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Abstract : In a unified way, we study the generalized analogues of conics for normed planes
by using the following natural approach: It is well known that there are different metrical
definitions of conics in the Euclidean plane. We investigate how these definitions extend to
normed planes, and we show that in this more general framework these different definitions
yield, in almost all cases, different classes of curves.
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1. Introduction

We present a systematic investigation of possible definitions of conics ex-
tended to normed (or Minkowski) planes. In the Euclidean situation the two
metrical definitions of conics and the analytic one, defining them as family of
curves of second order, clearly yield the same type of curves; so we have vari-
ous different definitions of the same class of curves. In normed planes neither
the metrical definitions nor the analytic one yield the same type of curves.
Furthermore, it is not clear what the notions “curve of second order”, “cone
of second order” or “sections of a cone” mean. We consider the usual metrical
definitions of conics in the Euclidean plane, adopt them in a unified way for
normed planes and list various properties of the resulting classes of curves.
For related results we refer to [13], [6], [7], [5], [10], and [14]. In particular,
in [6] and [7] also analogues of polyellipses (having more than two foci) in
normed planes are investigated.

By X we denote a normed or Minkowski plane, i.e., the affine plane
equipped with a norm ∥ · ∥ determined by the unit ball

K = {x ∈ X : ∥x∥ ≤ 1}.
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As is well known, K is a compact, convex set centered at the origin o which
is an interior point of K. The boundary of K is the unit circle S of X. We
say that K (or the norm induced by K) is strictly convex if S contains no
proper segment. We use small letters like x,y for points/vectors in X, and
the symbol [x,y] describes the closed segment with different endpoints x and
y. It is clear that the notion of bisector Bis(x,y) of two different points x,y
from X, defined by

Bis(x,y) = {z ∈ X : ∥x− z∥ = ∥z− y∥},

can be suitably extended to bisectors of two point sets (replacing the point x
and the point y, e.g., by a convex point set in each case); see [4] and [5] for
that notion. The d-segment with different endpoints x and y from X is the
point set defined by

[x,y]d = {z ∈ X : ∥x− z∥+ ∥z− y∥ = ∥x− y∥};

see § 9 in [3]. Of course, depending on the shape ofK, bisectors and d-segments
are geometrically interesting and can even be two-dimensional; see again [4],
[5], and § 9 in [3]. But it should be noticed that, for strictly convex norms,
any bisector is homeomorphic to a line and any d-segment is a usual linear
segment.

2. Ellipses defined by metrical properties

First we consider the usual metrical definitions of ellipses in the Euclidean
plane and examine their analogues (i.e., generalizations) for normed planes.

For this purpose we give the basic figure of an ellipse in the Euclidean plane
(see Figure 1), containing the foci x and y, a (variable) point z corresponding
to the distance sum |z − x| + |z − y| = 2a (with | · | denoting the Euclidean
norm), the tangent line at this point z, the reflected image of y in this line,
the leading circle L which is the locus of such reflected images, and the leading
line l, defined as the common tangent of the circles having radius a

c |z − y|,
where c is half the distance of the foci.

In normed planes we have three different possibilities to define ellipses
metrically. Until now, mainly (but not only) the first one was investigated
(see [13], [5], [6], [7], and [14]; weakly related is also [4]). So the following
three definitions are meant to refer to a normed plane X.
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Figure 1: An ellipse in the Euclidean case (Definition 3).

Definition 1. (Based on foci.) Let x,y ∈ X, x ̸= y, and 2a ≥ 2c =
∥x− y∥. The set

E(x,y, a) = {z ∈ X : ||z− x||+ ||z− y|| = 2a}

is called the ellipse defined by its foci x and y.

Definition 2. (Based on a leading circle and one focus.) Let L := 2aK
be a homothetic copy of the unit disk K, and x ∈ L be an arbitrary point
from it. The locus of points z ∈ X for which there is a positive ε such that
z+ εK touches L and contains x on its boundary is called the ellipse defined
by its leading circle and its focus x.

Definition 3. (Based on a leading line and a focus.) Let l be a straight
line, x a point, and γ = a

c a ratio larger than 1. The locus of points z ∈ X, for
which there is a positive ε such that the boundary of the disk z+εK contains
x and the disk z + γεK touches the line l, is called the ellipse defined by its
leading line and its focus x.

The equivalence of these definitions for the Euclidean subcase is well
known, and this can be easily checked with the help of Figure 1. In [13]
it was shown that if the first and the third definition yield the same type of
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curves, then X is Euclidean. Thus, these two definitions are not equivalent in
general normed planes. We reprove this within our unified framework. More
precisely, we prove now that, while the first two definitions are equivalent also
in normed planes, the third one yields a basically different class of curves.

Proposition 1. In any normed plane the following holds: an ellipse, de-
fined by its foci, is always an ellipse defined by its leading circle and a focus,
and the converse statement is also true. On the other hand, an ellipse defined
by its leading line and a focus is not necessarily an ellipse defined by its foci,
and again the converse is true.

Proof. First we consider an ellipse which is defined by its leading circle.
Thus we have two disks Dz = z + εK and L = 2aK in touching position.
Then the line joining their centers contains a point from the intersection of
their boundaries. Call this point p. Then

ε = ∥p− z∥ = ∥z− x∥ .

Thus
2a = ∥z∥+ ∥z− x∥,

implying that z ∈ E(0,x, a).

o x

zD
z

L

Figure 2: The equivalence of Definitions 1 and 2.

On the other hand, with the same notation for a point z ∈ E(0,x, a), its
definition yields ∥z∥ < 2a. Consider the disk Dz = z + (2a − ∥z∥)K. This
disk is touching L. Since 2a = ∥z∥+ ∥z− x∥ (and so ∥z− x∥ = 2a− ∥z∥), x
is on the boundary of Dz.

Now we give examples showing that there exists an ellipse which is defined
via its leading line but is not an ellipse defined via its foci, and conversely.
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In Figure 3 we can see that there is an ellipse following the third definition
which is not centrally symmetric. By Theorem 2 of [14] it is not an ellipse by
the first definition. In our example the norm is the l∞ norm, and the leading
line l and the focus x are in “symmetric position” with respect to the circle
of this Minkowski plane, which is a square.

a:c=2

a=c

a:c=1:2

l

x

Figure 3: Conics in the l∞ plane

Conversely, consider the ellipse E(−x,x, 2) defined by its foci and shown
in Figure 4. First we can see that if it is also an ellipse defined by its leading
line, then the leading line l and the new focus x′ have to be in “symmetric
position” with respect to the line joining the original foci. “Symmetric” means
that this line is parallel to a diagonal of the unit square. In fact, if this is not
the case, we get a figure as shown on the left side of Figure 4. The squares
S2x, Sv, Sz, S−v with centers 2x, v, z, −v, respectively, touch l. The focus
has to lie in the shaded rectangle, as the common point of the boundaries of
homothetic copies 2x + c

aS2x, v + c
aSv and z + c

aSz of such squares (with a
homothety ratio smaller than 1). On the other hand, the boundary of the
square −v + c

aS−v intersects the shaded rectangle in a segment parallel to
that one in which it is intersected by z + c

aSz. So it is impossible to give a
good position for the focus x′.

We now assume that l and x′ have symmetric position (see the right side
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Figure 4: A metrical ellipse which has no leading line.

of Figure 4). If this holds and the Euclidean distance of l and 2x is s, and
that of x′ and x is r, then, using the fact that the points 2x, −2x and v have
to lie on the new ellipse, we have the equalities

r

s
=

4− r

4 + s
=

2− r

1 + s
,

implying that

s = 1 and r =
2

3

and showing that a
c = 2

3 . Thus the leading line and the focus are both deter-
mined. On the other hand, the point −z is not on the obtained ellipse, since

the required ratio for it is 12−
√
2

12 ̸= 2
3 .

The first part of the following theorem was obtained in [5]; we reprove it
in terms of our framework.

Theorem 1. In a normed plane, an ellipse defined by its leading line and
its focus is a convex curve, which is strictly convex if and only if this normed
plane is strictly convex.

Proof. We have to prove that the set{
b : l ∩ a

c
∥b− x∥K = ∅

}
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is a convex domain. It is open by the continuity of the norm function. To
prove its convexity, we observe that for any pair of points b1,b2 from the
considered set the inequality

a

c
∥tb1 + (1− t)b2 − x∥ =

a

c
∥t(b1 − x) + (1− t)(b2 − x)∥

≤ t
a

c
∥b1 − x∥+ (1− t)

a

c
∥b2 − x∥

implies that the convex hull of a
c∥b1−x∥K and a

c∥b2−x∥K contains the ball

a

c
∥tb1 + (1− t)b2 − x)∥K.

By the convexity of the half-plane determined by l the convexity property is
valid. Thus the boundary of this domain is a convex curve, as we stated. The
second statement is clear from the definition.

3. Metrical hyperbolas

o
x

z

y

l

Figure 5: The hyperbola in the Euclidean case.

A Euclidean hyperbola satisfies the same metrical relations as a Euclidean
ellipse, only that now the ratio a

c is smaller than 1. The asymptote directions

are described, via their tangents, by ±
√
c2−a2

a , and the leading line intersects
the asymptotes in points of the great circle (see Figure 5). We also have three
possible metrical definitions. The first one is
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Definition 4. Given two points x, y in a normed plane and a distance
denoted by 2a > 0. Then

H(x,y, a) = {z ∈ X : |∥z− x∥ − ∥y − z∥| = 2a}

denotes the hyperbola defined by its foci x and y. If y = −x, then we use
the notation H(x, a) for it.

The analogue of Theorem 1 from [14] is given by our

Theorem 2. Let x ∈ S be a point of the unit circle. Then we have:

(i) H(x, 0) is the bisector corresponding to the vector x.

(ii) If there is a neighborhood of x on S in which S is strictly convex, then
H(x, 2) is the union of the two half-lines [x,∞) and [−x,−∞). If x is a
point of a piecewise linear part of S, then it is the union of two closed
cones.

Proof. The first statement is obviously true by the definition of the bisector
given in the introduction.

The second one follows from the concept and properties of d-segments in
a Minkowski plane and from our definition of a hyperbola; see [11], [12], and
§ 9 of [3].

From the above theorem it can be seen that a connected part of H(x, a)
is, in general, not the boundary of a convex domain, because this property
does not hold for a bisector; see [8] and [9].

Theorem 3. The following two statements are equivalent to each other:

(i) K is strictly convex.

(ii) For every x ∈ S and for each value a ∈ R+ the set H(x, a) is the union
of two simple curves, each of which intersects any line parallel to [−x,x]
in precisely one point.

Proof. From (i) we get (ii). In fact, if K is strictly convex, then every
line parallel to [−x,x] contains exactly two points, as said above. This holds
by the definition of the hyperbola. These points, dissected by the point of
the corresponding bisector, belong to the given line. Thus the sets of the
left and right points yield two curves, respectively, which are homeomorphic
to the bisector and congruent to each other via reflection in the center of the
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hyperbola. But the bisector is a simple curve implying the analogous property
for the two mentioned curves (see, e.g., [8] or [11]).

Conversely, if K is not strictly convex, then there is a segment in its
boundary. Let now x be a point of S on the diameter of K parallel to this
segment. A hyperbola, corresponding to the foci ±x for every positive a, is
the union of two closed domains intersected by a line, parallel to x and far
enough to this diameter, in two segments, since the bisector is also intersected
by this line in a segment. Thus (ii) does not hold.

Analogously to the case of ellipses, we have also two further definitions for
hyperbolas. These are given in the following.

Definition 5. (Based on leading circle and focus.) Let L := 2aK be a
homothetic copy of the unit disk K, and x ∈ X be an arbitrary point exterior
to L. The locus of points z ∈ X for which there is a positive ε such that
z+ εK touches L and contains x on its boundary will be called the hyperbola
defined by its leading circle and its focus x.

Definition 6. (Based on leading line and focus.) Let l be a straight line,
x be a point, and γ = a

c a ratio less than 1. The locus of points z ∈ X, for
which there is a positive ε such that the boundary of the disk z+εK contains
x and the disk z+γεK touches the line l, will be called the hyperbola defined
by its leading line and its focus x.

Clearly, the three definitions are analogous to those for ellipses.

Proposition 2. In normed planes, a hyperbola defined by its foci is al-
ways a hyperbola defined by its leading circle and a focus. The converse
statement is also true. In general, the third definition yields a different class
of curves.

Proof. First we consider a hyperbola defined by its leading circle. Then
we have two homothetic copies of K, Dz = z + εK and L = 2aK, in touch-
ing position. Then the line joining their centers contains a point from the
intersection of their boundaries. Call this point p. Then

ε = ∥p− z∥ = ∥z− x∥

and

2a = |∥z∥ − ∥z− x∥|,
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implying that z ∈ H(0,x, a).
On the other hand, with the same notation we have for a point z ∈

H(0,x, a), by the given definition, that ∥z∥ > 2a. Consider the disk Dz =
z+ (−2a+ ∥z∥)K. This disk is touching L. Since 2a = ∥z∥− ∥z−x∥ (and so
∥z− x∥ = −2a+ ∥z∥), z is on the boundary of Dz.

It is clear that the hyperbola defined by its foci is always a centrally sym-
metric set. This is, in general, not true for a hyperbola defined by its leading
line and a focus (see, e.g., the example in Figure 3). This confirms the final
statement in the proposition.
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Figure 6: The asymptotes.

Theorem 4. The hyperbola defined by its leading line is the union of two
simple curves. If the normed plane is strictly convex, then these curves cannot
contain segments.

Proof. We prove that the set K of exterior points of the hyperbola defined
by

K :=
{
q :

a

c
∥q− x∥ > ρ(q, l)

}
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(where ρ(·, ·) is the distance function of its arguments) is convex with respect
to the direction orthogonal to l, where Birkhoff orthogonality is meant. (The
concept of directional convexity can be found in [8], in connection with the
analogous property of the bisector; and x ∈ X is said to be Birkhoff orthogonal
to y ∈ X if ∥x+ αy∥ ≥ ∥x∥ holds for any real α; see [1] and [2].) Let l be a
vector orthogonal to l. We will prove that if q and q+ tl are in K for a value
t > 0, then this also holds for every t′ with 0 ≤ t′ ≤ t. Now the three points
q, q+ t′l, q+ tl are collinear, and their affine hull intersects l in a point r. We
have distinct cases depending on the position of r in this line. For example,
assuming the order q, q+ tx, r, we have for all 0 ≤ t′ ≤ t

ρ(q, l) = ∥r− q∥,

ρ(q+ t′l, l) = ∥r− (q+ t′l)∥,

and thus

ρ(q+ t′l, l) = ρ(q, l)− t′∥l∥.

From this we get that

a

c
∥(q+ t′l)− x∥ ≥ a

c
∥q− x∥ − a

c
t′∥l∥ > ρ(q, l)− t′∥l∥ = ρ(q+ t′l, l) ,

as we stated. The other cases can be investigated and proved analogously.
This means that the boundary of K is the union of two curves homeomorphic
to the line l; so they are simple curves intersected by every line parallel to the
vector l in one point.

Assume that the segment [p,q] lies in the hyperbola defined by l and x.
Then we have for all 0 ≤ t ≤ 1

a

c
∥(tp+(1−t)q)−x∥ = ρ(tp+(1−t)q, l) = ∥(tp+(1−t)q)−(tr0+(1−t)r1)∥,

where rt is the touching point of the disk having center tp+ (1− t)q with its
tangent l. Since the disks touching l are homothetic copies of each other, the
vectors p− r0 and q− r1 are linearly dependent, and this implies that

∥(tp+ (1− t)q)− (tr0 + (1− t)r1)∥ = ∥t(p− r0) + (1− t)(q− r1)∥.

On the other hand,

t∥p−r0∥+(1−t)∥q−r1∥ = tρ(p, l)+(1−t)ρ(q, l) = t
a

c
∥p−x∥+(1−t)

a

c
∥q−x∥,
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and so we also have

a

c
∥(tp+ (1− t)q)− x∥ = t

a

c
∥p− x∥+ (1− t)

a

c
∥q− x∥

for all t. This means that with t = 1
2 we have

∥(p+ q)− 2x∥ = ∥p− x∥+ ∥q− x∥,

and so, for the points x := p− x, y := 0, z := −(q− x), we get

∥x− z∥ = ∥x− y∥+ ∥y − z∥.

By Proposition 1 in [11] this implies that the segment[
p− x

∥p− x∥
,

q− x

∥q− x∥

]
lies in S. Thus the unit ball is not strictly convex, and so the conclusion.

The leading circle is a homothetic copy of the main circle with respect to
the center x. So, if the common tangent of these two circles has unique touch-
ing points with these circles, in each case, then there is a natural definition of
asymptotes joining the center O and the touching points of the tangent lines
lying on the main circle. Since asymptotes separate those elements of the
pencil of O which intersect the conics from those which are not described by
the other case (when the tangent line touches the main circle in a segment),
we have the possibility that, as general asymptotes, also conic domains occur.
In Figure 6 we can see the four possibilities.

4. Metrical parabolas

For the case of parabolas, the first two definitions have no analogue, and
so we have only the third case.

Definition 7. In a normed plane, let l be a straight line, and x be a
point. The locus of the points z ∈ S for which there is a positive ε such that
the boundary of the disk z + εK contains x and touches the line l, will be
called the parabola defined by its leading line and its focus x.

Theorem 5. In a normed plane, the metrical parabola is a simple curve
which does not contain segments if and only if the normed plane under con-
sideration is strictly convex.
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Figure 7: The Euclidean case.

Proof. We first prove that if the plane is strictly convex, then any metrical
parabola is a simple, strictly convex curve, since it is the boundary of a strictly
convex domain.

For simplicity, denote by ρ(x, l) the radius of that disk whose center is x
and which touches the line l. We first show that the parabola is the common
boundary of the two open domains defined by the inequalities

Ix,l : = ∥z− x∥ < ρ(z, l),

Ox,l : = ∥z− x∥ > ρ(z, l),

respectively. Consider a point z of the parabola. Then ∥z− x∥ = ρ(x, l), and
by strict convexity there is a unique common point lz of l and the circle with
center z and radius ρ(z, l). The points of the segment [x, z] are in Ix,l, and the
points of the segments [z, lz] are in Ox,l, respectively. This holds since strict
convexity implies that if a circle contains another one with smaller radius,
then they have at most one common boundary point (see Figure 8).

This means that the point z is a common boundary point of the two
domains.

Let z1 and z2 be two points of Ix,l. Then the disks with center zi and
radius ρ(zi, l) will touch l at the points lzi , respectively. Observe that if
z = tz1 + (1− t)z2, where 0 ≤ t ≤ 1, then

∥z− x∥ ≤ t∥z1 − x∥+ (1− t)∥z2 − x∥ < tρ(z1, l) + (1− t)ρ(z2, l)

= t∥z1 − lz1∥+ (1− t)∥z2 − lz2∥.
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Figure 8: The case of strict convexity.

But the vectors z1 − lz1 and z2 − lz2 are parallel to each other, and so

t∥z1 − lz1∥+ (1− t)∥z2 − lz2∥ = ∥t(z1 − lz1) + (1− t)(z2 − lz2)∥ = ∥z− lz∥,

implying the inequality

∥z− x∥ < ρ(z, l)

and the convexity of Ix,l. Strict convexity follows from the fact that the
inequality in our computation cannot be an equality if the unit disk is strictly
convex.

If now the unit disk contains a segment in its boundary, then there is no
uniquely determined touching point lz. But we can “interprete” all touching
segments as lz, and the proof of the first part remains valid. This shows that
the parabola is the common boundary of the two domains, Ix,l and Ox,l. The
second part of our proof can also be applied, with the observation that in every
situation we can choose points yi ∈ lzi , respectively, such that the segments
[zi,yi], i = 1, 2, are parallel to each other. Now we can use the first part of
the calculation, replacing < by ≤, and it is easy to see that by the point

y := t(z1 − y1) + (1− t)(z2 − y2)

we can represent the length ρ(z, l), again confirming convexity. Now our
proof is complete if we observe that in case of l∞ there is a metrical parabola
containing segments, as we can also see in Figure 3.

We note that, due to [5], also any parabola in X is a convex curve.
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[13] L. Tamássy, K. Bélteky, On the coincidence of two kinds of ellipses in
Minkowskian spaces and in Finsler planes, Publ. Math. Debrecen 31 (3-4)
(1984), 157 – 161.

[14] S. Wu, D. Ji, J. Alonso, Metric ellipses in Minkowski planes, Extracta
Math. 20 (3) (2005), 273 – 280.


