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1. Introduction

Soon after the theory of C∗-algebras was founded by Gel’fand and Naimark
in 1943, the field of derivations came to light, and after that, their continuous
investigation gave rise to one of the central branches in the theory of Banach
(∗-) algebras. If A is an algebra andX an A-bimodule, a linear map δ : A → X
is called a derivation if it fulfills the Leibnitz formula, i.e. δ(ab) = δ(a)b+aδ(b),
for every a, b ∈ A. If there exists an x ∈ X with δ = δx, where δx(a) = ax−xa,
for all a ∈ A, then δ is called an inner derivation. If X = A, we shall speak of
a derivation of A. A ∗-derivation of a ∗-algebra A is a ∗-preserving derivation.
The motivation for the study of derivations comes mainly from the following
facts:

(i) Their theory is closely related to the cohomology groups Hn(A,X) of
the (topological) algebra A and the (topological) A-module X (see, for exam-
ple, [21, 28, 29]). In particular, the first cohomology groupH1(A,X) measures
how much the space of all (continuous) derivations of A in X differs from the
space of all (continuous) inner derivations of A in X. In particular, there are
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important applications of such results to cohomology theory concerning con-
tractibility and amenability, but also cohomology of higher dimensions (see,
for instance, [29, Theorem VII.3.37, Corollary VII.3.38] and [34, p. 9]).

(ii) Derivations of an algebra A with identity give rise to automorphisms of
A. The set Aut(A) of automorphisms of A is a subgroup of the group of all in-
vertible linear operators from A onto A. Therefore, one could say that Aut(A)
shows how rich A is in basic symmetries. Moreover, such automorphisms are
essentially used for the proof of the famous Singer-Wermer theorem, which in
fact, tells us that among Banach algebras, only the non-commutative ones are
rich in derivations (for more details, see [16, Paragraph 18], [29, Section VII,
Paragraph 2] and Section 3 of this note).

(iii) The connection of derivations with physics. Derivations are divided
into two parts: the bounded and the unbounded ones. The study of bounded
derivations started from the mid 1940’s and continues up to the present day.
As a result a plethora of excellent results have been obtained, which can offer
important tools to the investigation of unbounded derivations. The moti-
vation for the study of unbounded derivations was given by the problem of
constructing the dynamics in statistical mechanics. Moreover, according to S.
Sakai the necessity of studying unbounded derivations came to surface from
some observations of Kaplansky [36], in 1958, on two apparently non related
papers, one by Shilov [50], in 1947, having to do with differentiation, and an-
other one by Wielandt [57], in 1949, related to quantum mechanics. About all
these, the reader is referred to the seminal treatise of S. Sakai [48] “Operator
Algebras in Dynamical Systems”, where a rich literature on derivations can
also be found, together with a very informative preface, interesting comments
and historical remarks in all sections. Historical remarks are also contained in
the introduction and in the main body of the book of O. Bratteli [18], where
the names of the main initiators and contributors to the theory of unbounded
derivations are mentioned.

Another connection between derivations and quantum physics is derived
by (ii) above, since the symmetries of a quantum system are described by
an automorphism group of the algebra involved, which has its self-adjoint
elements as the observables of the quantum system.

2. Preliminaries

The algebras we deal with are complex and all topological spaces are as-
sumed to be Hausdorff.

A topological algebra is a topological vector space, which is also an alge-
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bra such that the multiplication is separately continuous [40]. A topological
algebra whose underlying topological vector space is locally convex is called
a locally convex algebra. If a topological algebra is endowed with an involu-
tion ∗, this will always be assumed to be continuous, and the corresponding
algebra will be called a topological ∗-algebra. The symbol A[τ ] will denote a
topological (∗-) algebra, whose given topology is τ . If A[τ ] is a locally convex
(∗-) algebra, then τ will be induced by an upwards directed defining family of
(∗-) seminorms denoted by (pλ), λ ∈ Λ. If A[τ ] is a locally convex (∗-) algebra,
where each pλ, λ ∈ Λ, is submultiplicative, i.e. pλ(ab) ≤ pλ(a)pλ(b), for all
a, b ∈ A, then A[τ ] is called an m-convex (∗-) algebra. If A[τ ] is metrizable,
the corresponding family of (∗-) seminorms can be chosen to be countable,
and it will be denoted by (pn), n ∈ N. A complete metrizable topological (∗-)
algebra will be called a Fréchet topological (∗-) algebra.

Furthermore, a pro-C∗-algebra is a complete topological ∗-algebra A[τ ],
whose topology τ is defined by an upwards directed family (pλ), λ ∈ Λ, of C∗-
seminorms, i.e. each seminorm pλ fulfils the C∗-property pλ(x

∗x) = pλ(x)
2,

for every x ∈ A. A metrizable pro-C∗-algebra is called a σ-C∗-algebra [43, 24].
Every pro-C∗-algebra is represented as an inverse limit of C∗-algebras, denoted
by Aλ, λ ∈ Λ. Each Aλ is, in fact, the quotient A/Nλ, where Nλ = {a ∈ A :
pλ(a) = 0}, λ ∈ Λ, endowed with the induced C∗-norm ∥ · ∥λ, i.e.

∥aλ∥λ = pλ(a), ∀ aλ := a+Nλ ∈ A/Nλ, λ ∈ Λ.

The quotient A/Nλ is always complete under ∥ · ∥λ, λ ∈ Λ [24, Subsection
10.2]. Let A[τ ] be a pro-C∗-algebra. Put

Ab :=
{
a ∈ A : sup

λ
pλ(a) < ∞

}
.

Ab is a C∗-algebra under the C∗-norm ∥a∥b := supλ pλ(a), a ∈ Ab; it is dense
in A[τ ] and is called the bounded part of A[τ ] [24, Theorem 10.23].

Let A[τ ] be a pro-C∗-algebra and X[τ ′] a complete locally convex space,
which is also an A-bimodule with separately continuous module actions. Then
we callX[τ ′] a complete locally convex A-bimodule. Suppose that τ ′ is derived
by a family (qν)ν∈Σ of seminorms. When the index set Σ is the same as that
of the family (pλ)λ∈Λ defining τ , and the continuity of the module actions of
X is described by the inequalities

qλ(ax) ≤ pλ(a)qλ(x), resp. qλ(xa) ≤ pλ(a)qλ(x),

for all a ∈ A, x ∈ X and λ ∈ Λ, then the complete locally convex A-bimodule
X[τ ′] is called smooth [44, p. 75]. Take, for instance, a complete locally convex
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space E andX = Cc(R, E), the complete locally convex space of all continuous
E-valued-functions on the real line under the compact open topology c . Then
X is a smooth Cc(R)(= Cc(R,C))-bimodule. However, the Arens-algebra
Lω[0, 1] :=

∩
1≤p<∞ Lp[0, 1], endowed with the topology of Lp-norms ∥ ·∥p [40,

p. 12], is not a smooth bimodule over itself. For many more examples and
counter-examples of smooth modules, see [44, Subsections 8.1 and 8.2].

Let now A[τ ] be a pro-C∗-algebra and δ a derivation of A[τ ]. Then, δ is
called approximately inner [11] if there is a net (xν)ν∈Σ in A such that

δ(a) = lim
ν

δxν (a), ∀ a ∈ A.

(For the notation δxν , see Introduction).
Finally, let X[τ ], Y [τ ′] be Fréchet topological vector spaces and ϕ : X[τ ] →

Y [τ ′] a linear map. Put

S(ϕ) =
{
y ∈ Y : ∃ a sequence (xn) in X with xn →

τ
0 and ϕ(xn) →

τ ′
y
}
.

Then S(ϕ) is called the separating space of ϕ (see, for example, [51, p. 3]).
By the closed graph theorem for Fréchet topological vector spaces, it is clear
that ϕ is continuous if and only if S(ϕ) = {0}.

3. Derivations of Fréchet topological algebras

In this section, we discuss the Singer-Wermer theorem for Banach algebras
and its important consequences in the non-normed setting.

Let A be a Banach algebra with identity e. Let a be an arbitrary element
in A. Then the series

∑∞
n=0

an

n! , with a0 = e, converges absolutely in A, so
that one may consider the exponential map

exp : A −→ A

a 7→ exp (a) :=
∞∑
n=0

an

n!
.

For brevity, we shall write ea instead of exp (a), a ∈ A. This map has similar
properties with the usual exponential map on the real line [16, Paragraph 8].
Suppose now that δ is a bounded derivation of A and let B(A) be the Banach
algebra of all bounded linear operators on A. Then eδ ∈ B(A) and eδ is a
topological automorphism of A [29, Theorem VII.3.2], its continuous inverse
being e−δ. So each continuous derivation of a Banach algebra A gives rise
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to a topological automorphism of A. This important result, combined with
Gel’fand theory, leads, through Liouville’s theorem, to the following famous
result (see [16, p. 92, Theorem 16] and/or [29, Theorem VII.2.10]).

Theorem 3.1. (Singer-Wermer) Let A be a commutative Banach algebra
and δ a continuous derivation of A. Then the image of δ is contained in the
(Jacobson) radical of A.

Note that not every derivation of a commutative Banach algebra is contin-
uous. Take, for instance, an arbitrary Banach space endowed with the trivial
multiplication. Then A is a commutative Banach algebra and every linear
operator on A is clearly a derivation. But, of course, not every operator on a
Banach space is continuous. In 1968, Johnson and Sinclair proved in [35] that
every derivation of a semi-simple Banach algebra is continuous. This result,
combined with the Singer-Wermer theorem, leads to the following

Corollary 3.2. ([33]) The only derivation of a commutative semi-simple
Banach algebra is the zero derivation.

Corollary 3.2 has very interesting consequences in the non-normed setting.
These, together with some further information, are included in the remarks
that follow.

Remark 3.3. (1) M.P. Thomas showed in 1988 (see [52]) that the continu-
ity of a derivation in the Singer-Wermer theorem is redundant. Therefore, the
image of any derivation of a commutative Banach algebra lies in its radical.

(2) An immediate consequence of Corollary 3.2 is that several commutative
semi-simple, complete m-convex algebras, initiated from distribution theory,
are not Banach under their usual topologies. The reason is that these algebras
admit non-trivial derivations. Namely, some of these algebras are: (i) The
Fréchet m-convex algebra C∞[0, 1] of all smooth functions on [0, 1]. (ii) The
Fréchet m-convex algebra S(R) of all rapidly decreasing smooth functions on
R. (iii) The complete m-convex algebra D(R) of all smooth functions on R
with compact support. (iv) The Fréchet m-convex algebra O(C) of all entire
functions on the complex plane. For more details, see [24, Theorem 4.26 and
its proof].

(3) In 1971, R. L. Carpenter [20] extended the result of Johnson-Sinclair
(mentioned after Theorem 3.1) to the class of Fréchet topological algebras.
More precisely, he proved that every derivation of a commutative, semi-simple
Fréchet m-convex algebra A[τ ], with an identity element, is continuous, see
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also [26, Subsection 8.2]. The main tools used for the proof of Carpenter’s
result is Shilov’s idempotent theorem for commutative Fréchet m-convex alge-
bras with identity (ibid., p. 132, (6.1.5)), and a result of B. E. Johnson in [33],
according to which: If A[τ ] is a commutative Fréchet m-convex algebra with
an identity element, δ a derivation of A and (φn)n∈N a sequence of distinct
points in the spectrum M(A) of A (continuous non-zero complex multiplica-
tive linear functionals of A) such that the functionals φn ◦ δ : A → C are
discontinuous for all n ∈ N, then there exists a ∈ A such that the Gel’fand
transform of δ(a), is unbounded on {(φn)n∈N} [26, Proposition (8.2.2)]. It
is now clear from (2) and Carpenter’s theorem that the Singer-Wermer theo-
rem cannot be true for commutative Fréchet algebras, in general. Hence, one
naturally is led to the following

Question. For which class of locally convex algebras is the Singer-Wermer
theorem true?

Here are some comments for this: In 1992, R. Becker proved that every
derivation of a commutative pro-C∗-algebra is identically zero [11, Proposition
2 and Corollary 3]. Therefore, the Singer-Wermer theorem is true for com-
mutative pro-C∗-algebras. Allan’s GB∗-algebras (GB∗ is an abbreviation of
“generalized B∗”) (see [3, 22], and for some recent survey, [25]), a generaliza-
tion of C∗-algebras, include pro-C∗-algebras. So it would be interesting if we
could have some information for the Singer-Wermer theorem for commutative
GB∗-algebras.

(4) Concerning the result of Carpenter mentioned in (3), we note that
it is not expected that every derivation of a Fréchet topological algebra is
continuous. In 2002, C. J. Read [45] proved that the algebra A of all formal
power series in countably many variables x0, x1, . . . that are not commut-
ing, equipped with a topology different from the usual one of convergence in
coefficients, is a Fréchet m-convex algebra, whose usual derivations are not
continuous in the first variable. In fact, what happens is that the separating
space S(δ) of δ coincides with the whole of A.

We close this section with a result relating an arbitrary derivation of
C∞[0, 1] with the usual derivation. Namely, we have the following

Proposition 3.4. Let δ be a derivation of C∞[0, 1]. Then δ(f) = f ′δ(i)
for all f ∈ C∞[0, 1], where f ′ denotes the first derivative of f and i = idC �[0,1].
In other words, a derivation δ of C∞[0, 1] is known, if and only if, its value at
the element i, is known.
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Proof. Clearly, i ∈ C∞[0, 1]. Let C[t] be the algebra of polynomials in one
variable t ∈ [0, 1], with complex coefficients. Let q ∈ C[t] such that

q(t) = α0 + α1t+ · · ·+ αnt
n, αj ∈ C, j = 0, 1, . . . , n, t ∈ [0, 1].

Then it is easily seen that q = q ◦ i and

δ(q) = δ(q ◦ i) = α1δ(i) + 2iα2δ(i) + · · ·+ nin−1αnδ(i) = q′δ(i).

But C[t] is dense in C∞[0, 1], as it is well known. Therefore, using the continu-
ity of the derivations of C∞[0, 1] (according to Carpenter’s theorem mentioned
in Remark 3.3(3)), we are led to the conclusion.

4. Derivations of pro-C∗-algebras

Only a few results exist in the literature about derivations of pro-C∗-
algebras, and these are given by R. Becker (1992) in [11], N.C. Phillips (1995)
in [43] and Weigt-Zarakas (2010) in [56]. In this section, we shall briefly
discuss, these results.

It is well known that every derivation of a C∗-algebra is continuous (Sakai);
see [48, Theorem 2.3.1], and [48, 2.3.3] for historical notes. Moreover, every
derivation of a commutative C∗-algebra is identically zero [47, Lemma 4.1.2].
The third important result in this direction is that every derivation of a simple
C∗-algebra with identity and/or of a W ∗-algebra is inner (Sakai); see [47,
Theorem 4.1.1], resp. [48, Theorem 2.5.3]. Also see [48, 2.4.14] for historical
comments, and Remark 4.4(3) below. There is a great deal of beautiful results
on derivations of C∗-algebras, which can be found in [18, 21, 42, 47, 48],
together with a very rich literature. In this section, we shall discuss the non-
normed analogues of the C∗-algebra results we have just mentioned.

In 1992, R. Becker studied the preceding results in the context of pro-C∗-
algebras and, among others, he proved

Theorem 4.1. ([11, Corollary 3, Proposition 2 and Proposition 6]) Let
A[τ ] be a pro-C∗-algebra with (pλ)λ∈Λ a defining family of C∗-seminorms for
τ . Then the following statements hold:

(1) There exists cλ > 0 such that pλ(δ(a)) ≤ cλpλ(a), for every a ∈ A and
λ ∈ Λ, i.e., every derivation of A[τ ] is continuous.

(2) If A[τ ] is commutative, then the trivial derivation is the only derivation
of A.
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(3) If A[τ ] has an identity, every derivation δ of A[τ ] is the infinitesimal
generator of a continuous one-parameter group of automorphisms of
A[τ ], and this group is locally equicontinuous.

We briefly discuss (3). To prove this claim, one must show that: There is
a family {αt : t ∈ R} of automorphisms of A[τ ] such that each one of them is
continuous; the map t ∈ R 7→ αt(a) ∈ A[τ ] is continuous, for all a ∈ A; and
that if δ is a derivation of A[τ ], then

pλ
(
δ(a)

)
= lim

t→0

1

t
pλ
(
αt(a)− a

)
, ∀ a ∈ A and λ ∈ Λ.

Indeed: From (1), there is a positive number cλ such that pλ(δ(a)) ≤
cλpλ(a) for every a ∈ A and λ ∈ Λ. So, using completeness of A[τ ], one
concludes that

pλ

( ∞∑
n=0

tn

n!
δn(a)

)
≤ ecλ|t|pλ(a), ∀ a ∈ A and λ ∈ Λ.

Therefore, the series
∑∞

n=0
tn

n! δ
n(a) converges. Consequently, the map

αt : A[τ ] −→ A[τ ]

a 7→ αt(a) :=

∞∑
n=0

tn

n!
δn(a),

is a well defined continuous automorphism of A[τ ], for every t ∈ R. Now an
easy calculation shows that

pλ
(
αt+s(a)− αs(a)

)
≤ ecλ|s|e(cλ|t|−1)pλ(a), ∀ a ∈ A and λ ∈ Λ.

Therefore, the maps
R −→ A[τ ]
t 7→ αt(a)

are continuous, for every a ∈ A. The remaining part is easily seen.

• Note that when the derivation δ is inner, then the preceding group
{αt : t ∈ R} of automorphisms generated by δ can be described in detail
(see [11, Proposition 18]). Namely, there is an element x ∈ A such that

αt(a) = etxae−tx, ∀ a ∈ A and t ∈ R.

The element x ∈ A is that for which δ = δx.
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• A motivation for (3) can be given as follows: Consider the Fréchet
m-convex algebra C∞(R) (with the C∞-topology), which of course is not a
pro-C∗-algebra (see [24, 2.4(2) and 7.7]). We may define a continuous one-
parameter group {αt : t ∈ R} of automorphisms of our algebra, in the following
way

αt(f)(s) := f(t+ s), ∀ f ∈ C∞(R) and t, s ∈ R.

The “infinitesimal generator” of the group {αt : t ∈ R}, in a generalized sense,
is given by the usual derivation of C∞(R)

δ : C∞(R) −→ C∞(R)

with

δ(f)(s) = lim
t→0

f(t+ s)− f(s)

t
= f ′(s),

for every f ∈ C∞(R) and s ∈ R.
For the proof of Theorem 4.1(1), Becker used essentially the fact that

a derivation δ of A[τ ] induces a derivation δλ on each quotient C∗-algebra
Aλ, λ ∈ Λ. Thus in [11, Proposition 12] he proved that if δ is a derivation
of a pro-C∗-algebra A[τ ] such that the induced by δ derivations δλ on the
quotient C∗-algebras are inner, then δ is approximately inner (see Section 2
for terminology).

In 1995, N.C. Phillips [43], using very interesting techniques, improved
the previous result of Becker in two different ways. First he dropped the
assumption of the innerness of the derivations of the quotients C∗-algebras
Aλ, λ ∈ Λ, of A[τ ] (see Theorem 4.2 below) using Theorem 4.1(1), and results
on ∗-derivations of separable C∗-algebras (see, for example, [42, 8.6.1 and
8.6.12]). Thus he showed the following

Theorem 4.2. ([43, Theorem 3]) Every derivation of a pro-C∗-algebra is
approximately inner.

Secondly, Phillips strengthened the initial result of Becker passing from
approximately innerness to innerness, by adding appropriate countability as-
sumptions and using for the proof, the structure of C∗-algebras all of whose
derivations are inner (see, for instance, [43, Lemma 5]). Namely, he has shown

Theorem 4.3. ([43, Theorem 6]) Let A[τ ] be a separable σ-C∗-algebra
such that every derivation of the quotient C∗-algebras Aλ, λ ∈ Λ, is inner.
Then every derivation of A[τ ] is inner.
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Remark 4.4. (1) Theorem 4.2 improves also Propositions 13 and 14 of [11]
and, at the same time, answers a question stated after Remark 16 of the same
reference.

(2) Regarding Theorem 4.3, N.C. Phillips gives an example of a separable
pro-C∗-algebra A[τ ] with a derivation δ, which is not inner, but the derivations
it induces on the C∗-quotients Aλ, λ ∈ Λ, of A[τ ], are all inner (see [43,
Example 7]). This shows the importance of his assumption for the derivations
of the Aλ’s in Theorem 4.3.

(3) It is not expected that every derivation, even of a σ-C∗-algebra, is
inner. Indeed, let H be a Hilbert space, B(H) the C∗-algebra of all bounded
operators on H and K(H) the C∗-subalgebra of all compact operators in
B(H). Then, for all T ∈ B(H), the map δT (S) = TS − ST, S ∈ K(H) is
a derivation of K(H). For S ∈ K(H), one has that δT = δS if and only if
T − S ∈ K(H)′ = CI, where K(H)′ is the commutant of K(H) in B(H), and
I the identity operator on H (see [29, Example (VII.2.14)] and [41, Remark
4.4.2]). Hence, δT = δS , if and only if there exists µ ∈ C such that T−S = µI.
Therefore, if we choose T /∈ K(H) +CI, then δT is not an inner derivation of
K(H). If H = l2(N), such a T could be the shift operator.

To finish this section, we give a short account on some recent results on
derivations from pro-C∗-algebras into locally convex bimodules due to the
second and third author of this paper. These results mainly offer extensions
of a result of J. R. Ringrose [46], according to which every derivation of a
C∗-algebra A into a Banach A-bimodule is continuous. For notation and
terminology, see Section 2. The proof of the following result is more or less
scheduled along the lines of the proof of [51, Remark 12.3 and Corollary 12.5].

Theorem 4.5. ([56, Theorem 3.9]) Let A[τ ] be a σ-C∗-algebra with iden-
tity, X[τ ′] a Fréchet locally convex A-bimodule and δ : A[τ ] → X[τ ′] a deriva-
tion. Then δ is continuous if and only if the two-sided ideal I = {a ∈ A :
aS(δ) = S(δ)a = {0}} has finite codimension in A.

Theorem 4.6. ([56, Proposition 3.5 and Corollary 3.2]) Let A[τ ] be a pro-
C∗-algebra and X[∥ · ∥] a Banach A-bimodule. Then the following statements
hold:

(1) Every derivation δ : A[τ ] → X[∥ · ∥] is continuous.

(2) IfA[τ ] is commutative and metrizable (i.e., a commutative σ-C∗-algebra)
and X[∥ · ∥] is commutative and involutive (the latter term means that
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X has a vector space involution such that (ax)∗ = x∗a∗ = (xa)∗, for all
a ∈ A and x ∈ X), then every derivation δ : A[τ ] → X[∥ · ∥] is inner.

For the proof of (1), notice that from the continuity of the module actions
of X, there is λ ∈ Λ, with respect to which X becomes an Aλ-bimodule
and moreover, δ induces a well-defined derivation δλ from Aλ in X, which is
continuous by Ringrose’s result mentioned above. The assertion then follows.

For the proof of (2), you just note thatX becomes a (commutative) Banach
Ab-bimodule, so that if δb is the restriction of δ on Ab, then since every com-
mutative C∗-algebra is amenable, by a result of B. E. Johnson [34, Proposition
8.2], it follows that δb is inner, therefore continuous. The assumptions for the
vector space involution on X imply now that δ is continuous [56, Proposition
3.1] and since Ab is dense in A[τ ], it follows that δ is inner.

Remark 4.7. (1) Theorem 4.6(i) remains true if the Banach A-bimodule
X[∥ · ∥] is replaced by a smooth complete locally convex bimodule X[τ ′] (see
[56, Theorem 3.6] and Section 2).

(2) Ringrose’s result has been proved by the third author in [58] for every
pro-C∗-algebra A[τ ] and any “Hilbert pro-C∗-bimodule” X.

(3) Some structural properties of inner derivations of a“locallyW ∗-algebra”
(inverse limit of W ∗-algebras) can be found in [23].

5. Derivations of unbounded operator algebras

Our physical world mainly consists of unbounded operators, like the mo-
mentum and position operators denoted by p and q respectively, the annihi-
lation operators a∗ and a such that a∗a − aa∗ = I, or the Hamiltonian H
of a harmonic oscillator, where H = 1

2(p
2 + q2) = a∗a + 1

2I, I the identity
operator, see [4, 15, 18, 48, 49]. The algebras of unbounded operators accept
non-normed topologies and are of particular importance since they are con-
nected with mathematical physics and quantum field theory questions (see,
for instance, [4, 49]). The GB∗-algebras of G.R. Allan [3] are algebras of
unbounded operators, as P.G. Dixon has shown in [22]. We would stress here
that the annihilation operators considered above, show that there are un-
bounded operators a1, a2 that fulfil the commutation relation a1a2−a2a1 = I
(and, of course, there are unbounded operators a1, a2 that satisfy the canoni-
cal commutation relation a1a2 − a2a1 = −i~I, where i is the imaginary unit
and ~ the Planck constant, see e.g., [48, p. 17, 2.2] and [15, p. 10]), but in the
bounded case, no operators a1, a2 exist such that a1a2 − a2a1 = I (see, for
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instance, [29, p. 104, Proposition (II.1.21)]).

Furthermore, pro-C∗-algebras are related to the so-called O∗-algebras in-
troduced by G. Lassner [37] (cf. also [4, 30, 49]), which are ∗-subalgebras of
unbounded operators. More precisely, if H is a Hilbert space and D a dense
subspace in H, let L(D) denote the set of all linear operators from D in D.
Let

L†(D) := {T ∈ L(D) : D(T ∗) ⊃ D and T ∗D ⊂ D},

where T ∗ is the adjoint of T and D(T ∗) the domain of T ∗. Then L†(D) is
a ∗-algebra under the usual algebraic operations and involution T † = T ∗ �D,
T ∈ L†(D). A ∗-subalgebra of L†(D) containing the identity operator is called
an O∗-algebra and is denoted by A(D). An O∗-algebra A(D) is said to be of
type R [19] if D is represented as an algebraic direct sum of Hilbert spaces,
Hj , j ∈ J , that are left invariant by all operators in A(D). An O∗-algebra
A(D) comes equipped with a topology τ0 determined by the seminorms

pj(T ) := sup{∥Tx∥ : x ∈ Hj , ∥x∥ ≤ 1}, j ∈ J, T ∈ A(D).

The first paper on derivations of unbounded operator algebras is due to
C. Brödel and G. Lassner (1975) [19]. Further results in this direction can be
found in [1, 2, 5, 6, 7, 9, 10, 12, 13, 14, 31, 32, 54, 55].

We exhibit now two derivation results on O∗-algebras, the first one due to
Brödel and Lassner and the second one to Becker.

Theorem 5.1. ([19, Theorem 3]) Every pro-C∗-algebra A[τ ] with identity
is algebraically and topologically ∗-isomorphic to a complete O∗-algebra A(D)
of type R, all of whose derivations are spatial.

Note that a derivation δ of an O∗-algebra A(D) is spatial if there is an
element S ∈ L†(D) such that δ(T ) = ST − TS, for every T ∈ A(D).

Theorem 5.2. ([11, Proposition 10]) Let A(D)[τ0] be a complete O∗-
algebra of type R and δ a ∗-derivation of A(D)[τ0]. The group of automor-
phisms α = {αt : t ∈ R} (see discussion after Theorem 4.1) generated by δ is
given as

αt(T ) = eitSTe−itS , ∀ t ∈ R and T ∈ A(D)[τ0],

where S is the operator S ∈ L†(D) that makes δ spatial according to Theo-
rem 5.1.
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The investigation of the structure of derivations acting on unbounded op-
erator algebras and, in particular, on GB∗-algebras and locally convex quasi
C∗-algebras introduced in [8] (2008) would be interesting. All pro-C∗-algebras
are GB∗-algebras. The Arens algebra Lω[0, 1] :=

∩
1≤p<∞ Lp[0, 1] [40] is a

GB∗-algebra, but not a pro-C∗-algebra. Locally convex quasi ∗-algebras were
introduced by G. Lassner [38, 39] for facing problems of quantum statistics and
quantum dynamics that could not be solved within the algebraic formulation
of quantum theories initiated by Haag and Kastler in [27]. Both of the classes
of unbounded operator algebras work through a C∗-subalgebra directly related
with their structure, see [3, 8, 22]. In the case of the GB∗-algebra Lω[0, 1],
the corresponding C∗-subalgebra is L∞[0, 1], while the Banach space Lp[0, 1],
1 ≤ p < ∞ is a Banach quasi C∗-algebra with corresponding C∗-subalgebra
again L∞[0, 1]. The main characteristic of locally convex quasi C∗-algebras
is that they belong to the class of partial ∗-algebras [4], whose multiplication
is not everywhere defined. The second and third author of the present paper
are working in the spirit of the preceding discussion.

The theory of unbounded derivations on C∗-algebras is mainly concerned
with closability, generators and transformation groups (see [17, Chapter 3],
[48, Chapter 3], [53] together with the relevant literature therein).

A natural question is to see how far a similar project on unbounded deriva-
tions in the context of the aforementioned unbounded operator algebras could
reach.

We finish by giving the definition and an example of an unbounded deriva-
tion in a GB∗-algebra.

Definition 5.3. Let A[τ ] be a GB∗-algebra. An unbounded derivation
in A[τ ] is a linear map δ from a dense subalgebra D(δ) of A[τ ] in A[τ ], that
satisfies the Leibnitz rule. If D(δ) is a dense ∗-subalgebra of A[τ ] and δ(a∗) =
δ(a)∗ for every a ∈ D(δ), then δ is called an unbounded ∗-derivation of A[τ ].

Let A[τ ] be the σ-C∗-algebra (hence a GB∗-algebra) Cc(R) of all C-valued
continuous functions on R, under the compact open topology c, and

D(δ) = C1(R) := {f ∈ Cc(R) with continuous 1st derivative }.

An unbounded derivation δ of Cc(R) is then defined as follows:

δ : D(δ) −→ Cc(R)
f 7→ f ′,

where f ′ is the first derivative of f .
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