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Abstract : After summarizing some necessary preliminaries and tools, including Berwald
derivative and Lie derivative in pull-back formalism, we present several equivalent conditions,
each of which characterizes Berwald manifolds among Finsler manifolds. These range from
Berwald’s classical definition to the existence of a torsion-free covariant derivative on the base
manifold compatible with the Finsler function, the vanishing of the h-Berwald differential
of the Cartan tensor and Aikou’s characterization of Berwald manifolds. Finally, we study
some implications of V. Matveev’s observation according to which quadratic convexity may
be omitted from the definition of a Berwald manifold. These include, among others, a
generalization of Z.I. Szabó’s well-known metrization theorem, and also lead to a natural
generalization of Berwald manifolds, to Berwald –Matveev manifolds.
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1. Introduction

Positive definite Berwald manifolds constitute the conceptually simplest
and the best understood class of Finsler manifolds. Their conceptual simplic-
ity is due to the fact that Berwald manifolds are affinely connected manifolds
at the same time, whose parallelism structure is related to the normed vector
space structure of the tangent spaces in the most natural manner: parallel
translations are norm preserving. Berwald himself called a Finsler manifold
an ‘affinely connected space’ if

(B) the connection parameters arising from the geodesic equation are inde-
pendent of the direction arguments.

∗ The first two authors were supported by Hungarian Scientific Research Fund OTKA
No. NK 81402.
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It turns out that the affine connection of a Berwald manifold is the Levi-
Civita connection of a Riemannian metric on the base manifold. This key
observation of Z.I. Szabó is the starting point of his structure theorem on
Berwald manifolds [19].

Our decision to write a comprehensive survey concerning Berwald’s condi-
tion (B) was strongly motivated by some e-mails between Vladimir Matveev
and the first author. A quotation from a letter of Matveev:

‘I always thought that a Finsler manifold is Berwald if and only if there
exists a torsion-free affine connection whose transport preserves the Finsler
function F . Is the statement correct? If yes, do you have a reference where it
is written?

Of course I understand that a Berwald metric (in a standard definition)
does have the above property: indeed, in this case the Chern connection is ac-
tually an affine connection, and it preserves the Finsler function F . Thus, my
question is essentially whether the existence of an affine connection preserving
the Finsler function implies that the metric is Berwald . . . ’ He also mentioned
that the question had appeared in a discussion with Marc Troyanov.

Our answer was affirmative. We did not find, however, any reference
where the statement was formulated explicitly and proved in a simple and
self-contained way.

To our request Matveev also sketched a possible proof, found by him and
Troyanov. Although their argumentation was not elaborated in every detail,
we found it nice and original. We thought, however, that it used rather heavy
tools from Riemannian geometry to a quite simple problem, and depended
too strongly on the assumption of positive definiteness.

Since the question is natural and important, we believed it useful to present
a proof which is as self-contained as possible, and which uses only the simplest
tools of Finsler geometry (and connection theory). Moreover, besides the
property formulated by Matveev, we present a number of other properties
that characterize Berwald manifolds among Finsler manifolds. Some of them
are folklore, or can be ferreted out from the literature (see, e.g., [2, 22]); we
collected them here, however, so that they would be more easily accessible. On
the other hand, in several problems, it is advantageous to have an appropriate
version of Berwaldian property (B).

We wrote this paper not only, or not primarily, for Finsler geometers,
and we hope that anyone with a basic knowledge of differential geometry
can fairly easily read it and will find it indeed useful. So in sections 2–4 we
collect the most necessary preparatory material concerning sprays, Ehresmann
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connections, (nonlinear) parallel translations, and some basic facts on Finsler
functions. In section 5 we formulate and prove several equivalents of (B); the
first of them is just a more precise reformulation of the relevant property. In
section 6 we present a detailed, index-free proof of a further nice and important
characterization of Berwald manifolds among Finsler manifolds, discovered by
T. Aikou [1]. To do this, we need an appropriate concept of ‘Lie derivative
along the tangent bundle projection’, which we briefly explain here; for more
details we refer to [10] and [20, 2.39].

In section 7 we leave the realm of classical Berwald manifolds. In
[15, 16, 17] Matveev and his collaborators drew attention to the fact that
the metrization of the affine connection of a Berwald manifold discovered by
Z.I. Szabó may be carried out in a more general setting. Namely, the quadratic
convexity of a Finsler function assured by our conditions (F1) – (F4) in section
4, may be weakened substantially. This observation leads to the less restric-
tive notion of Berwald –Matveev manifold. We devote the greater part of the
concluding section to the averaged metric construction explained first in [16]
(and later also in [15]), and to a completion of the proof of Theorem 1 in
Matveev’s paper [15]. In our arguments we utilize a trick which we learnt
from Matveev during an after-lunch conversation in Debrecen, April 2011.
Finally, we exhibit a further method to associate a Riemannian metric to a
Berwald –Matveev manifold in a natural way, applying Loewner ellipsoids.

2. Notations and definitions

2.1. Throughout the paper, M will be an n-dimensional (n ≥ 1) smooth
manifold whose underlying topological space is Hausdorff, second countable
and connected; C∞(M) is the real algebra of smooth functions on M .

2.2. The tangent bundle of M will be denoted by τ : TM → M . Anal-
ogously, τTM : TTM → TM will stand for the tangent bundle of the tangent
manifold TM . The shorthand for these vector bundles will be τ and τTM ,
respectively. The vector fields on M form a C∞(M)-module, which will be
denoted by X(M); o ∈ X(M) is the zero vector field on M . The deleted
bundle for τ is the fibre bundle τ̊ : T̊M → M , where T̊M := TM \ o(M),
τ̊ := τ � T̊M . The Lie bracket [X,Y ] of X,Y ∈ X(M) is the unique vector
field on M satisfying

[X,Y ](f) = X(Y f)− Y (Xf) , f ∈ C∞(M) .

2.3. If φ :M → N is a smooth mapping between smooth manifolds, its
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derivative is the bundle map φ∗ : TM → TN whose restriction (φ∗)p to a
tangent space TpM (p ∈M) is given by

(φ∗)p(v)(h) := v(h ◦ φ) , v ∈ TpM and h ∈ C∞(N) .

Two vector fields X ∈ X(M) and Y ∈ X(N) are φ-related if φ∗ ◦X = Y ◦φ; in
this case we writeX ∼φ Y . A vector field ξ on TM is called projectable if there
exists a vector field X on M such that ξ ∼τ X. In particular, ξ is said to be
vertical if ξ ∼τ o. The vertical vector fields form a (finitely generated) module,
denoted by Xv(TM), over the ring C∞(TM), which is also a subalgebra of
the real Lie algebra X(TM).

2.4. The vertical lift of a function f ∈ C∞(M) in C∞(TM) is fv := f◦τ ,
the complete lift of f is f c ∈ C∞(TM) defined by

f c(v) := v(f) , v ∈ TM .

There exists a canonical vertical vector field C on TM such that

Cf c := f c for all f ∈ C∞(M) ;

C is said to be the Liouville vector field (or radial vector field) on TM .

2.5. Let X be a vector field on M . The vertical lift Xv ∈ Xv(TM) of X
is the unique vertical vector field on TM such that

Xvf c = (Xf)v for all f ∈ C∞(M) .

The complete lift Xc ∈ X(TM) of X is the unique vector field on TM such
that

Xcf c = (Xf)c and Xcf v = (Xf)v for all f ∈ C∞(M).

If (Xi)
n
i=1 is a local frame for TM , then

(
Xv

i , X
c
i

)n
i=1

is a local frame for TTM ,
therefore

in order to define a tensor field on TM , it is sufficient to specify
its action on vertical and complete lifts of vector fields on M .

Thus there exists a unique type (1, 1) tensor field J on TM such that

JXv = 0 and JXc = Xv for all X ∈ X(M) ;

J is said to be the vertical endomorphism of X(TM) (or of TTM).
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2.6. d denotes the operator of exterior derivative, defined on a function
f ∈ C∞(M) and on a 1-form ω ∈ X∗(M) by

df(X) := Xf and dω(X,Y ) := Xω(Y )− Y ω(X)− ω
(
[X,Y ]

)
(
X,Y ∈ X(M)

)
.

The substitution operator iX , associated to a vector field X ∈ X(M), acts
on a type (0, k) or (1, k) (k ∈ N \ {0}) tensor field A on M by

iXA(X1, . . . , Xk−1) := A(X,X1, . . . , Xk−1) .

2.7. To any type (1, 1) tensor field A ∈ T1
1(M) ∼= End

(
X(M)

)
we as-

sociate a vertical vector field A ∈ Xv(TM), by prescribing its action on the
complete lifts of smooth functions on M by(

Af c
)
(v) := Aτ(v)(v)f , f ∈ C∞(M) and v ∈ TM .

Then we have
[
C,A

]
= 0.

2.8. By a semispray for M we mean a mapping

S : TM −→ TTM

satisfying the following conditions:

(S1) τTM ◦ S = 1TM ;

(S2) S is of class C1 on TM , smooth on T̊M ;

(S3) JS = C.

A semispray is called a spray if it also satisfies

(S4) [C, S] = S.

If a spray is of class C2 (and hence smooth) on TM , we speak of an affine
spray.

2.9. If (U , u) =
(
U , (ui)ni=1

)
is a chart on M , then(

τ−1(U), (xi, yi)ni=1

)
, xi := (ui)v , yi := (ui)c,

is a chart on TM , called the chart induced by (U , u). In our (not too frequent)
coordinate calculations Einstein’s summation convention will be applied: any
index occurring twice, once up, once down, is summed over.
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To conclude this section, we present the coordinate expressions of some
objects introduced above.

(i) If ξ ∈ Xv(TM), then

ξ � τ−1(U) = ξn+i ∂

∂yi
, ξn+i ∈ C∞(

τ−1(U)
)
.

(ii) In the induced coordinates, the Liouville vector field takes the form

C � τ−1(U) = yi
∂

∂yi
.

(iii) If f ∈ C∞(U), its complete lift is

f c = yi
(
∂f

∂ui
◦ τ

)
= (ui)c

(
∂f

∂ui

)v

.

(iv) If X ∈ X(M), X � U = Xi ∂
∂ui , then

Xv � τ−1(U) =
(
Xi ◦ τ

) ∂

∂yi
,

Xc � τ−1(U) =
(
Xi ◦ τ

) ∂

∂xi
+ yj

(
∂Xi

∂uj
◦ τ

)
∂

∂yi
.

(v) If A ∈ T1
1(M), A

(
∂

∂uj

)
= Ai

j
∂

∂ui (j ∈ {1, . . . , n}), then

A � τ−1(U) = yj
(
Ai

j ◦ τ
) ∂

∂yi
.

(vi) If S : TM → TTM is a semispray, then

S � τ−1(U) = yi
∂

∂xi
− 2Gi ∂

∂yi
,

where the functions Gi : τ−1(U) → R are of class C1, and smooth on
τ̊−1(U).
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3. Ehresmann connections and parallel translations

3.1. Consider the vector bundle

π : TM ×M TM → TM ,

where TM ×M TM := {(u, v) ∈ TM × TM | τ(u) = τ(v)}, and π is the
restriction of the canonical projection pr1 : TM × TM → TM , (u, v) 7→ u
onto TM ×M TM .

In terms of the theory of bundles, π is just the pull-back of the tangent
bundle τ : TM → M by τ . The C∞(TM)-module of sections of π will be
denoted by Sec(π). For any vector field X on M , the mapping

X̂ : v ∈ TM 7−→ X̂(v) :=
(
v,X(τ(v))

)
∈ TM ×M TM

is a section of π, called a basic section. Basic sections generate the module
Sec(π) in the sense that locally any section in Sec(π) can be obtained as a
C∞(TM)-linear combination of basic sections. In particular, if

(
U ,

(
ui
)n
i=1

)
is a chart of M , then

(
∂̂

∂ui

)n

i=1
is a frame of TM ×M TM over τ−1(U).

We have a canonical C∞(TM)-linear isomorphism

vl : Sec(π) → Xv(TM) ,

called the vertical lift, given on the basic sections by

vl
(
X̂
)
:= Xv , X ∈ X(M) .

We shall also need the pull-back of the tangent bundle τ : TM → M by
the mapping τ̊ : T̊M →M ; this is the vector bundle

π̊ : T̊M ×M TM → T̊M .

We write Sec(̊π) for the C∞(T̊M)-module of its sections. As before, any vector
field on M determines a basic section in Sec(̊π). For the C∞(T̊M)-module
Tk
l (Sec(̊π)) of type (k, l) ∈ N × N tensors over the module Sec(̊π) we apply

the abbreviation Tk
l (̊π), with the agreement T0

0 (̊π) := C∞(T̊M). Elements
of Tk

l (̊π) are also mentioned as tensors (of type (k, l)) along τ̊ ; they have a
reasonable and natural pointwise interpretation.

We note finally that it will be useful to extend the derivative
τ∗ : TTM → TM of τ into a mapping

τ̃∗ : TTM −→ TM ×M TM
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given by
τ̃∗(w) :=

(
v, (τ∗)v(w)

)
, w ∈ TvTM .

3.2. By an Ehresmann connection in TM we mean a mapping

H : TM ×M TM → TTM

satisfying the following conditions:

(C1) H is fibre-preserving and fibrewise linear, i.e., for each v ∈ TM ,
w,w1, w2 ∈ Tτ(v)M , λ1, λ2 ∈ R,

H(v, w) ∈ TvTM ,

and
H(v, λ1w1 + λ2w2) = λ1H(v, w1) + λ2H(v, w2) ;

(C2) τ̃∗◦H = 1TM×MTM , or equivalently, (τ∗)v
(
H(v, w)

)
= w, for all v ∈ TM ,

w ∈ Tτ(v)M ;

(C3) H is smooth over T̊M ×M TM ;

(C4) for each p ∈M and v ∈ TpM , H(o(p), v) = (o∗)p(v).

Given v ∈ TM , if
Hv := H � {v} × Tτ(v)M,

then by (C1) , (C2) and (C4) Hv is an injective linear mapping of
Tτ(v)M ∼= {v} × Tτ(v)M into TvTM , therefore

HvTM := Im(Hv)

is an n-dimensional subspace of TvTM , called the horizontal subspace of
TvTM with respect to H. If

VvTM := Ker(τ∗)v

is the (canonical) vertical subspace of TvTM , then we have the direct decom-
position

TvTM = VvTM ⊕HvTM .

The mapping
h := H ◦ τ̃∗ : TTM −→ TTM
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is a projection operator: fibrewise linear and h2 = h. h is called the horizontal
projection, v := 1TTM − h is called the vertical projection associated to H.

The horizontal lift of a vector field X on M with respect to H (or
the H-horizontal lift, briefly the horizontal lift of X) is the vector field
Xh ∈ X

(
T̊M

)
defined by

Xh(v) := H(v,X(τ(v))) , v ∈ T̊M .

If (Xi)
n
i=1 is a local frame of TM , then (Xv

i , X
h
i )

n
i=1 is a local frame of

T T̊M (cf. 2.5). We define a C∞(T̊M)-linear mapping

V : X(T̊M) −→ Sec(̊π) ,

called the vertical mapping associated to H, specifying its action on the ver-
tical and horizontal lifts of vector fields on M by

V(Xv) = X̂ and V(Xh) = 0 , X ∈ X(M) .

The vertical projection and the vertical mapping are related by v = vl ◦V.
An Ehresmann connection H is said to be homogeneous if

[
Xh, C

]
= 0

for all X ∈ X(M); torsion-free if
[
Xh, Y v

]
−

[
Y h, Xv

]
− [X,Y ]v = 0 for all

X,Y ∈ X(M).
By a linear connection on TM (or, by an abuse of language, on M) we

mean a homogeneous Ehresmann connection which is of class C1 (and hence
smooth) over TM ×M TM . The motivation of this terminology will be clear
from the coordinate description below.

Remark. We draw a definite distinction between an Ehresmann connection
and a (possibly nonlinear) covariant derivative operator in Koszul’s sense,
although they are two sides of the same coin.

Coordinate description. Let H be an Ehresmann connection in
TM . Specify a chart

(
U ,

(
ui
)n
i=1

)
of M , and consider the induced chart(

τ−1(U),
(
xi, yi

)n
i=1

)
of TM . H determines unique functions

N i
j : τ

−1(U) → R , i, j ∈ {1, . . . , n} ,

smooth on τ−1(U) ∩ T̊M , such that for each j ∈ {1, . . . , n},(
∂

∂uj

)h

(v) =

(
∂

∂xj

)
v

−N i
j(v)

(
∂

∂yi

)
v

.
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They are called the Christoffel symbols or the connection parameters for H
with respect to the given charts. If H is homogeneous, the N i

j ’s are positive-
homogeneous of degree 1; if H is linear, they can be written in the form

N i
j =

(
Γi
jk ◦ τ

)
yk , Γi

jk ∈ C∞(U) ,

and hence they are linear functions on each tangent space.
For the vertical mapping associated to H we obtain

V
(

∂

∂xj

)
= V

((
∂

∂uj

)h

+N i
j

(
∂

∂ui

)v)
= N i

j

∂̂

∂ui
,

V
(

∂

∂yj

)
=

∂̂

∂uj
(
j ∈ {1, . . . , n}

)
.

3.3. We recall two basic examples of constructing an Ehresmann con-
nection.

(a) Crampin’s construction [7]. Any semispray S forM induces a torsion-free
Ehresmann connection such that

Xh =
1

2

(
Xc + [Xv, S]

)
for all X ∈ X(M) .

(b) Ehresmann connection from a covariant derivative. Let D be a covariant
derivative operator on M . There exists a unique Ehresmann connection
HD in TM such that the horizontal lift XhD of a vector field on M with
respect to HD is given by

XhD = Xc −DX ,

where DX ∈ Xv(TM) is the vertical vector field constructed from the
covariant differential DX, as described in 2.7. Since [Xc, C] = 0 and[
DX,C

]
= 0, it follows thatHD is a homogeneous Ehresmann connection.

If
(
U ,

(
ui
)n
i=1

)
is a chart on M , and the Christoffel symbols of D on U are

Γi
jk ∈ C∞(U), then(

∂

∂uk

)hD

=
∂

∂xk
−

(
Γi
jk ◦ τ

)
yj

∂

∂yi
,

so HD is a linear connection. An easy calculation shows that[
Xv,DY

]
= (DXY )v for all X,Y ∈ X(M) .
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Thus[
XhD , Y v

]
−

[
Y hD , Xv

]
− [X,Y ]v

= [Xc, Y v]− [Y c, Xv]− [X,Y ]v −
[
DX,Y v

]
+

[
DY ,Xv

]
= [X,Y ]v − [Y,X]v − [X,Y ]v + (DYX)v − (DXY )v

= −(DXY −DYX − [X,Y ])v,

therefore HD is torsion-free if, and only if, D is torsion-free.

3.4. Let a homogeneous Ehresmann connection H be specified in TM .
Let I be an open interval containing 0. Consider a (smooth) curve γ : I →M
and a vector field X : I → TM along γ (then τ ◦ X = γ). X is said to be
parallel along γ with respect to H (H-parallel, or simply parallel) if

Ẋ(t) = H(X(t), γ̇(t)) for all t ∈ I ,

briefly, if Ẋ = H(X, γ̇).
We note that if γ : I →M is an integral curve of a vector field Z ∈ X(M),

and X : I → TM is H-parallel along γ, then X is an integral curve of Zh, i.e.,
Ẋ = Zh ◦X.

Indeed, at any point t ∈ I, we have on the one hand

Ẋ(t) = H
(
X(t), γ̇(t)

)
= H

(
X(t), Z(γ(t))

)
;

on the other hand

Zh
(
X(t)

)
:= H

(
X(t), Z(τ(X(t)))

)
= H

(
X(t), Z(γ(t))

)
.

The general existence and uniqueness theorem for solutions of homoge-
neous ODEs (see, e.g., [4]) guarantees that, for any tangent vector v ∈ T̊γ(0)M ,
there exists a unique parallel vector field X along γ such that X(0) = v. If
t ∈ I, the mapping

(Pγ)
t
0 : T̊γ(0)M → T̊γ(t)M , v 7→ (Pγ)

t
0(v) := X(t) ,

is called parallel translation along γ from p = γ(0) to q = γ(t). (Pγ)
t
0 is a

positive-homogeneous diffeomorphism from T̊pM to T̊qM .
By an (H-)horizontal lift of a (smooth) curve γ : I →M we mean a curve

γh : I −→ T̊M

such that

τ ◦ γh = γ and γ̇h(t) ∈ Hγh(t)T̊M for each t ∈ I .
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Lemma 1. If γh is an H-horizontal lift of a curve γ : I → M , then γh is
parallel along γ, i.e.,

γ̇h(t) = H
(
γh(t), γ̇(t)

)
, t ∈ I .

Proof. Since

γ̇(t) = (γ∗)t

(
d

dr

)
t

=
(
(τ ◦ γh)∗

)
t

(
d

dr

)
t

= (τ∗)γh(t)

(
(γh)∗

)
t

(
d

dr

)
t

= (τ∗)γh(t)γ̇
h(t) ,

we obtain

γ̇h(t) = h
(
γ̇h(t)

)
= H

(
τ̃∗(γ̇

h(t))
)

= H
(
γh(t), (τ∗)γh(t)γ̇

h(t)
)
= H

(
γh(t), γ̇(t)

)
.

Lemma 2. Let X be a vector field on M , and let

φ :W ⊂ R×M −→M , (t, p) 7−→ φ(t, p) ,

be the flow generated by X. If H is an Ehresmann connection in TM , then
the flow generated by the H-horizontal lift Xh of X is the mapping

φh : W̃ −→ T̊M , (t, v) 7−→ φh(t, v) := φh
v(t) ,

where
W̃ :=

{
(t, v) ∈ R× T̊M : (t, τ(v)) ∈W

}
,

and for any fixed v ∈ T̊M , φh
v is the horizontal lift of the curve φτ(v) defined

by φτ(v)(t) := φ(t, τ(v)), starting from v.

Proof. We have to check that for any fixed v ∈ T̊M ,

˙p−qφh
v = Xh ◦ φh

v .

If t is in the domain of φh
v , then

Xh
(
φh
v(t)

)
: = H

(
φh
v(t), X ◦ τ(φh

v(t))
)
= H

(
φh
v(t), X ◦ φτ(v)(t)

)
= H

(
φh
v(t), φ̇τ(v)(t)

) Lemma 1

=
˙p−qφh
v(t) .
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As in the classical theory of linear connections, a regular curve γ : I →M
is said to be a geodesic of an Ehresmann connection H if its velocity field γ̇
is H-parallel, i.e.,

γ̈ = H(γ̇, γ̇) .

In local coordinates, the equations of parallel vector fields become

(P) Xi′ +
(
N i

j ◦X
)
γj ′ = 0 , i ∈ {1, . . . , n} ,

if X � γ−1(U) = Xi
(

∂
∂ui ◦ γ

)
, γi := ui ◦γ, and, as above, the functions N i

j are
the Christoffel symbols for H. In particular, the geodesic equations take the
form

(G) γi′′ +
(
N i

j ◦ γ̇
)
γj ′ = 0 , i ∈ {1, . . . , n} .

We need the following simple observation.

Lemma 3. If D is a torsion-free covariant derivative operator on M ,
and HD is the Ehresmann connection induced by D, then a vector field
X : I → TM along a curve γ : I → M is parallel with respect to D if,
and only if, it is HD-parallel.

Indeed, if the Christoffel symbols for D are the functions Γi
jk ∈ C∞(U),

then the Christoffel symbols for HD are N i
j =

(
Γi
jk ◦ τ

)
yk, hence

N i
j ◦X =

((
Γi
jk ◦ τ

)
yk
)
◦X =

(
Γi
jk ◦ τ ◦X

)
(yk ◦X) =

(
Γi
jk ◦ γ

)
Xk,

so equations (P) become

Xi′ +
(
Γi
jk ◦ γ

)
γj ′Xk = 0 , i ∈ {1, . . . , n} ,

which are the familiar equations of parallelism with respect to a covariant
derivative operator.

3.5. We say that an Ehresmann connection H in TM is compatible with
a C1-function F : TM → R if dF ◦ H = 0, or, equivalently, if

XhF = 0 for all X ∈ X(M) .

Lemma 4. Assume that H is a homogeneous Ehresmann connection in
TM , and let F : TM → R be a C1-function. The following are equivalent:
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(i) H is compatible with F ;

(ii) for any H-parallel vector field X : I → TM along a curve γ : I → M ,
the function

F ◦X : I → R

is constant.

Proof. Let d
dr be the canonical vector field on I (r := 1R). F ◦X can be

considered as a curve in R; then for each t ∈ R we have

(F ◦X)′(t) =
˙p−−−−qF ◦X(t) = ((F ◦X)∗)t

(
d

dr

)
t

= (F∗)X(t) ◦ (X∗)t

(
d

dr

)
t

= (F∗)X(t)

(
Ẋ(t)

)
= (dF )X(t)(H(X(t)), γ̇(t))) = dF ◦ H(X(t), γ̇(t)) ,

identifying in our calculation the derivative (F∗)X(t) with the differential
(dF )X(t), and taking into account the condition that X is parallel along γ.
The relation so obtained implies immediately that F ◦ X is constant if, and
only if, dF ◦ H = 0.

Lemma 5. Let S be a spray for M , and let H be the Ehresmann connec-
tion induced by S (see 3.3(a)). For a C1 function F on TM , the following are
equivalent:

(i) H is compatible with F ;

(ii) SF = 0 and XcF − S(XvF ) = 0 for any vector field X on M .

Proof. Let Xh be the horizontal lift of X ∈ X(M) with respect to H. Then

2XhF = XcF +Xv(SF )− S(XvF ) .

Since S is a spray, it is horizontal with respect to H, so (i) implies (ii). The
converse is immediate from the above formula.

4. Basic facts on Finsler functions

4.1. A function F : TM → R is said to be a Finsler function if

(F1) F is smooth on T̊M ;
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(F2) F is positive-homogeneous of degree 1, i.e., F (λv) = λF (v) for all
v ∈ TM and positive real number λ;

(F3) F (v) > 0 if v ∈ T̊M ;

(F4) the metric tensor g : Sec(̊π) × Sec(̊π) → C∞(T̊M) of (M,F ) given on
basic sections by

g
(
X̂, Ŷ

)
:=

1

2
Xv

(
Y vF 2

)
(X,Y ∈ X(M))

is fibrewise nondegenerate.

A Finsler manifold is a manifold endowed with a Finsler function on its
tangent manifold. More formally, a Finsler manifold is a pair (M,F ) consisting
of a manifold M and a Finsler function F on TM . For each v ∈ TM , F (v)
is called the Finsler norm of v. The function E := 1

2F
2 is mentioned as the

energy function of (M,F ).
By conditions (F1) and (F2), F is continuous on TM and vanishes on

o(M). The energy function is positive-homogeneous of degree 2, and it is of
class C1 on TM (see [20, 3.11, Property 4]). It may be shown that our require-
ments on a Finsler function also imply that the metric tensor is (fibrewise)
positive definite [13, 14].

Fact 1. Let (M,F ) be a Finsler manifold. There exists a unique spray S
for M , called the canonical spray of (M,F ), defined to be zero on o(M) and
satisfying

iSd(dE ◦ J) = −dE

on T̊M .

Fact 2. The torsion-free Ehresmann connection associated to the canon-
ical spray of a Finsler manifold by Crampin’s construction 3.3(a) is homoge-
neous and compatible with the Finsler function.

For a quite recent index-free proof of this fact we refer to [21].

Fact 3. (The uniqueness of the canonical connection.) If a torsion-free,
homogeneous Ehresmann connection is compatible with a Finsler function,
then it is the canonical connection of the Finsler manifold.

Since this result plays a key role in answering Matveev’s query, by the
suggestion of the referee, we present here a more or less complete proof.
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Let H be the Ehresmann connection associated to the canonical spray
S of a Finsler manifold (M,F ), and let H be a torsion-free, homogeneous
Ehresmann connection compatible with F , and hence also with the energy
function E. By a fundamental result of the theory of Ehresmann connections
(see, e.g., [20, Theorem 2 and Corollary 6 in 3.3]) there exists a spray S for
M such that H is generated by S, i.e.,

Xh := H(X̂) =
1

2

(
Xc + [Xv, S]

)
for all X ∈ X(M) .

Since H is compatible with E, it follows by Lemma 5 that

XcE − S(XvE) = 0 for all X ∈ X(M) .

However, this is just another formulation of the Euler – Lagrange equation

iSd(dE ◦ J) + dE = 0 .

Indeed, this relation holds identically over Xv(TM), while for any vector field
X on M we have

(iSd(dE ◦ J) + dE)(Xc) = S(XvE)−Xc(CE)− J[S,Xc]E +XcE

= −(XcE − S(XvE))

taking into account the fact that [S,Xc] is vertical. Now the non-degeneracy
of the 2-form d(dE ◦ J), assured by (F4), implies that S = S, and hence
H = H.

We note that another recent proof of Fact 3 can be found in [23]. It is
based on an idea of Z.I. Szabó, utilizing the so-called Rapcsák equation to
conclude the uniqueness statement. Actually, there is no essential difference
between the two argumentations.

Remark. If H is the canonical connection of a Finsler manifold, then, by
Lemma 4, the Finsler norm of a vector remains invariant under H-parallel
translations.

4.2. Let (M,F ) be a Finsler manifold with canonical spray S and canon-
ical connection H.

(a) By a geodesic of (M,F ) we mean a geodesic of its canonical connection,
or, equivalently, a regular curve γ : I → M whose velocity field is an
integral curve of the canonical spray:

γ̈ = S ◦ γ̇ .
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(b) H (as any Ehresmann connection) induces a covariant derivative operator

∇ : X
(
T̊M

)
× Sec

(̊
π
)
→ Sec

(̊
π
)
,

called the Berwald derivative of (M,F ), such that for all X,Y ∈ X(M),

vl∇Xh Ŷ =
[
Xh, Y v

]
, ∇Xv Ŷ = 0 .

Here, the first relation can be written in the equivalent form

∇Xh Ŷ = V
[
Xh, Y v

]
.

(c) The Berwald curvature of (M,F ) is the type (1,3) tensor B on the
C∞(

T̊M
)
-module Sec(̊π) such that

vlB
(
X̂, Ŷ , Ẑ

)
=

[
Xv,

[
Y h, Zv

]]
for all X,Y, Z ∈ X(M).

Lemma 6. If ∇ is the Berwald derivative induced by a torsion-free Ehres-
mann connection H, then for any vector fields X,Y on M ,

∇Xh Ŷ −∇Y hX̂ = [̂X,Y ] .

Proof. Applying the definition of ∇ and the torsion-freeness of H,

vl
(
∇Xh Ŷ −∇Y hX̂

)
= [Xh, Y v]− [Y h, Xv] = [X,Y ]v = vl [̂X,Y ] ,

whence our claim.

4.3. For the sake of readers who prefer the language of classical tensor
calculus, we present here the coordinate expressions of some important objects
introduced above.

Let (M,F ) be a Finsler manifold. Choose a chart
(
U ,

(
ui
)n
i=1

)
on M , and

consider the induced chart
(
τ−1(U),

(
xi, yi

)n
i=1

)
on TM .

(i) The components of the metric tensor of (M,F ) are the functions

gij := g

(
∂̂

∂ui
,
∂̂

∂uj

)
=

1

2

∂2F 2

∂yi∂yj
, i, j ∈ {1, . . . , n} .
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(ii) Over τ−1(U), the canonical spray of (M,F ) can be represented in the
form

S = yi
∂

∂xi
− 2Gi ∂

∂yi
,

where the spray coefficients are

Gi =
1

4
gij

(
∂2F 2

∂xr∂yj
yr − ∂F 2

∂xj

)
,

(
gij

)
:= (gij)

−1 .

(iii) The Christoffel symbols of the canonical connection and the Berwald
derivative are

Gi
j :=

∂Gi

∂yj
and Gi

jk :=
∂Gi

∂yj∂yk
,

respectively. Then(
∂

∂uj

)h

=
∂

∂xj
−Gi

j

∂

∂yi
, ∇(

∂

∂uj

)h

∂̂

∂uk
= Gi

jk

∂̂

∂ui
.

The components of the Berwald curvature are given by

B

(
∂̂

∂uj
,
∂̂

∂uk
,
∂̂

∂ul

)
= Gi

jkl

∂̂

∂ui
, Gi

jkl :=
∂Gi

jk

∂yl
,

from which it is clear that B is totally symmetric.

5. Berwald manifolds

5.1. In this subsection we present eight of the announced equivalents of
the Berwaldian property (B). Note that condition (B1) is just its restatement
in more precise terms.

Proposition 7. Let (M,F ) be a Finsler manifold. The following condi-
tions are equivalent:

(B1) (M,F ) is an ‘affinely connected space’ in Berwald’s sense [6], that is,
the Christoffel symbols Gi

jk of the Berwald derivative ‘depend only on
the position’.

(B2) The Berwald curvature of (M,F ) vanishes.
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(B3) There exists a torsion-free covariant derivative operator D on M such
that for any two vector fields X,Y on M we have

(DXY )v := [Xh, Y v] ,

where the horizontal lift is taken with respect to the canonical connection
of (M,F ).

(B4) The Berwald derivative ∇ of (M,F ) is h-basic in the sense that there
exists a covariant derivative operator D on M such that

vl∇Xh Ŷ = (DXY )v for all X,Y ∈ X(M) .

(B5) The Lie bracket
[
Xh, Y v

]
is a vertical lift for any vector fields X,Y on

M .

(B6) The canonical spray of (M,F ) is an affine spray.

(B7) The canonical connection of (M,F ) is a linear connection.

(B8) There exists a torsion-free covariant derivative operator D on M such
that the parallel translations with respect to D preserve the Finsler
norms of tangent vectors to M .

(B9) There exists a torsion-free covariant derivative operator D on M such
that the geodesics of D coincide with the geodesics of (M,F ) as
parametrized curves.

Proof. We organize our reasoning according to the following scheme:

(B1) ⇐⇒ (B2) ⇐⇒ (B5) ⇐= (B7)

=⇒ ⇐
=

=
⇒ ⇐

=

(B4) ⇐= (B3) =⇒ (B8) (B6)
=⇒

=⇒(B9)

.

(B1) ⇐⇒ (B2) This is obvious, since, as we have just seen, the compo-

nents of the Berwald curvature are the functions
∂Gi

jk

∂yl
.

(B2) =⇒ (B5) If B = 0, then, by 4.2(c), for any vector fields X,Y, Z on
M , we have [[

Xh, Y v
]
, Zv

]
= 0 .
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Since Xh ∼τ X, Y v ∼τ 0,
[
Xh, Y v

]
is vertical. This vertical vector field com-

mutes with any vertically lifted vector field, which implies easily that
[
Xh, Y v

]
is itself a vertical lift.

(B5) =⇒ (B2) If
[
Xh, Y v

]
is a vertical lift for each X,Y ∈ X(M), then

for any vector field Z on M ,

0 =
[
Zv,

[
Xh, Y v

]]
= vlB

(
Ẑ, X̂, Ŷ

)
= vlB

(
X̂, Ŷ , Ẑ

)
,

hence B = 0.

(B5) =⇒ (B3) For any vector fields X,Y on M , let

(DXY )v :=
[
Xh, Y v

]
.

Then the mapping

D : X(M)× X(M) → X(M), (X,Y ) 7→ DXY

is well-defined. From the nice properties of the Lie bracket
[
Xh, Y v

]
(see

the theorem in Section 3 in Crampin’s paper [8], or verify it immediately) it
follows that D is a covariant derivative operator onM with vanishing torsion.

(B3) =⇒ (B4)
(B4) =⇒ (B5)

}
These are obvious since vl∇Xh Ŷ = [Xh, Y v].

(B7) =⇒ (B5) We prove this by a simple coordinate calculation, using
the local apparatus introduced in 4.3.

Let X and Y be vector fields on M ,

X � U = X i ∂

∂ui
, Y � U = Y i ∂

∂ui
.

Then, over τ−1(U),

Xh =

(
Xj ∂

∂uj

)h

=
(
Xj ◦ τ

)( ∂

∂uj

)h

=
(
Xj ◦ τ

)( ∂

∂xj
−Gi

j

∂

∂yi

)
,

where the functions Gi
j are the Christoffel symbols of the canonical connection

of (M,F ). By its linearity,

Gi
j =

(
Γi
jl ◦ τ

)
yl , Γi

jl ∈ C∞(U) ,
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hence

Gi
jk =

∂Gi
j

∂yk
= Γi

jk ◦ τ .

Thus [
Xh, Y v

]
=

(
Xj ◦ τ

) [ ∂

∂xj
−Gi

j

∂

∂yi
, Y v

]
=

(
Xj ◦ τ

)([ ∂

∂xj
,
(
Y i ◦ τ

) ∂

∂yi

]
+

(
Y vGi

j

) ∂

∂yi

)
=

(
Xj ◦ τ

)(∂Y i

∂uj
◦ τ +

(
Y k ◦ τ

)
Gi

jk

)
∂

∂yi

=

((
Xj ∂Y

i

∂uj
+XjY kΓi

jk

)
∂

∂ui

)v

,

which proves that
[
Xh, Y v

]
is a vertical lift.

(B8) =⇒ (B7) As we saw in 3.3(b), the Ehresmann connection HD deter-
mined by D is torsion-free, homogeneous and linear. Lemma 3 and Lemma 4
guarantee that HD is compatible with F , therefore

HD = H := the canonical connection of (M,F )

by Fact 3 in 4.1, proving that H is a linear connection. (Wee see that the
heart of our answer to Matveev’s query is the uniqueness of the canonical
connection of a Finsler manifold!)

(B3) =⇒ (B8) Again consider the Ehresmann connection HD. By our
condition and the torsion-freeness of HD, for any vector fields X,Y on M we
have [

Xh, Y v
]
= (DXY )v =

[
Xv, DY

]
= [Xv, Y c]−

[
Xv, Y hD

]
= [X,Y ]v− =

[
Xv, Y hD

]
=

[
XhD , Y v

]
.

Thus, Xh −XhD is a vertical vector field which commutes with each vertical
lift, so it is itself a vertical lift. Therefore, it is positive-homogeneous of degree
0 and degree 1 at the same time, which is possible only if Xh −XhD = 0. We
conclude that HD = H, and HD is compatible with the Finsler function F . By
Lemma 3, HD generates the same parallelism as D, so, in view of Lemma 4,
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the parallel translations with respect to D preserve the Finsler norms of the
tangent vectors. This shows that the covariant derivative D in (B3) satisfies
the requirement of (B8).

(B3) =⇒ (B9) Due to the preceding argumentation, we have already
known that HD = H. Since, by Lemma 3 again, the HD-geodesics are the
same parametrized curves as the D-geodesics, (B9) is indeed a consequence
of (B3).

(B9) =⇒ (B6) Let S be the canonical spray of (M,F ) and HD the Ehres-
mann connection determined by the given covariant derivative. It can be
checked immediately that the mapping

SD : TM → TTM , v 7→ SD(v) := HD(v, v) ,

is an affine spray. By our condition, it follows that for a regular curve
γ : I →M ,

γ̈ = S ◦ γ̇ if , and only if , γ̈ = SD ◦ γ̇ .
Since any vector v ∈ T̊M is the initial velocity of an

S-geodesic = SD-geodesic ,

we conclude that S = SD, and hence S is an affine spray.

(B6) =⇒ (B7) Let S be the canonical spray of (M,F ). If S is an affine
spray, then its spray coefficients Gi : τ−1(U) → R are of class C2. Since these
functions are positive-homogeneous of degree 2, it follows that fibrewise they
are quadratic forms. So there exist smooth functions Γi

jk on U such that

Gi =
1

2

(
Γi
kl ◦ τ

)
ykyl and Γi

kl = Γi
lk (i, k, l ∈ {1, . . . , n}) .

Then the Christoffel symbols of the canonical connection H of (M,F ) are the
smooth functions

Gi
j :=

∂Gi

∂yj
=

(
Γi
jk ◦ τ

)
yk ,

hence H is a linear connection. This proves the implication and concludes the
proof of the proposition.

If one, and hence each, of conditions (B1) – (B9) is satisfied, (M,F ) is said
to be a Berwald manifold. The torsion-free covariant derivative D appearing
in (B3), (B4), (B8), (B9) is clearly unique; it will be called the base covariant
derivative of the Berwald manifold.
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5.2. Our list of equivalent conditions for a Finsler manifold to be a
Berwald manifold is quite abundant, but does not exhaust all of the known and
useful characterizations. In this subsection we deal with two other conditions,
and a third one will be explained in detail in the next section.

(a) By the exponential map of a Finsler manifold (M,F ) we mean the
exponential map for its canonical spray S: if for any vector v in TM , γv
denotes the maximal geodesic of S with initial velocity v, and

T̃M :=
{
v ∈ TM : γv(1) is defined

}
,

then T̃M is an open neighbourhood of the image o(M) of the zero vector field
on M , and

exp : T̃M −→M , v 7−→ exp(v) := γv(1) .

It is well-known that exp is smooth on T̃M \ o(M) and C1 on T̃M . If (M,F )
is a Berwald manifold, then it follows from (B6) that its exponential map

is smooth on its domain. Conversely, if exp is C2 on the entire T̃M , then
(M,F ) is a Berwald manifold. A possible proof of this assertion is sketched
in [2, Exercise 5.3.5].

(b) To formulate the next version of the Berwaldian property, we need
some preparations. Keeping the introduced notations, let a Finsler manifold
(M,F ) be given. If A ∈ T0

k (̊π) or A ∈ T1
k (̊π), we define the (canonical) vertical

differential ∇vA and the h-Berwald differential ∇hA of A as the type (0, k+1),
resp. (1, k + 1) tensors along τ̊ given by

∇vA(X̃, Ỹ1, . . . , Ỹk) := (∇
vl X̃

A)(Ỹ1, . . . Ỹk)

and

∇hA(X̃, Ỹ1, . . . , Ỹk) := (∇HX̃
A)(Ỹ1, . . . Ỹk) ,

(X̃, Ỹ1, . . . , Ỹk ∈ Sec(̊π)). If, in particular, A := F ∈ C∞(T̊M), then

∇vF (X̃) = (vl X̃)F , ∇hF (X̃) = (HX̃)F .

Notice that in terms of vertical differentials, the metric tensor of (M,F ) can
be given by the formula g = ∇v∇vE.

By the (lowered) Cartan tensor of (M,F ) we mean the type (0, 3) tensor

C♭ :=
1

2
∇vg =

1

2
∇v∇v∇vE
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along τ̊ . It is easy to check that C♭ vanishes if, and only if, (M,F ) reduces to
a Riemannian manifold, i.e., there exists a Riemannian metric gM on M such
that

g(X̂, Ŷ ) = gM (X,Y ) ◦ τ , X, Y ∈ X(M) .

Fact 4. ∇vE ◦B = ∇hg.

This is just an index-free reformulation of a familiar relation in classical
Finsler geometry, and it can easily be checked. For a proof in our style we
refer to [3].

Fact 5. Let S be the canonical spray of (M,F ). Then

∇SC♭ = −1

2
∇hg .

This is also a key observation, whose proof is quite tricky; see [9] or [20,
3.11, Property 10/(ii)]. A simplified version of the latter can be found in [23,
Proposition 7.4].

Now we calculate the h-Berwald differential of C♭. Applying the relevant
Ricci identity to exchange the ∇h and the ∇v differentiations, and taking into
account Fact 4, for any vector fields X,Y, Z, U on M we obtain

2∇hC♭(X̂, Ŷ , Ẑ, Û) = ∇h∇vg(X̂, Ŷ , Ẑ, Û)

= ∇v(∇vE ◦B)(Ŷ , X̂, Ẑ, Û) + g
(
B(X̂, Ŷ , Ẑ), Û

)
+ g

(
B(X̂, Ŷ , Û), Ẑ

)
,

from which it follows that B = 0 implies ∇hC♭ = 0.
Conversely, suppose that ∇hC♭ = 0. Then

0 = ∇HδC♭ = ∇SC♭
Fact 5

= − 1

2
∇hg ,

i.e., ∇hg = 0. Thus the first term on the right-hand side of the above relation
vanishes, and, using the total symmetry of B, we find that

0 = 2∇hC♭(X̂, Ŷ , Ẑ, Û) + 2∇hC♭(X̂, Ẑ, Û , Ŷ )− 2∇hC♭(X̂, Û , Ŷ , Ẑ)

= g
(
B(X̂, Ŷ , Ẑ), Û

)
+ g

(
B(X̂, Ŷ , Û), Ẑ

)
+

(
B(X̂, Ẑ, Û), Ŷ

)
+ g

(
B(X̂, Ẑ, Ŷ ), Û

)
− g

(
B(X̂, Û , Ŷ ), Ẑ

)
− g

(
B(X̂, Û , Ẑ), Ŷ

)
= 2g

(
B(X̂, Ŷ , Ẑ), Û

)
.
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This implies the vanishing of B.

Thus we have proved:

Proposition 8. A Finsler manifold is a Berwald manifold if, and only if,
the h-Berwald differential of its Cartan tensor vanishes.

Actually, we verified this result only for the type (0, 3) lowered Cartan
tensor. It can easily be checked, however, that it remains true also for the
type (1, 2) Cartan tensor metrically equivalent to C♭.

An analogous characterization of Berwald manifolds in terms of the h-
Cartan, or, what is the same, the h-Chern –Rund derivative is well-known,
see, e.g., [2, 18, 22]. To our surprise, the formulation in terms of the h-Berwald
differential seems to be new.

6. Aikou’s characterization of Berwald manifolds

Let ξ be a projectable vector field on TM . We define a Lie derivative oper-
ator Lξ on the tensor algebra of the C∞(T̊M)-module Sec(̊π), by prescribing
its action

on functions by Lξf := ξf , f ∈ C∞(T̊M) ,

on sections by LξỸ := vl−1[ξ, vl Ỹ ] , Ỹ ∈ Sec(̊π) ,

and by extending it to the whole tensor algebra in such a way that Lξ satisfies
the product rule of tensor derivations. Since ξ is projectable, the Lie bracket
[ξ, vl Ỹ ] is a vertical vector field, so the definition of LξỸ is legitimate. If v
is the vertical projection associated to an Ehresmann connection in TM then
[ξ, vl Ỹ ] = v[ξ, vl Ỹ ] = vl ◦V[ξ, vl Ỹ ], hence

LξỸ = V[ξ, vl Ỹ ] .

We shall find this formula useful in what follows. In particular, for any vector
fields X,Y on M we get

LXc Ŷ = V[Xc, Y v] = V[X,Y ]v = [̂X,Y ] = L̂XY ,

so the Lie derivative just introduced is a natural extension of the ‘ordinary Lie
derivative’ on the base manifold. (For simplicity, we do not make notational
distinction between the two types of Lie derivatives.)

The Lie derivative of a section of π̊ with respect to the horizontal lift of a
vector field on M also has a nice dynamic interpretation.
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Lemma 9. Let H be an Ehresmann connection in TM , and let Xh be the
H-horizontal lift of X ∈ X(M). Then for any section Ỹ ∈ Sec(̊π) and tangent
vector u ∈ T̊M we have

(
LXh Ỹ

)
(u) = lim

t→0

(φh
−t)∗Ỹ

(
φh
t (u)

)
− Ỹ (u)

t

=
(
t 7−→ (φh

−t)∗Ỹ (φh
t (u))

)′
(0) ,

where φ :W ⊂ R×M →M is the flow generated by X, φh is the extension of
φ described in Lemma 2 in 3.4, and φh

t (u) := φh(t, u) if (t, u) is in the domain
of φh, and t is fixed.

Proof. (1) φh
t is a diffeomorphism between two open subsets of T̊M .

However, for any vector u in the domain of φh
t , we may consider the derivative

((φh
t )∗)u as a mapping from TpM onto Tφt(p)M , where p := τ(u), identifying

φh
t with its restriction to T̊pM , and identifying also the tangent spaces of a

tangent space to M with the tangent space itself. This interpretation of the
derivative of φh

t will be applied automatically in what follows.

(2) Since, by Lemma 2, φh is the flow generated by Xh, our claim is an
easy consequence of the dynamic interpretation of the ordinary Lie derivative:(

LXh Ỹ
)
(u) : = V[Xh, vl Ỹ ](u)

= V lim
t→0

(φh
−t)∗(vl Ỹ )(φh

t (u))− (vl Ỹ )(u)

t

= lim
t→0

(φh
−t)∗Ỹ (φh

t (u))− Ỹ (u)

t
,

taking into account the linearity of vl and the obvious relation V ◦ vl =
1Sec(̊π).

Lemma 10. Hypothesis and notation as above. If

b : Sec(̊π)× Sec(̊π) → C∞(T̊M)

is a type (0, 2) tensor, then

LXhb = lim
t→0

(φh
t )

∗b− b

t
,
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or, more precisely, for any vectors u ∈ T̊M ; v, w ∈ Tτ(u)M ,

(∗)
(
LXhb

)
u
(v, w) = lim

t→0

(
(φh

t )
∗b
)
u
(v, w)− bu(v, w)

t
,

where (φh
t )

∗ denotes pull-back, given by(
(φh

t )
∗b
)
u
(v, w) := bφh

t (u)

(
((φh

t )∗)u(v), ((φ
h
t )∗)u(w)

)
.

Proof. Let, for brevity, p := τ(u). If X(p) = 0, then both sides of (∗)
vanish. Otherwise, there is a positive real number ε and there are vector
fields Y , Z on M such that

Y (φt(p)) = ((φh
t )∗)u(v) and Z(φt(p)) = ((φh

t )∗)u(w) ,

whenever |t| < ε. Hence, identifying the basic sections Ŷ , Ẑ with their ‘prin-
cipal parts’ Y ◦ τ, Z ◦ τ , and applying the previous lemma, we obtain:(
LXhb

)
u
(v, w) =

(
LXhb

)
(Ŷ , Ẑ)(u)

=
(
Xhb(Ŷ , Ẑ)− b(LXh Ŷ , Ẑ)− b(Ŷ ,LXhẐ)

)
(u)

=
(
t 7−→ bφh

t (u)

(
Y (φt(p)), Z(φt(p))

))′
(0)

−
(
t 7−→ bu

(
(φh

−t)∗Y (φt(p)), w
)
+ bu

(
v, (φh

−t)∗Z(φt(p))
))′

(0)

=
(
t 7−→ bφh

t (u)

(
((φh

t )∗)u(v), ((φ
h
t )∗)u(w)

)
− 2bu(v, w)

)′
(0)

=
(
t 7−→ ((φh

t )
∗b)u(v, w)

)′
(0)

= lim
t→0

((φh
t )

∗b)u(v, w)− bu(v, w)

t
.

Corollary 11. If (M,F ) is a Berwald manifold, H is its canonical con-
nection, then the metric tensor of (M,F ) is constant along the flow generated
by any H-horizontal lift Zh of Z ∈ X(M).

Proof. By Lemma 10, it is enough to check that LZhg = 0. Choosing two
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vector fields X, Y on M , we calculate:

(LZhg)(X̂, Ŷ ) = Zhg(X̂, Ŷ )− g(LZhX̂, Ŷ )− g(X̂,LZh Ŷ )

= Zh(XvY vE)− g(V[Zh, Xv], Ŷ )− g(X̂,V[Zh, Y v])

(B3)

= Zh(XvY vE)− g
(
D̂ZX, Ŷ

)
− g

(
X̂, D̂ZY

)
= Zh(XvY vE)− (DZX)v(Y vE)−Xv((DZY )vE)

(B3)

= Zh(XvY vE)− [Zh, Xv](Y vE)−Xv([Zh, Y v]E)

= XvY v(ZhE) = 0 ,

since H is compatible with E.

Proposition 12. (T. Aikou [1]) A Finsler manifold is a Berwald man-
ifold if, and only if, there exists a Riemannian metric gM on M such that for
every vector field Z on M , LZh ĝM = 0. Here the horizontal lift is taken with
respect to the canonical connection of (M,F ), and ĝM is the natural lift of
gM into T0

2 (̊π) given on basic sections by

ĝM (X̂, Ŷ ) := (gM (X,Y ))v , X, Y ∈ X(M) .

Proof. Sufficiency. Let X and Y be vector fields on M . Then, as above,

(LZh ĝM )(X̂, Ŷ ) = ZhĝM (X̂, Ŷ )− ĝM
(
V[Zh, Xv], Ŷ

)
− ĝM

(
X̂,V[Zh, Y v]

)
= Zh

(
gM (X,Y )

)v − ĝM (∇ZhX̂, Ŷ )− ĝM
(
X̂,∇Zh Ŷ ) .

Here, as it can be seen at once,

Zh
(
gM (X,Y )

)v
=

(
ZgM (X,Y )

)v
,

so by our condition LZh ĝM = 0 it follows that

ĝM (∇ZhX̂, Ŷ ) + ĝM (X̂,∇Zh Ŷ ) =
(
ZgM (X,Y )

)v
.

Permuting Z, X and Y cyclically, we obtain

ĝM (∇Xh Ŷ , Ẑ) + ĝM (Ŷ ,∇XhẐ) =
(
XgM (Y, Z)

)v
,

ĝM (∇Y hẐ, X̂) + ĝM (Ẑ,∇Y hX̂) =
(
Y gM (Z,X)

)v
.
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Adding both sides of the last two relations and subtracting the preceding one,
we find

ĝM
(
∇Xh Ŷ +∇Y hX̂, Ẑ

)
+ ĝM

(
∇Y hẐ −∇Zh Ŷ , X̂

)
+ ĝM

(
∇XhẐ −∇ZhX̂, Ŷ

)
=

(
XgM (Y, Z) + Y gM (Z,X)− ZgM (X,Y )

)v
.

By Lemma 6, the left-hand side of this relation can be written in the form

ĝM
(
2∇Xh Ŷ − [̂X,Y ], Ẑ

)
+ ĝM

(
[̂Y, Z], X̂

)
+ ĝM

(
[̂X,Z], Ŷ

)
,

so we obtain

2ĝM (∇Xh Ŷ , Ẑ) =
(
XgM (Y, Z) + Y gM (Z,X)− ZgM (X,Y )

)v
+

(
− gM (X, [Y, Z]) + gM (Y, [Z,X]) + gM (Z, [X,Y ])

)v
.

If D is the Levi-Civita derivative of (M, gM ), then, by the Koszul formula,
the right-hand side of the last relation is just

2
(
gM (DXY, Z)

)v
= 2ĝM (D̂XY , Ẑ) ,

hence
ĝM

(
∇Xh Ŷ − D̂XY , Ẑ

)
= 0 for all X,Y, Z ∈ X(M) .

This implies that

vl∇Xh Ŷ = (DXY )v for all X,Y ∈ X(M) ,

whence, by (B4), (M,F ) is a Berwald manifold.
Necessity. Assume that (M,F ) is a positive definite Berwald manifold. By
a celebrated observation of Z.I. Szabó [19], there exists a Riemannian metric
gM on M whose Levi-Civita derivative is the base covariant derivative D of
(M,F ). (For an instructive, quite recent proof of this fact we refer to Vincze’s
paper [24]. In the next section we shall see that it works under more general
assumptions.)

gM satisfies our requirement: for any vector fields X,Y, Z on M we have

(LZh ĝM )(X̂, Ŷ ) = ZhĝM (X̂, Ŷ )− ĝM (LZhX̂, Ŷ )− ĝM (X̂,LZh Ŷ )

=
(
ZgM (X,Y )

)v − ĝM (V[Zh, Xv], Ŷ )− ĝM (X̂,V[Zh, Y v])

(B3)

=
(
ZgM (X,Y )− gM (DZX,Y )− gM (X,DZY )

)v
=

(
DgM (Z,X, Y )

)v
= 0 ,

since D is a metric derivative on (M, gM ).
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7. On Matveev’s generalization of Berwald manifolds

7.1. In what follows, by a vector space we shall mean a finite dimensional
(but non-trivial) real vector space endowed with the canonical linear topology.
Sometimes, tacitly, we also assume that the considered n-dimensional vector
space V is a manifold whose smooth structure is defined by a linear bijection
V → Rn.

We recall that in the context of these vector spaces we have a natural and
efficient concept of differentiability of mappings. Namely, let V and W be
vector spaces, and let L(V,W ) be the vector space of linear mappings of V
into W . Let U be an open subset of V . A mapping φ : U → W is called
differentiable at a point p ∈ U if for some φ′(p) ∈ L(V,W )

lim
t→0

φ(p+ tv)− φ(p)

t
= φ′(p)(v) , v ∈ V .

φ : U → W is differentiable if it is differentiable at every point of U ; then its
derivative is the mapping

φ′ : U −→ L(V,W ) , p 7−→ φ′(p) .

φ is twice differentiable if φ′ is differentiable; the derivative of φ′ is a mapping

φ′′ : U −→ L
(
V,L(V,W )

)
, p 7−→ φ′′(p) ,

called the second derivative of φ. Here L(V,L(V,W )) may be canonically
identified with the vector space L2(V,W ) of bilinear mappings V × V →W .
For further fine details we refer to [13, Chapter 1].

7.2. Let V andW be vector spaces, r a real number, and U a (nonempty)
subset of V . A mapping φ : U → W is said to be positive-homogeneous of
degree r, briefly r+-homogeneous, if for each positive real number λ and each
v ∈ U ,

λv ∈ U and φ(λv) = λrφ(v) .

If, in particular, U is an open subset of V with the property that λU ⊂ U
for all positive λ ∈ R, and f : U → R is a differentiable function, then, as it
has been observed by Euler,

f is r+-homogeneous if, and only if, f ′(v)(v) = rf(v) for all v ∈ U .
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7.3. We canonically identify the tangent space TpV of a vector space V
at a point p with V . Then a (smooth) vector field on an open subset U of V is
just a smooth mapping X : U → V . As in the general theory of manifolds, we
denote by X(U) the C∞(U)-module of vector fields on U . X(U) is generated
by the constant vector fields of the form

X : U −→ V , p 7−→ X(p) := v for all p ∈ U .

We denote by ZU the radial vector field

U −→ V , ZU (p) := p .

It plays the same role as the Liouville vector field (2.4) in the general theory.
For simplicity, the suffix U will be omitted.

If f is a differentiable function on U and X ∈ X(U), then

(Xf)(p) = X(p)f = f ′(p)(X(p)) for all p ∈ U .

In particular,
(Zf)(p) = f ′(p)(p) , p ∈ U .

It follows that f is r+-homogeneous if, and only if, (λU ⊂ U for all positive
λ ∈ R and) Zf = rf .

Now let f ∈ C∞(U); X,Y ∈ X(U). Then at each point p ∈ U ,

X(Y f)(p) = f ′′(p)
(
X(p), Y (p)

)
+ Y ′(p)(X(p))(f)

therefore
[X,Y ](p) = Y ′(p)(X(p))−X ′(p)(Y (p)) .

From this we see that if X is a constant vector field on U and Z ∈ X(U) is
the radial vector field, then [X,Z] = X.

7.4. Let V be a vector space, k a positive integer, and let Lk(V ) denote
the vector space of k-linear real-valued functions on V . If U is an open subset
of V , then any k-linear function A ∈ Lk(V ) may be interpreted as a type (0, k)
tensor field whose value Ap at a point p ∈ U is just A, i.e.,

Ap(v1, . . . , vk) := A(v1, . . . , vk) , (v1, . . . , vk) ∈ V k.

Equivalently, we may consider A as a C∞(U)-multilinear mapping (X(U))k →
C∞(U), given by

A(X1, . . . , Xk)(p) := A(X1(p), . . . , Xk(p)) , X1, . . . , Xk ∈ X(U) , p ∈ U .
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Keeping these in mind, for any vector field X on U we may define the con-
tracted tensor field iXA and the Lie derivative LXA in the usual manner. If
A is skew-symmetric, we may also speak of the exterior derivative dA.

Lemma 13. Let U be an open subset of a vector space V , and let
A ∈ Lk(V ) be a k-form, considered as a type (0, k) tensor field on U . Then
LZA = kA, where Z ∈ X(U) is the radial vector field.

Proof. It is enough to check the relation for constant vector fields
X1, . . . , Xk in U . Then

(LZA)(X1, . . . , Xk) : = Z
(
A(X1, . . . , Xk)

)
−

k∑
i=1

A(X1, . . . , [Z,Xi], . . . , Xk)

=

k∑
i=1

A(X1, . . . , Xk) = kA(X1, . . . , Xk)

since the function A(X1, . . . , Xk) is constant, while [Z,Xi] = −Xi

(i ∈ {1, . . . , k}) as we have seen in 7.3.

7.5. By a pre-Finsler norm on a vector space V we mean a function
f : V → R such that

(i) f is of class C2 on V \ {0};

(ii) f is 1+-homogeneous.

Then ψ := 1
2f

2 is the energy associated to f . A pre-Finsler norm f : V → R
is said to be a gauge if

(iii) f(v) > 0 for all v ∈ V \ {0};

(iv) f is subadditive, i.e., f(v + w) ≤ f(v) + f(w) for all v, w ∈ V .

Notice that the energy ψ is 2+-homogeneous and differentiable at 0, with
derivative 0 ∈ V ∗ := L(V,R). It follows also immediately that a gauge
f : V → R is a convex function:

f
(
(1− t)v + tw

)
≤ (1− t)f(v) + tf(w)

for all v, w ∈ V and t ∈ [0, 1]. Thus, by condition (i), the second derivatives

f ′′(u) : V × V −→ R , u ∈ V \ {0} ,
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are positive semidefinite.
A vector space equipped with a pre-Finsler norm or with a gauge will be

called a pre-Finsler or a gauge vector space, respectively.

7.6. Let (V, f) be an n-dimensional gauge vector space, n ≥ 2. Then

B :=
{
v ∈ V : f(v) ≤ 1

}
and S :=

{
v ∈ V : f(v) = 1

}
are the f-unit ball and the f -unit sphere of (V, f), respectively. The tangent
space TaS of S at a point a ∈ S may be identified with the (n−1)-dimensional
subspace Ker(f ′(a)) of V . Notice that a /∈ TaS, since

f ′(a)(a) = f(a) > 0

by conditions (ii) and (iii) in 7.5.
Let an orientation of V be given, and let Ω : V n → R be the unique n-form

such that
∫
B Ω = 1. Then the (n− 1)-form ω on S given by

ωa(v2, . . . , vn) := Ω(a, v2, . . . , vn) , a ∈ S, vi ∈ TaS ⊂ V, i ∈ {2, . . . , n},

orients S; this is the orientation of S induced by the orientation of V (cf. [12,
3.21, Example 2]). Equivalently, ω may simply be defined by the formula

ω := iZΩ � S .

The following observation is a slight generalization of Lemma 2 of Vincze’s
paper [24], with essentially the same proof.

Lemma 14. Let (V, f) be a gauge vector space of dimension n ≥ 2. If
h : V → R is a 0+-homogeneous function, of class C1 outside the zero, then∫

B
h =

1

n

∫
S
h .

Proof. By a slight abuse of notation, we are going to use Stokes’ formula.
Since Zh = iZdh = 0, and, by Lemma 13, Ω = 1

nLZΩ, we obtain∫
B
h : =

∫
B
hΩ =

1

n

∫
B
LZhΩ =

1

n

∫
B
(iZ ◦ d+ d ◦ iZ)hΩ

=
1

n

∫
B
d(iZhΩ) =

1

n

∫
S
iZhΩ =

1

n

∫
S
hω =:

1

n

∫
S
h .
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7.7. We shall now associate a Euclidean structure to a gauge, by the
averaged metric construction of Matveev et al. [16].

Lemma 15. Let (V, f) be a gauge vector space with energy function
ψ = 1

2f
2. If for each v, w ∈ V ,

b(v, w) :=

∫
S

(
u 7−→ ψ′′(u)(v, w)

)
ω ,

then b is a positive definite scalar product on V .

Proof. Bilinearity and symmetry of b are obvious, since for all u ∈ V \{0},
the second derivative ψ′′(u) : V × V → R has these properties. In addition,
ψ′′(u) is positive semidefinite, since ψ is also a convex function. If v ∈ V \{0}
and a := 1

f(v)v, then a ∈ S and

ψ′′(a)(v, v) = ψ′′
(

1

f(v)
v

)
(v, v) = ψ′′(v)(v, v)

= ψ′(v)(v) = 2ψ(v) = f(v)2 > 0 ,

taking into account that ψ′′, ψ′ and ψ are 0+-, 1+- and 2+-homogeneous,
respectively, and applying repeatedly Euler’s relation (7.2). Thus the function

u ∈ S 7−→ ψ′′(u)(v, v) ∈ R

with fixed v ∈ V \ {0}, is positive at the point a ∈ S, therefore, by continuity,
it is positive also in a neighbourhood of a.

This proves the positive definiteness of b.

7.8. We recall that a rough section in a vector bundle π : N → M is
any mapping s :M → N such that π ◦ s = 1M . In what follows, we shall use
the term ‘rough tensor field’ in this sense.

Now suppose that D is a covariant derivative operator on the manifold
M . We say that a rough tensor field A of type (0, k) on M is invariant by
D-parallel translation, if for any two points p, q in M and curve segment γ
from p to q, for the parallel translation Pγ : TpM → TqM along γ we have
P ∗
γAq = Ap, where

(P ∗
γAq)(v1, . . . , vk) := Aq

(
Pγ(v1), . . . , Pγ(vk)

)
, vi ∈ TpM, i ∈ {1, . . . , k}.
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Lemma 16. Let D be a covariant derivative on M . If a rough covariant
tensor field on M is invariant by D-parallel translation, then it is actually
smooth.

Proof. The property in question is local, so it is enough to show the desired
smoothness in a neighbourhood of an arbitrarily chosen point of M . So let
p ∈M , and let U be a normal neighbourhood of p. If (ei)

n
i=1 is a basis of TpM ,

then it can be extended to a frame (Ei)
n
i=1 for TM over U by parallel transla-

tions along geodesics starting from p. Differential equation theory (smoothness
of ODE solutions) guarantees that the vector fields Ei are smooth. Now, if
a rough covariant tensor field A on M is invariant by D-parallel translation,
then the components of A with respect to (Ei)

n
i=1 are constant; hence A is

smooth over U .

7.9. We say that a function F : TM → R is a pre-Finsler function, resp.
a gauge function for M , if it is of class C2 on T̊M and Fp := F � TpM is a
pre-Finsler norm, resp. a gauge for each p ∈M . As in the Finslerian case, the
function E := 1

2F
2 is called the energy function associated to the pre-Finsler

function (or gauge function) F . A manifold equipped with a pre-Finsler func-
tion (resp. a gauge function) is said to be a pre-Finsler manifold (resp. a
gauge manifold). A gauge manifold (M,F ) becomes a Finsler manifold, if F
is smooth on T̊M , and for each p ∈M , u ∈ TpM \ {0}

(Fp)
′′(u)(v, v) = 0 implies v ∈ span(u) ;

see [13, Proposition 4.5].

7.10. Now we are in a position to introduce the main actor of this chap-
ter, and to formulate and prove Matveev’s generalization of Szabó’s theorem
on Riemann metrizability of the base covariant derivative of a Berwald man-
ifold.

We say that a triplet (M,F,D) is a Berwald –Matveev manifold if F is a
gauge function for M and D is a torsion-free covariant derivative on M which
is compatible with F in the sense that the parallel translations with respect
to D preserve the F -norms of tangent vectors to M . The next Proposition
assures that this compatibility condition determines the covariant derivative
D uniquely.

Proposition 17. Let (M,F,D) be a Berwald –Matveev manifold of di-
mension n, n ≥ 2. For every point p ∈M , let
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Fp := F � TpM ; Ep := E � TpM , E = 1
2F

2;

Bp ⊂ TpM the unit Fp-ball;

Sp ⊂ TpM the unit Fp-sphere;

Zp : TpM → TpM , v 7→ Zp(v) := v the radial vector field on TpM ;

Ωp the unique volume form on TpM such that
∫
Bp

Ωp = 1;

ωp := iZpΩp � Sp the induced volume form on Sp.

Define a type (0, 2) rough tensor field gM on M by prescribing its value
(gM )p at a point p ∈M according to Lemma 15, that is, by the rule

(gM )p(v, w) :=

∫
Sp

(
u 7−→ (Ep)

′′(u)(v, w)
)
ωp , v, w ∈ TpM .

Then gM is a (positive definite) Riemannian metric on M whose Levi-Civita
derivative is D.

Proof. By Lemma 15, (gM )p is a positive definite scalar product on TpM
for each p ∈ M . So it is enough to check that gM is invariant by D-parallel
translation: then Lemma 16 implies that gM is a Riemannian metric on M ,
and it follows at once that the Levi-Civita derivative of (M, gM ) is just D.
Let p, q ∈ M , and let γ : [0, 1] → M be a curve segment connecting p with q,
i.e., γ(0) = p, γ(1) = q. Consider the parallel translation Pγ : TpM → TqM
along γ.

Claim 1. P ∗
γΩq = ±Ωp .

To see this, let us first note that Pγ preserves the F -norms of the tangent
vectors to M by our compatibility condition, so it is a diffeomorphism of Bp

onto Bq. Thus, applying the ‘change of variables’ formula for the integral of
differential forms, we obtain∫

Bp

P ∗
γΩq = ±

∫
Bq

Ωq = ±1 .

This implies (by the uniqueness of Ωp) the desired relation.
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Claim 2. For fixed v, w ∈ TpM , let

φ(z) := (Eq)
′′(z)(Pγ(v), Pγ(w)) , z ∈ TqM \ {0} .

Then φ is 0+-homogeneous and

φ ◦ Pγ(u) = (Ep)
′′(u)(v, w) , u ∈ TpM \ {0} .

The first assertion is obvious, since (Eq)
′′ is 0+-homogeneous. The formula

for φ ◦ Pγ may be checked immediately, using the definition of the second
derivative of Eq at Pγ(u) and taking into account that Pγ is a linear mapping.

Claim 3. P ∗
γ (gM )q = (gM )p .

Let v, w ∈ TpM . Then

(P ∗
γ (gM )q)(v, w) = (gM )q(Pγ(v), Pγ(w))

:=

∫
Sq

(
z 7−→ (Eq)

′′(z)(Pγ(v), Pγ(w))
)
ωq

Lemma 14

= n

∫
Bq

(
z 7−→ (Eq)

′′(z)(Pγ(v), Pγ(w))
)
Ωq = n

∫
Bq

φΩq

Claim 1

= ± n

∫
Bq

φ(P−1
γ )∗Ωp

change of variables

= n

∫
Bp

(φ ◦ Pγ)Ωp

Lemma 14

=

∫
Sp

(φ ◦ Pγ)ωp

Claim 2

=

∫
Sp

(
u 7−→ (Ep)

′′(u)(v, w)
)
ωp = (gM )p(v, w) .

This concludes the proof.

7.11. Let (M,F ) be a pre-Finsler manifold; [a, b] ⊂ R, where a ̸= b, a
compact interval, and choose two points, p and q, in M . Denote by C(p, q)
the set of all C1 curve segments γ : [a, b] → M such that γ(a) = p, γ(b) = q.
Define the energy functional

E : C(p, q) → R
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by

E(γ) :=
∫ b

a
E ◦ γ̇ =

∫ b

a
E(γ̇(t))dt , γ ∈ C(p, q) .

The regular extremals of E (i.e., the critical ‘points’ γ ∈ C(p, q) with γ̇(t) ̸= 0
for all t ∈ [a, b]) are said to be the geodesics corresponding to (or of) F . In
terms of coordinates, a regular curve γ in C(p, q) is a geodesic of F if, and
only if, in any induced chart

(
τ−1(U), (xi, yi)ni=1

)
such that Im(γ) ∩ U ≠ ∅,

the Euler – Lagrange equations

∂E

∂xi
◦ γ̇ −

(
∂E

∂yi
◦ γ̇

)′
= 0 , i ∈ {1, . . . , n} ,

are satisfied. If, in particular, F is a Finsler function, then the concept of an
F -geodesic just introduced yields the same curves as our earlier definition in
4.2(a).

Remark. One may also consider the arclength functional

F : C(p, q) → R , γ 7→ F(γ) :=
∫ b

a
F ◦ γ̇ =

∫ b

a
F (γ̇(t))dt .

It is not difficult to show (see, e.g., [11, p. 185]) that the set of the geodesics
corresponding to F coincides with the set of positive constant speed extremals
of F.

Proposition 18. Let (M,F,D) be an at least two-dimensional Berwald –
Matveev manifold with associated Riemannian metric gM defined by Propo-
sition 17. Then any geodesic of the Riemannian manifold (M, gM ) is also a
geodesic of F .

Proof. Let ER be the energy function associated to the Riemannian metric
gM , given by

ER(v) :=
1

2
(gM )τ(v)(v, v) , v ∈ TM .

We define the function
Ẽ := ER + E ,

and let F̃ :=
√

2Ẽ. Then F̃ is of class C2 on T̊M and satisfies (F2). Since at
each point p ∈M and for any tangent vectors u ∈ T̊pM , v, w ∈ TpM we have(

Ẽp

)′′
(u)(v, w) := (gM )p(v, w) + (Ep)

′′(u)(v, w) ,
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and on the right-hand side of this relation (Ep)
′′(u) is positive semidefinite,

while (gM )p is positive definite, it follows that(
Ẽp

)′′
(u) =

(
Ẽ � TpM

)′′
(u)

is positive definite. This implies that F̃ satisfies condition (F4) in 4.1, therefore(
M, F̃

)
is a Finsler manifold of class C2. Since the parallel translations with

respect to D preserve the E-norms and, by Proposition 17, also the ER-norms
of the tangent vectors to M , it follows that they also preserve the Ẽ-norms,
and hence the F̃ -norms. So, by (B8) in Proposition 7,

(
M, F̃

)
is a Berwald

manifold with Finsler function of class C2, and the set of geodesics of F̃
coincides with the set of geodesics corresponding to FR :=

√
2ER.

In an induced chart
(
τ−1(U), (xi, yi)ni=1

)
, the Euler – Lagrange equations

of the energy functional

Ẽ : C(p, q) → R , γ 7→ Ẽ(γ) :=
∫ b

a
Ẽ ◦ γ̇ =

∫ b

a
ER ◦ γ̇ +

∫ b

a
E ◦ γ̇ ,

take the form

0 =
∂E

∂xi
◦ γ̇ −

(
∂E

∂yi
◦ γ̇

)′
+

(
∂ER

∂xi
◦ γ̇ −

(
∂ER

∂yi
◦ γ̇

)′)
=
∂E

∂xi
◦ γ̇ −

(
∂E

∂yi
◦ γ̇

)′
,

since, as we have just seen, if γ is a geodesic of F̃ , then it is also a geodesic
of FR – and vice versa. Thus it follows that the geodesics of FR, i.e., of the
Riemannian manifold (M, gM ), are also geodesics of the gauge function F .

7.12. We present a further natural and simple construction to show
that if (M,F,D) is a Berwald –Matveev manifold, then D is the Levi-Civita
derivative of a Riemannian metric on M .

In what follows, by an ellipsoid on a vector space V we mean the unit
ball of a positive definite scalar product b : V × V → R, i.e., a set of the
form E(b) := {v ∈ V : b(v, v) ≤ 1}. Ellipsoids are preserved by linear
isomorphisms, namely, if Φ : V →W is an isomorphism, then

Φ
(
E(b)

)
= E

(
(Φ−1)∗b

)
.

By the classical Loewner –Behrend theorem (see, e.g., [5]), if V is endowed
with a Lebesgue measure and K is a compact subset of V with non-empty
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interior, then there exists a unique least-volume ellipsoid containing K. We
call this ellipsoid the Loewner ellipsoid determined by K.

Now, keeping the notation of Proposition 17, consider a Berwald –Matveev
manifold (M,F,D). At each point p ∈ M , denote by E(bp) the Loewner
ellipsoid determined by the unit Fp-ball Bp. Then

gL : p ∈M 7−→ (gL)p := bp ∈ L2(TpM,R)

is a rough Riemannian metric onM ; we show that it is actually a Riemannian
metric.

As in the proof of Proposition 17, let p and q be two points in M , and let
γ be a curve segment connecting p with q. Then, by our previous remark,

Pγ

(
E(bp)

)
= E

(
(P−1

γ )∗bp
)

is an ellipsoid in TqM . Since Pγ preserves the F -norm of tangent vectors to
M , we have Bq ⊂ Pγ

(
E(bp)

)
. If Eq is another ellipsoid containing Bq, then

P−1
γ (Eq) is an ellipsoid in TpM containing Bp, and∫

Eq
Ωq

Claim 1, 7.10

= ±
∫
Eq
(P−1

γ )∗Ωp

change of variables

=

∫
P−1
γ (Eq)

Ωp ≥
∫
E(bp)

Ωp

Claim 1, 7.10

= ±
∫
E(bp)

P ∗
γΩq

change of variables

=

∫
Pγ(E(bp))

Ωq =

∫
E((P−1

γ )∗bp)
Ωq .

This implies that Pγ

(
E(bp)

)
is the least-volume ellipsoid containing Bq, there-

fore E
(
(P−1

γ )∗bp
)
= E(bq) and hence P ∗

γ (gL)q = (gL)p. Thus, by Lemma 16,
gL is smooth, so it is indeed a Riemannian metric on M . It is clear from
the construction that the Levi-Civita derivative for gL is the given covariant
derivative D.

We note finally that if the holonomy group of D is irreducible at a point of
M , then gL is proportional to the Riemannian metric gM constructed above.
In general, if g1 and g2 are two Riemannian metrics on M such that Dg1 =
Dg2 = 0, then – under the irreducibility of the holonomy group of D – we
have g2 = λg1, where λ is a positive real number.
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