(z) < q0 and the proof is over.

Theorem 8. Let X be a dendrite. If X has not the PR Property, then
X contains a topological copy of G3.

Proof. Let f : X → X such that P (f) ̸= R(f). Then there exists p ∈
R(f)\P (f). Introduce now the set S = {fn(p) : n ∈ N}. Such set verifies:

S ⊂ R(f) :

Let n be a positive integer and ϵ > 0. Let δ > 0 such that d(fn(p),
fn(q)) < ϵ. Since p ∈ R(f), there exists m ∈ N such that d(p, fm) < ϵ. Then
is d(fn(p), fn(fm(p))) < ϵ. That is, fn(p) ∈ R(f) since ϵ is taken arbitrarily.

S ∩ P (f) = ∅ :

Let n ∈ N and ϵ > 0 such that B(p, ϵ) ∩ P (f) = ∅. Let m be such
that fm(p) ∈ B(p, ϵ). We can assume that m > n. Let ρ > 0 such that
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B(fm(p), ρ) ⊂ B(p, ϵ). Then there is δ > 0 such that d(fn(p), q) < δ implies
d(fm−n(fn(p)), fm−n(q)) < δ. Suppose now that there is q ∈ B(fn(p), δ) ∩
P (f). Then it is

fm−n(q) ∈ (B(p, ϵ) ∩ P (f).

This proves that fn(p) /∈ P (f).
To finish the proof we will test that S holds the condition of Theorem 5.

Firstly S ̸= ∅. Secondly S is dense in itself. To prove it let n a positive integer
and ϵ > 0. By the former property (1), we have m such that fm(fn(p)) ∈
B(fn(p), ϵ). By the property (2) is fn(p) /∈ P (f). Then fm+n(p) ̸= fn(p) and
S is dense in itself.

Thirdly, we are proving that if B is an arc, then B ∩S is a discrete subset
of X.

Let us suppose by the contrary that there is x ∈ B ∩ S which is not an
isolated point. Let x = fn(p). By the second property, there is ϵ > 0 such
that B(x, ϵ) ∩ P (f). Using the same arguments that in Theorem 5 there is
δ > 0 such that r−1(B ∩ (B(x, δ)\{x})) ⊂ B(x, ϵ). Let m > n such that
fm(p) ∈ (B(x, δ) ∩ (B\{x})) and xfm(p) ⊂ B(x, δ). We assume for example
that x < fm(p) where < is a given ordering in B. If g = fm−n, then x < g(x).

We are proving by induction that y ≤ r(gk(y)) for every y ∈ xg(x) and
every k ∈ N. For k = 1, suppose that on contrary there is y ∈ xg(x) such
that r(g(y)) < y. Since x < g(x) = r(gk(y)) and x < y we apply the former
Lemma to find a fixed point z of g such that x < r(z) < y ≥ g(x). Then
z ∈ r−1(B ∩ (B(x, δ)\{x})) ⊂ B(x, ϵ). But z = fm−n(z), that is, z ∈ P (f)
and it contradicts the election of ϵ and proves the first step of the proof.

Now suppose that y ≤ r(gk(y)) for all y ∈ xg(x). In particular, is g(x) ≤
r(gk+1(y)). Therefore is x < r(gk+1(x)). Repeating the argument, but now
with the map gk+1 we get that y ≤ r(gk+1(y)) for every y ∈ xg(x). This
completes the induction.

In particular, g(x) ≤ f(gk+1(x)) for every k and then is r−1({w ∈ B : w <
g(x)}) is an open neighborhood of x which does not intersect with {gk(x) : k ∈
N}. This proves that x is not a recurrent point of g, but R(g) = R(fm−n) =
R(f) and therefore, x /∈ R(f) which is a contradiction.

The conclusion is that S contains a topological copy of G3.

We obtain two important consequences of the former results. One is a
characterization of dendrites having the PR Property and the other is a dif-
ferent approach more transparent than the results got in the literature ([3]
and [11]) to prove that in the setting of compact intervals of the real line, arc
and tree maps, the PR Property is held.
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Theorem 9. (Illanes result) A dendrite X has the PR Property if and
only if does not contain a topological copy of G3.

Corollary 3. (Coven-Hedlund and Ye results) Let X be a compact
interval [a, b] , an arc or a tree, then X has the PR Property.

5. PR Property and chaoticity in Devaney sense

The former characterization of dendrites with the PR Property is not easy
to test. To our help it comes a sufficient condition obtained in [9]. This is the
contain of the following result.

Theorem 10. Let X be a dendrite and f ∈ C(X). If Card(E(X)) < c
(where c denotes the cardinal of the continuum), then f holds the PR Property.

Using Theorems 7 and 8 we have that if Card(E(X)) < c then X does not
contain a topological copy of G3. The PR Property allow us the description
of the chaotic character in the Devaney sense of any f ∈ C(X).

Definition 9. Let (X, f) be any discrete dynamical system where X is
a topological space. The system is transitive (or f is transitive) if given two
open sets U and V , there exists n such that fn(U) ∩ V ̸= ∅.

Definition 10. The system (X, f) is chaotic in the Devaney sense (re-
spectively, f is chaotic in the Devaney sense) if it is transitive and the set of
periodic points are dense in X.

Definition 11. A point x ∈ X is transitive with respect to f if O(f, x) =
(fn(x))

∞
n=0 = X (forward orbit of x). The set of transitive points of the system

will be denoted by Tr(f).

In the following result, X will be a dendrite and f ∈ C(X).

Theorem 11. Let (X, f) be a discrete dynamical system holding the PR
Property. Then f is chaotic in Devaney sense if and only f is transitive.

Proof. By one hand, it is evident that if f is chaotic, then it is transitive.
On other hand, it is clear that Tr(f) ⊆ R(f). Then

X = Tr(f) ⊆ R(f) = P (f).

Using now Definition 10 we obtain the result.



226 f. balibrea

References

[1] J. Charatonik, On sets of periodic and recurrent points, Publ. Inst. Math.
(Beograd) (N.S.) 63 (77) (1998), 132 – 142.

[2] J. Charatonik, W. Charatonik, Dendrites, Aportaciones Mat. Comun.
22 (1998), 227 – 253.

[3] E.M. Coven, G.A. Hedlund, Continuous maps of the interval whose pe-
riodic points form a closed set, Proc. Amer. Math. Soc. 79 (1980), 127 – 133.

[4] G. Edgar, “Measure, Topology, and Fractal Geometry”, Undergraduate Texts
in Mathematics, Springer-Verlag, Berlin, 1990.

[5] H. Kato, A note on periodic and recurrent points of maps of dendrites, Bull.
Austral. Math. Soc. 51 (1995), 459 – 461.

[6] A. Illanes, A characterization of dendrites with the periodic-recurrent prop-
erty, Topology Proc. 81 (1998), 221 – 235.

[7] H. Kato, A note on periodic points and recurrent points of maps of dendrites,
Bull. Austral. Math. Soc. 51 (1995), 459 – 461.

[8] K. Kuratowski, “Topology”, Volumes 1 and 2, Academic Press and PWN,
New York, 1966.

[9] J. Mai, E. Shi, R = P for maps of dendrites X with Card(End(X))< c,
Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19 (2009), 1391 – 1396.

[10] S.B. Nadler, “Continum Theory. An Introduction”, Pure and Applied
Mathematics 158, Marcel Dekker, New York, 1992.

[11] Xiangdon Ye, The centre and the depth of the centre of a tree map, Bull.
Austral. Math. Soc. 48 (1993), 131 – 142.


