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Abstract : In this paper, we study the recently introduced class of sequentially Right Banach
spaces. We introduce a stronger property (RD) and compare these two properties with other
well-known isomorphic properties of Banach spaces such as property (V) or the Dieudonné
property. In particular, we show that there is a sequentially Right Banach space without
property (V). This answers a question of A.M. Peralta, I. Villanueva, J.D.M. Wright and
K. Ylinen. We also generalize a result of A. Pe lczyński and prove that every sequentially
Right Banach space has weakly sequentially complete dual. Finally, it is shown that if K
is a scattered compact Hausdorff space then the space C(K,X) of X-valued continuous
functions on K is sequentially Right (resp. has property (RD)) if and only if X has the
same property.
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1. Introduction

In [26], A. M. Peralta, I. Villanueva, J. D. M. Wright and K. Ylinen proved
that for a given Banach space X there is a locally convex topology on X,
called by them the “Right topology”, such that every operator T from X into
a Banach space Y is weakly compact if and only if it is Right-to-norm con-
tinuous. This topology is obtained as the restriction of the Mackey topology
τ(X∗∗, X∗) to X. It is the topology of uniform convergence on absolutely
convex σ(X∗, X∗∗)-compact subsets of X∗. In general, the Right topology is
stronger than the weak topology and weaker than the norm topology, thus
compatible with the dual pair ⟨X,X∗⟩. Every Right-to-norm continuous op-
erator is surely Right-to-norm sequentially continuous. A simple look at the
identity operator on ℓ1 reveals, however, that the converse is not true. Authors
in [26] call Right-to-norm sequentially continuous operators pseudo weakly
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compact and Banach spaces, on which every pseudo weakly compact operator
is weakly compact, sequentially Right. They have shown that every Banach
space possessing property (V) is sequentially Right (see [26, Corollary 15])
and in the subsequent papers [25] and [38] they asked whether the converse
holds. We provide a negative answer to this question.

In fact, we study relations of pseudo weakly compact operators and sequen-
tially Right Banach spaces with respect to several other well-known classes of
operators and isomorphic properties of Banach spaces. Among these proper-
ties are the Dunford-Pettis property, the Reciprocal Dunford-Pettis property,
the Dieudonné property and the aforementioned Pe lczyński’s property (V).
We also introduce a new property (RD) which is an analogue of the Dieudonné
property and is (at least formally) stronger than the property of being sequen-
tially Right. A Banach space X is said to have property (RD) if every operator
T from X into a Banach space Y which maps Right-Cauchy sequences into
Right-convergent sequences is weakly compact. We improve the result of [26]
and show that property (V) actually implies property (RD). Characteriza-
tions of property (RD) and sequential Rightness are provided. We generalize
the result of A. Pe lczyński [24, Corollary 5] and show that every sequentially
Right Banach space has weakly sequentially complete dual.

We also take an interest in topological behaviour of the Right topology.
Two most important special cases are in the centre of our attention. It is
shown that the sequential coincidence of the Right topology with the weak
one is just another characterization of the Dunford-Pettis property. Multiple
characterizations are also given for the sequential coincidence of the Right
topology with the norm topology.

Finally, we show that if K is a scattered compact Hausdorff space, then
C(K,X), the Banach space of all continuous functions from K to a Banach
space X, is sequentially Right (resp. has property (RD)) if and only if X has
the same property.

2. Preliminaries

Throughout this paper, we follow standard notation as in [8] or [17]. The
term operator means a bounded linear map, all Banach spaces are over real
numbers. For a Banach space X, we denote by BX its closed unit ball.

Let X be a Banach space. Given a Banach space Y , an operator T : X → Y
is called completely continuous (cc) if it maps weakly Cauchy sequences into
norm convergent sequences. Banach space X has the Dunford-Pettis property
(DP) if, for any Banach space Y , every weakly compact operator T : X → Y
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is completely continuous. This is equivalent to saying that for any weakly null
sequences (xn) and (x∗n) in X and X∗, respectively, limn x

∗
n(xn) = 0 (see, e.g.,

[7, Theorem 1]). X is said to have the Reciprocal Dunford-Pettis property
(RDP) if, for any Banach space Y , every completely continuous operator
T : X → Y is weakly compact. Examples of Banach spaces with (RDP)
trivially include all reflexive spaces while, on the other hand, an infinite-
dimensional reflexive space can never possess (DP). C(K) spaces are known
to enjoy both (DP) and (RDP). We refer to [7] for more information on the
Dunford-Pettis property.

We say that an operator T : X → Y is weakly completely continuous
(wcc) if it sends weakly Cauchy sequences into weakly convergent sequences.
Let us denote by B1(X) the subspace of X∗∗ formed by all σ(X∗∗, X∗)-limits
of weakly Cauchy sequences in X. In case X is a C(K) space, B1(X) is
precisely the space of all bounded Baire-one functions on K ([14, p. 160]). X
is said to have the Dieudonné property (D) if, for any Banach space Y , every
wcc operator T : X → Y is weakly compact. This happens if and only if every
operator T : X → Y , such that T ∗∗(B1(X)) ⊂ Y , satisfies T ∗∗(X∗∗) ⊂ Y (see,
e.g., [11, Proposition 9.4.9]). Clearly, any weakly compact operator is wcc and
also any cc operator is wcc. So the Dieudonné property implies (RDP). It
follows from Rosenthal’s ℓ1-theorem ([29]) that all spaces not containing ℓ1
have property (D). The identity operator on L1([0, 1]) is an example of a
wcc operator which is not cc, since L1 is weakly sequentially complete space
without the Schur property (see, e.g., [17, pp. 16–18]). To the best of our
knowledge, it is still unknown, whether (D) and (RDP) are equivalent.

A series
∑

n xn in X is called weakly unconditionally Cauchy (wuC) if∑
n |x∗(xn)| < ∞ for every x∗ ∈ X∗. We say that an operator T : X → Y is

unconditionally converging (uc) if it sends every wuC series into an uncondi-
tionally convergent series. This is the same as saying that X does not contain
a subspace isomorphic to c0 on which T is an isomorphism (see, e.g., [7, p.
37]). Banach space X is said to have Pe lczyński’s property (V) if, for any
Banach space Y , every uc operator T : X → Y is weakly compact. Using the
Orlicz-Pettis theorem ([8, p. 24]), it is easy to see that every wcc operator is
uc. Therefore, every Banach space with property (V) has property (D). The
converse does not hold generally (see, e.g., Example 3.34 below). Examples
of Banach spaces with property (V) include all reflexive spaces, C(K) spaces
([24, Theorem 1]), L1-preduals ([18]) and C∗-algebras ([27]). For more infor-
mation on these and other isomorphic properties of Banach spaces, we refer
to [30].
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The relative topology induced on X by restricting the Mackey topology
τ(X∗∗, X∗) will be termed the RightX topology (or simply Right if the space
X is obvious). Let us recall that the Mackey topology τ(X∗∗, X∗) is the
finest locally convex topology for the dual pair ⟨X∗∗, X∗⟩. It is the topol-
ogy of uniform convergence on absolutely convex σ(X∗, X∗∗)-compact subsets
of X∗. Since X∗ is a Banach space, it follows from the theorem of Krein
(see, e.g., [31, Chapter IV, Theorem 11.4]) that the closed absolutely con-
vex hull of a relatively weakly compact subset of X∗ is weakly compact. So
τ(X∗∗, X∗) can also be viewed as the topology of uniform convergence on
relatively σ(X∗, X∗∗)-compact subsets of X∗. The space X∗∗ is complete
in the τ(X∗∗, X∗)-topology (see [32, Proposition 1.1]). In reflexive spaces,
τ(X∗∗, X∗)-topology agrees with the norm topology. For more information on
topological vector spaces, we refer to [11] or [31].

A linear map between Banach spaces is bounded if and only if it is Right-to-
Right continuous ([26, Lemma 12]). An operator T : X → Y is called pseudo
weakly compact (pwc) if it transforms Right-null sequences into norm-null
sequences. Banach space X is said to be sequentially Right (SR) if, for any
Banach space Y , every pwc operator T : X → Y is weakly compact. The
following theorem has been proved in [26].

Theorem 2.1. ([26, Corollary 5]) Let T : X → Y be an operator. Then
the following assertions are equivalent:

(i) T is Right-to-norm continuous,

(ii) T �BX
is Right-to-norm continuous,

(iii) T is weakly compact,

(iv) T ∗∗ : X∗∗ → Y ∗∗ is τ(X∗∗, X∗)-to-norm continuous.

Clearly, every weakly compact operator is pwc. The converse does not
hold, as the identity operator on ℓ1 shows ([26, Example 8]). In fact, no
infinite-dimensional Schur space can be sequentially Right. Since every pwc op-
erator is uc ([26, Proposition 14]), every Banach space with property (V) is
sequentially Right ([26, Corollary 15]).

We say that an operator T : X → Y is Right completely continuous (Rcc)
if it maps Right-Cauchy sequences into Right-convergent sequences. Let us de-
note by R1(X) the subspace of X∗∗ formed by all τ(X∗∗, X∗)-limits of Right-
Cauchy sequences in X. Clearly, R1(X) ⊂ B1(X). We call a set K ⊂ X∗ an R-
set if for any Right-null sequence (xn) in X one has limn supx∗∈K x∗(xn) = 0.
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Banach space X is said to have the Right Dieudonné property (RD) if, for
any Banach space Y , every Rcc operator T : X → Y is weakly compact.

3. Main results

For better clarity, we start with the scheme of classification of operators
we will shortly establish:

weakly compact

cc

↘
↗

↗
↘

pwc

wcc

↘
↗ Rcc → uc

For Banach space properties we will have:

(V) → (RD)
↗
↘

(SR)

(D)

↘
↗ (RDP)

The following lemma will be used implicitly throughout this paper without
further mentioning.

Lemma 3.1. Let (X, τX) and (Y, τY ) be two topological vector spaces.
Then a linear map T : X → Y maps τX -null sequences into τY -null sequences
if and only if T maps τX -Cauchy sequences into τY -Cauchy sequences.

In particular, if τ1 and τ2 are two vector topologies on X, then every τ1-
null sequence in X is τ2-null if and only if every τ1-Cauchy sequence in X is
τ2-Cauchy.

Proof. Notice first that a sequence (xn) in a topological vector space is
Cauchy if and only if for every increasing sequence of natural numbers jn <
kn < jn+1, the sequence (xkn − xjn) converges to zero. Suppose T maps τX -
null sequences into τY -null sequences. Let (xn) be a τX -Cauchy sequence in
X. If jn < kn < jn+1 is an arbitrary increasing sequence of natural numbers,
then (xkn−xjn) converges to zero in X and hence (T (xkn)−T (xjn)) converges
to zero in Y . It follows that (T (xn)) is a τY -Cauchy sequence.

On the other hand, suppose T maps τX -Cauchy sequences into τY -Cauchy
sequences and let (xn) be τX -null. Then the sequence 0, x1, 0, x2, . . . is also
τX -null, hence it is τX -Cauchy and so the sequence 0, T (x1), 0, T (x2), . . . is
τY -Cauchy. By the observation in the beginning of the proof, (T (xn) − 0) =
(T (xn)) is τY -null.

The special case follows by considering the identity map T : (X, τ1) →
(X, τ2).
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Proposition 3.2. Let X,Y be Banach spaces and T : X → Y an opera-
tor. Then the following assertions hold:

(i) If T is completely continuous, then it is pseudo weakly compact.

(ii) If T is pseudo weakly compact, then it is Right completely continuous.

Proof. Assertion (i) is trivial. As for (ii), since T is pwc, every Right-
Cauchy sequence in X is mapped into norm-Cauchy and therefore norm-
convergent sequence in Y . Since RightY topology is weaker than norm, the
assertion follows.

Corollary 3.3. Every Banach space with property (RD) is sequentially
Right. Every sequentially Right Banach space has property (RDP).

Proposition 3.4. Let X be a Banach space. The following assertions
hold:

(a) For any Banach space Y , an operator T : X → Y is Rcc if and only if
T ∗∗(R1(X)) ⊂ Y .

(b) X has property (RD) if and only if, for any Banach space Y , any operator
T : X → Y such that T ∗∗(R1(X)) ⊂ Y , satisfies T ∗∗(X∗∗) ⊂ Y .

Proof. This proposition is a special case of more general [11, Proposition
9.4.9]. We refer the reader to its proof.

Corollary 3.5. Every wcc operator is Rcc. Every Banach space with
property (RD) has property (D).

Proof. The assertions follow from the characterizations given in Proposi-
tion 3.4, since R1(X) ⊂ B1(X) and T being a wcc operator is equivalent to
T ∗∗(B1(X)) ⊂ Y .

Corollary 3.6. Let X be a Banach space such that R1(X) = X∗∗. Then
the space X has property (RD).

Proof. Follows immediately from Proposition 3.4(b).

Remark 3.7. The condition in Corollary 3.6 is satisfied if, for example, the
unit ball BX∗∗ is metrizable in the τ(X∗∗, X∗) topology. Characterizations of
such Banach spaces can be found in [32].
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Proposition 3.8. Let X and Y be two Banach spaces. If Y is a quotient
space of X (in particular, if Y is a complemented subspace of X or if Y is
isomorphic to X) and X is sequentially Right (resp. has property (RD)), then
Y has the same property.

Proof. Let q : X → Y be the quotient map from X to Y . Suppose X is
sequentially Right (resp. has property (RD)). Then for any pwc (resp. Rcc)
operator T : Y → Z, where Z is a Banach space, T ◦ q is a pwc (resp. an Rcc)
and thus a weakly compact operator on X. Since q is a quotient map, by the
open mapping theorem T is weakly compact.

The following notion was introduced by N. J. Kalton in [19]. We shall say
that a closed subspace Y of a Banach space X is locally complemented in X
if there is a constant λ such that for each finite-dimensional subspace F ⊂ X
there exists an operator rF : F → Y such that ∥rF ∥ ≤ λ and rF (x) = x for
every x ∈ Y ∩ F .

The Principle of Local Reflexivity ([20, Theorem 3.1]) states that every
Banach space is locally complemented in its bidual. Also, every Banach space
is locally complemented in its ultraproducts (see [19, Theorem 4.1]). It follows
from [20, Theorem 4.1] and the subsequent remark that a Banach space is an
L∞-space if and only if it is locally complemented in every Banach space
containing it. The following proposition is well-known.

Proposition 3.9. ([19, Theorem 3.5]) Let X be a Banach space and let
Y ⊂ X be its closed subspace. The following assertions are equivalent:

(i) Y is locally complemented in X.

(ii) Y ∗∗ is complemented in X∗∗ under its natural embedding.

(iii) There is an extension operator T : Y ∗ → X∗ such that for every y∗ ∈ Y ∗

one has T (y∗) �Y = y∗.

Proposition 3.10. Let X be a Banach space and let Y ⊂ X be its closed
subspace. Then RightY is finer than RightX �Y and both topologies coincide
if there is a weakly continuous extension map T : Y ∗ → X∗, i.e., a weakly
continuous map T such that for every y∗ ∈ Y ∗ one has T (y∗) �Y = y∗ (in
particular, if Y is locally complemented in X).

Proof. We denote by i : Y → X the natural inclusion. Since every oper-
ator is Right-to-Right continuous by [26, Lemma 12], i is RightY -to-RightX
continuous. Hence, RightY is finer than RightX �Y .
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Suppose there is a weakly continuous extension map T : Y ∗ → X∗. Let
(yα) ⊂ Y be a RightX -null net and let K be an arbitrary weakly compact
subset of Y ∗. Then T (K) is weakly compact in X∗ and we have

lim
α

sup
y∗∈K

|y∗(yα)| = lim
α

sup
y∗∈K

|T (y∗)(yα)| = lim
α

sup
x∗∈T (K)

|x∗(yα)| = 0.

Hence, (yα) is RightY -null, which was to show.
If Y is locally complemented in X, then an extension operator is given by

Proposition 3.9.

Example 3.11. By a result of F. J. Murray [22], there is a non-comple-
mented subspace Y in X = ℓp, 1 < p ̸= 2. Using the reflexivity of both spaces
and Proposition 3.9 we can see that Y is not locally complemented in X, yet
RightY = RightX �Y .

An example of spaces Y ⊂ X such that RightY is strictly finer than
RightX �Y is easily provided, using Proposition 3.17 below, by any infinite-
dimensional reflexive subspace of a non-Schur Dunford-Pettis space (e.g.,
Y = ℓ2 and X = C([0, 1])).

Corollary 3.12. Let X,Y be Banach spaces and let T : X → Y be a
pwc (resp. Rcc) operator. Then for every closed subspace Z ⊂ X, T �Z : Z →
Y is pwc (resp. Rcc).

Proof. Let (zn) be a RightZ-Cauchy sequence in Z. Then, by Proposi-
tion 3.10, (zn) is RightX -Cauchy and the assumption of the operator T finishes
the proof.

Corollary 3.13. A Banach space X is sequentially Right (resp. has
property (RD)) if every separable subspace has the same property.

Proof. Let T : X → Y be a pwc (resp. Rcc) operator and let (xn) be
a sequence in BX . We need to show that there is a subsequence such that
(T (xnk

)) is weakly convergent in Y . Put Z := span{xn : n ∈ N}. Then Z is
a separable subspace of X and by Corollary 3.12, T �Z is pwc (resp. Rcc).
Using the assumption, T �Z is weakly compact and therefore there exists the
sought subsequence. It follows that T is weakly compact.

Remark 3.14. Corollary 3.13 cannot be reversed. Indeed, consider ℓ1 as
a subspace of C([0, 1]). By [24, Theorem 1], C(K) spaces have property (V).
Corollary 3.20 below shows that property (V) implies property (RD). However,
ℓ1 does not even possess property (RDP).
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Lemma 3.15. Let X be a Banach space and (x∗∗n ) a w∗-null sequence in
X∗∗. The following assertions are equivalent:

(i) x∗∗n → 0 in the τ(X∗∗, X∗) topology.

(ii) limn x
∗∗
n (x∗n) = 0 for every weakly null sequence (x∗n) in X∗.

(iii) limn x
∗∗
n (x∗n) = 0 for every weakly Cauchy sequence (x∗n) in X∗.

(iv) The operator T : X∗ → c0 given by T (x∗) = (x∗∗n (x∗))n∈N is completely
continuous.

In case (x∗∗n ) ⊂ X, the statements above are equivalent to x∗∗n
RightX→ 0 and

the operator T in (iv) moreover satisfies T ∗(ℓ1) ⊂ X.

Proof. Suppose (i) holds and let (x∗n) be a weakly null sequence in X∗.
Since {x∗n : n ∈ N} is a relatively weakly compact subset of X∗, (x∗∗n ) converges
to zero uniformly on {x∗n : n ∈ N}. This proves (ii).

For (ii) ⇒ (iii), let (x∗n) be a weakly Cauchy sequence in X∗. If (iii) does
not hold then by passing to a subsequence if necessary we may assume that
|x∗∗n (x∗n)| > ε for some ε > 0 and all n ∈ N. Since (x∗∗n ) is w∗-null, there is an
increasing sequence of natural numbers (kn) such that |x∗∗kn(x∗kn−1

)| < ε
2 . Now

(x∗kn − x∗kn−1
) is weakly null in X∗, but

|x∗∗kn(x∗kn − x∗kn−1
)| = |x∗∗kn(x∗kn) − x∗∗kn(x∗kn−1

)| > ε

2
,

which is a contradiction.
Let T be defined as in (iv). Assuming (iii), it is easy to show that (x∗∗n )

converges to zero uniformly on every weakly Cauchy sequence in X∗. Let (x∗n)
be such a sequence. Then limn supk |x∗∗n (x∗k)| = 0. A quick computation now
shows that (T (x∗n)) is norm Cauchy in c0. Thus T is completely continuous.

Finally, to prove (iv) ⇒ (i), let K be a weakly compact subset of X∗

and let T be as in (iv). Since T is completely continuous, T (K) is norm
compact in c0. By a well-known characterization of compact sets in c0,
limn→∞ supx∗∈K |(T (x∗))n| = 0. So x∗∗n converges uniformly to zero on K.
Assertion (i) now follows.

The last statement follows immediately from the definition of the RightX
topology and the fact that the operator T ∗ maps (tn) ∈ ℓ1 to

∑
n tnx

∗∗
n .

For any Banach space X, the RightX topology is the weakest locally convex
topology τ that makes every weakly compact operator, with X as its domain,
τ -to-norm continuous. Indeed, suppose τ is a locally convex topology on X
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that is strictly weaker than RightX . Then there is a semi-norm p on X which
is continuous with respect to the RightX topology, but not with respect to
τ (see, e.g., [31, p. 48]). According to [25, Proposition 2.2], we can assume
p is of the form p(x) = ∥T (x)∥, x ∈ X, where T : X → Y is an operator
into a reflexive space Y . Clearly, T is weakly compact, but not τ -to-norm
continuous. For sequential continuity we can state the following.

Proposition 3.16. Let X be a Banach space and let τ be a locally convex
topology on X compatible with the duality ⟨X,X∗⟩ and weaker than RightX .
Then the following assertions are equivalent:

(i) For any Banach space Y , every weakly compact operator T : X → Y is
τ -to-norm sequentially continuous.

(ii) Topologies τ and RightX coincide sequentially on X.

Proof. By [16, Theorem 2], every weakly compact operator T : X → Y is
τ -to-norm sequentially continuous if and only if for any weakly null sequence
(x∗n) in X∗ and any τ -null sequence (xn) in X we have limn x

∗
n(xn) = 0. Using

Lemma 3.15 and the fact that τ is stronger than σ(X,X∗), it is the same as
saying that every τ -null sequence is Right-null. This completes the proof.

Proposition 3.17. (cf. [14, Proposition 1 bis]) For a Banach space X,
the following assertions are equivalent:

(i) X has the Dunford-Pettis property.

(ii) Topologies σ(X,X∗) and RightX coincide sequentially.

(iii) Every (relatively) σ(X,X∗)-compact subset of X is (relatively) RightX -
compact.

(iv) For any Banach space Y , every pseudo weakly compact operator T :
X → Y is completely continuous.

Proof. The equivalence (i) ⇔ (ii) is just a restatement of Proposition 3.16
with τ = σ(X,X∗). Equivalence of (ii) and (iii) follows from the fact that
both topologies σ(X,X∗) and RightX are angelic ([28, Definition 0.2]), in
particular, from the fact that every subset of X is (relatively) compact if and
only if it is (relatively) sequentially compact in the respective topologies (see
[28, Theorem 1.2]). Trivially, (ii) ⇒ (iv) and using Theorem 2.1, (iv) ⇒ (i).

As a direct consequence we have:



on sequentially right banach spaces 11

Corollary 3.18. Let X be a Banach space with the Dunford-Pettis
property. Then the following assertions hold:

(a) For any Banach space Y , an operator T : X → Y is pseudo weakly
compact if and only if it is completely continuous.

(b) X is sequentially Right if and only if it has property (RDP).

(c) For any Banach space Y , an operator T : X → Y is Right completely
continuous if and only if it is weakly completely continuous.

(d) X has property (RD) if and only if it has property (D).

(e) R1(X) = B1(X).

Remark 3.19. While condition (a) of Corollary 3.18 actually implies the
Dunford-Pettis property (see Proposition 3.17 (iv)), this is not true for condi-
tions (b)–(e). Indeed, just consider an arbitrary infinite-dimensional reflexive
space.

The next corollary improves [26, Proposition 14 and Corollary 15].

Corollary 3.20. Every Rcc operator is uc. Every Banach space with
property (V) has property (RD).

Proof. Let T : X → Y be an Rcc operator between two Banach spaces.
Suppose T is not unconditionally converging. Then there is an injection I :
c0 → X such that T ◦ I is an isomorphism (see, e.g., [8, p. 54]). Let us
denote by (en) the unit vector basis in c0. The sequence (

∑n
k=1 ek)n is weakly

Cauchy but not weakly convergent in c0. So the isomorphism T ◦ I is not a
wcc operator. Since c0 has the Dunford-Pettis property (see, e.g., [8, p. 113]),
by Corollary 3.18(c) T ◦ I is not an Rcc operator. This, however, contradicts
the assumption. The second statement is immediate.

Proposition 3.21. Let X be a Banach space and let K ⊂ X∗ be a
bounded subset. The following assertions are equivalent:

(i) K is an R-set.

(ii) The σ(X∗, X)-closed absolutely convex hull of K is an R-set.

(iii) Every completely continuous operator T : X∗ → c0 such that T ∗(ℓ1) ⊂
X maps K into a relatively compact subset of c0.
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(iv) For every ε > 0 there is an R-set Kε ⊂ X∗ such that

K ⊂ Kε + εBX∗ .

Proof. Let us start with (i) ⇒ (ii). We denote by A the σ(X∗, X)-closed
absolutely convex hull of K. It is easily seen that A is an R-set if and only
if every countable subset of A is an R-set. It is also easy to see that an
absolutely convex hull of an R-set is an R-set. Without loss of generality, we
may assume that K is absolutely convex. Suppose (ii) does not hold. Then
there is a Right-null sequence (xn) in X and a sequence (x∗n) in A such that
x∗n(xn) > ε for all n ∈ N and some ε > 0. For every n, since x∗n is in the
w∗-closure of K, there is y∗n ∈ K such that y∗n(xn) > ε. Since {y∗n : n ∈ N} is
not an R-set, neither is K. Converse implication (ii) ⇒ (i) is trivial.

(i) ⇔ (iii): Lemma 3.15 shows there is one to one correspondence between
Right-null sequences in X and completely continuous operators T : X∗ → c0
with T ∗(ℓ1) ⊂ X. Indeed, if (xn) is a Right-null sequence in X, then the
corresponding operator T is defined as in Lemma 3.15(iv). Conversely, if T
is such an operator and (en) the unit basis in ℓ1 then (T ∗(en)) defines the
Right-null sequence in X corresponding to T (again by Lemma 3.15).

If K is an R-set and T as in (iii), then by the observation above (T ∗(en))
is a Right-null sequence in X. Hence

0 = lim
n

sup
x∗∈K

|⟨T ∗(en), x∗⟩| = lim
n

sup
x∗∈K

|⟨en, T (x∗)⟩|.

By the well-known characterization of compact sets in c0, T (K) is relatively
compact.

If, on the other hand, we suppose (iii) is true and (xn) is a Right-null
sequence in X, then the corresponding operator T maps K into a relatively
compact set. Again, the characterization of compact subsets of c0 gives the
uniform convergence of (xn) to zero on K. Thus (iii) ⇒ (i).

(iv) ⇒ (iii): Suppose (iv) holds. Let T be as in (iii). Then, for every ε > 0,

T (K) ⊂ T (Kε) + εT (BX∗) ⊂ T (Kε) + ε∥T∥Bc0 ,

and T (Kε) is relatively compact. Hence, T (K) is relatively compact (see, e.g.,
[12, p. 275]).

The implication (i) ⇒ (iv) is obvious.

Proposition 3.22. Let X and Y be Banach spaces and let T : X → Y
be an operator. The following assertions are equivalent:
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(i) T is pseudo weakly compact.

(ii) T ∗(BY ∗) is an R-set.

Proof. Assume (i) holds. Let (xn) be a Right-null sequence in X. Then

lim
n

sup
x∗∈T ∗(BY ∗ )

|⟨x∗, xn⟩| = lim
n

sup
y∗∈BY ∗

|⟨y∗, T (xn)⟩| = lim
n

∥T (xn)∥ = 0.

This implies (ii). The argument above can be reversed to obtain (ii) ⇒ (i).

Remark 3.23. An analogue of the Gantmacher’s theorem (see, e.g., [21,
Theorem 3.5.13]) does not hold for pseudo weakly compact operators. Con-
sider the identity operator i : c0 → c0. The space c0 and all of its duals have
the Dunford-Pettis property (see, e.g., [7, p. 19]). Using Corollary 3.18(a),
the identity operator on a Banach space with the Dunford-Pettis property
is pwc if and only if the space is Schur. Thus we see immediately that i is
not pwc, while i∗ : ℓ1 → ℓ1 is, and again both i∗∗ and i∗∗∗ are not pwc. We
remark that the space ℓ∗∞ is not a Schur space, because its predual contains
ℓ1 (see [7, p. 23]). The only conclusion in this direction is a consequence of
Corollary 3.12: An operator T is pwc if T ∗∗ is pwc.

A set U in a Hausdorff topological vector space (X, τ) is called sequentially
open if for every sequence (xn) ⊂ X converging to a point x ∈ U , xn belongs
to U eventually. I.e., if the complement of U is sequentially closed. The space
X is said to be C-sequential if every convex sequentially open subset of X is
open. We refer to [35] and [37] for more information on C-sequential spaces.

We say that the topological vector space X is a Ck-space if for each convex
set A ⊂ X, the set A is open in X provided that A ∩K is open in K for any
compact subset K of X.

Lemma 3.24. Let (X, τ) be a Hausdorff topological vector space such that
the class of compact subsets of X coincides with the class of sequentially
compact subsets of X. Then X is C-sequential if and only if X is a Ck-space.

Proof. Suppose first that X is C-sequential. Let A be a convex subset
of X such that A ∩ K is open in K for every compact K ⊂ X. To prove
that A is open, it suffices to show that A is sequentially open. Let (xn) ⊂ X
be a sequence converging to some x ∈ A. Then the set L = {x, x1, x2, . . .}
is compact in X. By the assumption, A ∩ L is open in L and thus there is
n0 ∈ N such that xn ∈ A for all n ≥ n0. So A is sequentially open and hence
open in X. This shows that X is a Ck-space.
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Assume now that X is a Ck-space. Let U be a convex sequentially open
subset of X. Consider a compact subset K ⊂ X such that K ̸⊂ U . We want
to show that U ∩K is open in K, or equivalently, that (X \ U) ∩K is closed
in K. Let (xn) be a sequence in (X \U)∩K. Since K is sequentially compact
in X, there is a subsequence (xnk

) converging to a point x ∈ K. Since the
set X \ U is sequentially closed, x ∈ X \ U . This shows that (X \ U) ∩K is
sequentially compact in X and hence compact in X. Since X is a Hausdorff
space, (X \U)∩K is a closed set in X (see, e.g., [12, Theorem 3.1.8]). So we
have shown that U ∩K is open in K for every compact set K ⊂ X. Since X
is a Ck-space, U is open.

Theorem 3.25. Let X be a Banach space. The following assertions are
equivalent:

(i) X is sequentially Right.

(ii) Every pseudo weakly compact operator T : X → ℓ∞ is weakly compact.

(iii) Every R-subset of X∗ is relatively σ(X∗, X∗∗)-compact.

(iv) (X,RightX) is C-sequential.

(v) (X,RightX) is a Ck-space.

Proof. (ii) ⇒ (i): Suppose there is a Banach space Y and an operator
T : X → Y which is pwc but not weakly compact. Then there is an operator
U : Y → ℓ∞ such that U ◦ T is not weakly compact (see [8, Chapter VII,
Exercise 6]). Obviously, U ◦ T is pwc. But this contradicts (ii).

(i) ⇒ (iii): Let K be an R-set in X∗. Denote by B(K) the space of all
bounded real valued functions on K with the norm ∥f∥ = supx∗∈K |f(x∗)|.
The operator T : X → B(K), defined by Tx(x∗) = x∗(x), for any x ∈ X and
x∗ ∈ K, is easily seen to be pwc, since K is an R-set. By the assumption (i),
T is weakly compact, and therefore also T ∗ is weakly compact (see, e.g., [21,
Theorem 3.5.13]). For any x∗ ∈ K, if we define F ∈ B(K)∗ by F (f) = f(x∗),
then ∥F∥ = 1 and T ∗(F ) = x∗. So K ⊂ T ∗(BB(K)∗), but the latter set is
relatively weakly compact. Hence, K is relatively weakly compact. (Cf. the
proof of [24, Proposition 1].)

(iii) ⇒ (ii): Let T : X → ℓ∞ be a pwc operator. By Proposition 3.22,
T ∗(Bℓ∗∞) is an R-set, and so by (iii) it is relatively weakly compact. Hence
T ∗, and therefore T , is weakly compact.

The equivalence (i) ⇔ (iv) follows from Theorem 2.1 and the fact that a
topological vector space X is C-sequential if and only if, for any Banach space
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Y , every sequentially continuous operator T : X → Y is continuous (see [35,
Theorem 2]).

The equivalence (iv) ⇔ (v) is a consequence of Lemma 3.24 and the fact
that the topology RightX is angelic (see [28, Theorem 1.2]).

The next corollary generalizes [24, Corollary 5] stating that every Banach
space with property (V) has weakly sequentially complete dual.

Corollary 3.26. If X is a sequentially Right Banach space, then X∗ is
weakly sequentially complete.

Proof. Let (x∗n) be a weakly Cauchy sequence in X∗. Using Lemma 3.15, it
is easy to show that any Right-null sequence in X converges to zero uniformly
on K := {x∗n : n ∈ N}. Thus K is an R-set. Since X is sequentially Right,
by Theorem 3.25, K is relatively weakly compact. Hence (x∗n) is weakly
convergent in X∗. This shows that X∗ is weakly sequentially complete.

In the previous paragraphs we have seen that coinciding of the Right topol-
ogy with the weak one sequentially is just another characterization of the
Dunford-Pettis property. Now we take a look at the other extreme: the norm
topology. Let X be a Banach space. Using Theorem 2.1, we can clearly see
by looking at the identity operator that the Right topology coincides with the
norm toplogy on X if and only if X is reflexive. According to J. Borwein ([4]),
Banach space X is called sequentially reflexive provided the Mackey topology
τ(X∗, X) coincides sequentially with the norm topology on X∗. A result of
P. Ørno ([23]) says that X is sequentially reflexive if and only if X contains
no copy of ℓ1.

Proposition 3.27. A Banach space X is reflexive if and only if it is
sequentially Right and X∗ is sequentially reflexive.

Proof. The necessity is trivial. Let us show sufficiency. From the defini-
tion, if X∗ is sequentially reflexive then the RightX topology coincides sequen-
tially with the norm topology. Hence the identity operator on X is pwc. Since
X is also sequentially Right, the identity is weakly compact and therefore X
is reflexive.

In spite of the fact that, by Rosenthal’s ℓ1-theorem ([29]), the next corol-
lary is a weaker version of Corollary 3.26, we demonstrate an alternative proof
using Proposition 3.27.
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Corollary 3.28. Let X be a sequentially Right Banach space. Then
either

(i) X is reflexive, or

(ii) X∗ contains a copy of ℓ1.

Proof. By Proposition 3.27, a non-reflexive sequentially Right Banach
space cannot have sequentially reflexive dual. Using the result of P. Ørno
[23], X∗ must contain a copy of ℓ1.

Example 3.29. Although non-containment of ℓ1 in X∗ characterizes se-
quential coincidence of τ(X∗∗, X∗) and the norm topology on X∗∗, this con-
dition is too strong to characterize sequential coincidence of the RightX and
the norm topology on X. This example shows there is a Banach space which
contains (even complemented) copy of ℓ1 in its dual, yet the Right and norm
topologies coincide sequentially.

Indeed, the first Bourgain-Delbaen space X constructed in [5] is an infinite-
dimensional Schur space whose dual is weakly sequentially complete (and as
such contains ℓ1 by [29]). In fact, the dual space X∗ is isomorphic to M([0, 1]),
the Banach space of Radon measures on [0, 1].

Since, of course, X as a Schur space is not sequentially Right, this also
shows that Corollary 3.26 cannot be reversed.

Remark 3.30. There is, in general, no connection between ‘sequential
Rightness’ of a Banach space X and its bidual X∗∗. The classical chain of
sequence spaces c0, ℓ1, ℓ∞, ℓ∗∞, shows that both can have the same sequential
Rightness. The space from Example 3.29 is not sequentially Right, but its
bidual is isomorphic to a C(K) space (see, e.g., [17, p. 20]) and thus has
even property (V) ([24, Theorem 1]). This example also shows that a locally
complemented subspace of a sequentially Right Banach space need not be se-
quentially Right. Finally, the Banach space X = (

∑
⊕ℓn1 )c0 has property (V)

though its bidual X∗∗ = (
∑

⊕ℓn1 )ℓ∞ contains a complemented copy of ℓ1 (see
[30, p. 389]).

Proposition 3.31. Let X be a Banach space. The following assertions
are equivalent:

(i) The RightX topology coincides sequentially with the norm topology
on X.
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(ii) Every (relatively) RightX -compact subset of X is (relatively) norm-
compact.

(iii) For any Banach space Y , every operator T : X → Y is pseudo weakly
compact.

(iv) BX∗ is an R-set.

(v) Every bounded subset of X∗ is an R-set.

(vi) For any Right-null sequence (xn) in X and any bounded sequence (x∗n)
in X∗ one has limn x

∗
n(xn) = 0.

(vii) Every completely continuous operator T : X∗ → c0 such that T ∗(ℓ1) ⊂
X is compact.

Proof. (i) ⇔ (ii): Assume (i). If K ⊂ X is a (relatively) RightX -compact
set, then, by [28, Theorem 1.2], K is (relatively) sequentially RightX -compact.
Using the assumption (i), K is (relatively) sequentially norm-compact and
hence (relatively) norm-compact. The converse is obvious, since every RightX -
null sequence is relatively RightX -compact.

The implication (i) ⇒ (iii) is trivial.
(iii) ⇒ (iv): If (iii) holds and we consider the identity operator on X then,

by Proposition 3.22, BX∗ is an R-set.
Since every subset of an R-set is an R-set, the implication (iv) ⇒ (v) is

obvious.
(v) ⇒ (vi): Assume (v) and let (xn) and (x∗n) be as in (vi). Then

lim
n

|x∗n(xn)| ≤ lim
n

sup
k∈N

|x∗k(xn)| = 0,

since {x∗n : n ∈ N} is a bounded set in X∗ and so, by the assumption, an
R-set.

(vi) ⇒ (i): If (i) does not hold, then there is a Right-null sequence (xn) in
X which does not converge to zero in norm. Hence there is a sequence (x∗n)
in BX∗ such that (x∗n(xn)) does not converge to zero. This contradicts (vi).

The equivalence of (iv) and (vii) follows from Proposition 3.21, where we
put K := BX∗ .

Corollary 3.32. A Banach space X is a Schur space if and only if X
has the Dunford-Pettis property and BX∗ is an R-set.

Proof. The space X is Schur if and only if the weak and norm topologies
coincide sequentially on X, i.e., if and only if the RightX topology coincides



18 m. kačena

with both the weak and the norm topology sequentially. Combining Proposi-
tion 3.17 with Proposition 3.31 yields the requested equivalence.

Remark 3.33. Let us only remark that X∗ is a Schur space if and only if
X has the Dunford-Pettis property and X contains no copy of ℓ1 (see [7, p.
23]).

Concerning compactness, it follows from [33, Proposition 3.1] that BX∗∗

is τ(X∗∗, X∗)-compact if and only if X∗ is a Schur space. The situation is
different for the RightX topology. Indeed, if BX is RightX -compact, then it
is weakly compact and so X must be reflexive. Since in reflexive spaces the
RightX and norm topologies coincide, X is necessarily finite-dimensional.

Now we return back to the classification of operators and Banach spaces.
Here, for the convenience of the reader, we summarize the relations we have
already established. There is generally no connection between weakly com-
pact and cc operators. The identity operator on ℓ2 is an example of a weakly
compact operator that is not cc, the identity on ℓ1 is a non-weakly compact
cc operator. That weakly compact operators are both pwc and wcc has been
mentioned in Preliminaries. Every cc operator is trivially wcc. By Proposi-
tion 3.2, every cc operator is pwc and all pwc operators are Rcc. Corollary 3.5
states that all wcc operators are Rcc and Corollary 3.20 that every Rcc is uc.
The identity on L1 provides an example of a wcc operator which is not pwc,
since L1 has the Dunford-Pettis property and so we can use Corollary 3.18.
What remains is to show that there is a pwc operator which is not wcc (see
Example 3.35 below) and a uc operator that is not Rcc (see Example 3.34
below).

As for Banach space properties, (V) ⇒ (RD) is shown in Corollary 3.20,
(RD) ⇒ (SR) and (SR) ⇒ (RDP) in Corollary 3.3 and (RD) ⇒ (D) in Corol-
lary 3.5. (D) ⇒ (RDP) is mentioned in Preliminaries. Examples 3.34 and
3.35 below show (RD) ̸⇒ (V) and (D) ̸⇒ (SR), respectively.

Example 3.34. Let Y be the second Bourgain-Delbaen space constructed
in [5]. It is a non-reflexive Banach space with the Dunford-Pettis property
that does not contain c0 or ℓ1 and its dual is isomorphic to ℓ1.

Since Y does not contain ℓ1, it has the Dieudonné property. As a Dunford-
Pettis space, it has also property (RD) by Corollary 3.18(d). However, since
Y is not reflexive and does not contain c0, it cannot possess property (V) (see
[24, Proposition 8]). This answers the question raised in [25] and [38] whether
every sequentially Right Banach space has property (V).
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The identity operator i : Y → Y is clearly uc, since Y does not contain a
copy of c0. Since Y is not reflexive and does not contain ℓ1, it cannot be weakly
sequentially complete (by [29]). Hence, i is not wcc. By Corollary 3.18(c), i
is not Rcc.

Example 3.35. In [15], R.C. James constructed a separable non-reflexive
Banach space X isomorphic to its bidual. In particular, since X∗∗ is separable,
neither X nor X∗ contains an isomorphic copy of ℓ1.

Since X does not contain ℓ1, X has property (D). By Corollary 3.28, X
cannot be sequentially Right.

Since the dual space X∗ does not contain ℓ1, the RightX topology coin-
cides with the norm topology on X sequentially (see the comments preceding
Proposition 3.27). The identity operator i : X → X is therefore pwc. How-
ever, since X is neither reflexive nor contains ℓ1, X is not weakly sequentially
complete and hence i is not wcc.

Remark 3.36. The only loose end left is an example for (SR) ̸⇒ (D). As
far as we know, the implication (RDP) ̸⇒ (D) has been an open problem ever
since it was introduced by A. Grothendieck in [14]. The implication (SR) ̸⇒
(RD) seems to be analogical.

4. Vector-valued continuous functions

For a compact Hausdorff space K and a Banach space X we denote by
C(K,X) the Banach space of all X-valued continuous functions defined on
K, endowed with the supremum norm. It is a long-standing open problem
whether the space C(K,X) has property (V) (resp. (D), (RDP)) whenever
X has the same property (see [30]). For the Dunford-Pettis property this has
been shown to be false by M. Talagrand (see [36]). However, if the compact
space K is scattered, then C(K,X) has property (V) (resp. (D), (RDP),
(DP)) if and only if X has the same property (see [6]). Recall that a compact
space K is scattered if every subset A of K has a point relatively isolated in
A. The aim of this section is to show that the equivalence above holds also
for properties (RD) and (SR). We use the same ideas and techniques as in [6].

Let K be a compact Hausdorff space and X a Banach space. We denote
by B the σ-algebra of Borel subsets of K. It is well-known that the dual space
C(K,X)∗ is isometrically isomorphic to the Banach space M(K,X∗) of all
regular countably additive X∗-valued measures of bounded variation defined
on the σ-algebra B and equipped with the variation norm ∥m∥ = |m|(K). In



20 m. kačena

fact, for any Banach space Y and any operator T : C(K,X) → Y , there is a
finitely additive set function m : B → L(X,Y ∗∗), from B to the space of all
operators from X to Y ∗∗, having finite semi-variation m̂(K) with m̂(K) = ∥T∥
such that

T (f) =

∫
K
f dm for every f ∈ C(K,X)

(see, e.g., [9, p. 182]). This set function m is called the representing measure
of T . We recall that the semi-variation of m is defined by

m̂(E) = sup
{∥∥∥ n∑

i=1

m(Ei)(xi)
∥∥∥ :Ei ∈ B, Ei ⊂ E, {Ei}ni=1 pairwise disjoint,

xi ∈ BX , i = 1, . . . , n, n ∈ N
}
, E ∈ B

(see [2, p. 217]). The semi-variation m̂ is said to be continuous at ∅ if
limn→∞ m̂(En) = 0 for every decreasing sequence En ↘ ∅ in B, or equivalently,
if there exists a control measure for m̂, that is, a positive countably additive
regular Borel measure λ on K such that limλ(E)→0 m̂(E) = 0.

The representing measure m determines an extension T̂ : B(B, X) → Y ∗∗

of T , where B(B, X) denotes the Banach space of all strongly measurable
functions on B with values in X, i.e., the Banach space of all functions
g : K → X which are the uniform limit of a sequence of B-simple functions,
endowed with the supremum norm, given by

T̂ (g) =

∫
K
g dm, g ∈ B(B, X),

with ∥T̂∥ = ∥T∥ (see [2, Theorem 1]). This extension is just the restriction to
B(B, X) of the biadjoint T ∗∗ of T .

It has been shown in [10, Theorem 3] that if T is unconditionally converg-
ing then m is L(X,Y )-valued and m̂ is continuous at ∅. In this case, by [2,
Theorem 2], the extension T̂ maps B(B, X) into Y .

In the following we consider a compact Hausdorff space K and Banach
spaces X,Y .

Proposition 4.1. Let K be metrizable. Then an operator T : C(K,X) →
Y is Rcc if and only if its extension T̂ : B(B, X) → Y ∗∗ is Rcc.

Proof. Let T : C(K,X) → Y be an Rcc operator. Then, by Corollary 3.20,
T is uc and so m is L(X,Y )-valued with a control measure λ and T̂ is Y -valued.
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Let (gn) be a Right-Cauchy sequence in B(B, X) and let y∗∗ ∈ Y ∗∗ be the
τ(Y ∗∗, Y ∗)-limit of (T̂ (gn)) (recall that by [26, Lemma 12] every operator is
Right-Right continuous and so the sequence (T̂ (gn)) is Right-Cauchy in Y ,
hence τ(Y ∗∗, Y ∗)-convergent in Y ∗∗).

Suppose, for contradiction, that y∗∗ ̸∈ Y . Since y∗∗ is not σ(Y ∗, Y )-
continuous, by Grothendieck’s completeness theorem ([31, Chapter IV, The-
orem 6.2]) it is not σ(Y ∗, Y )-continuous on BY ∗ . Hence there exist ε > 0 and
a net (y∗α) ⊂ BY ∗ which is σ(Y ∗, Y )-convergent to zero such that

|y∗∗(y∗α)| > ε for all α. (1)

Choose δ > 0, δ < λ(K), so that

m̂(E) <
ε

4 sup ∥gn∥
for each E ∈ B with λ(E) < δ.

According to Lusin’s theorem, for every n ∈ N, there exists a compact set
Kn ⊂ K such that λ(K \Kn) < δ

2n and the restriction gn �Kn is continuous.
Put K0 :=

∩∞
n=1Kn. Then λ(K \K0) < δ and K0 ̸= ∅ since δ < λ(K). Let

us denote fn := gn �K0 for every n ∈ N.

We show that (fn) is Right-Cauchy in C(K0, X). Consider the restriction
operator r : B(B, X) → B(B �K0 , X). Since (gn) is Right-Cauchy in B(B, X),
(fn) is Right-Cauchy in B(B �K0 , X). Every measure µ ∈ M(K0, X

∗) =
C(K0, X)∗ can be naturally extended to an element of B(B �K0 , X)∗. Using
Proposition 3.10, (fn) is Right-Cauchy in C(K0, X).

By the Borsuk-Dugundji theorem (see, e.g., [34, Theorem 21.1.4]), there
is an extension operator S : C(K0, X) → C(K,X), with ∥S∥ = 1, so that
S(f) �K0= f for every f ∈ C(K0, X). Since T ◦S is an Rcc operator, (TS(fn))
is RightY -convergent to an element y ∈ Y . Since (y∗α) is σ(Y ∗, Y )-convergent
to zero there exists an index α0 so that

|y∗α(y)| < ε

6
for all α ≥ α0.

Let α ≥ α0. There is n ∈ N verifying

|⟨T̂ (gn) − y∗∗, y∗α⟩| <
ε

6
and |⟨TS(fn) − y, y∗α⟩| <

ε

6
.
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Thus we have

|y∗∗(y∗α)| ≤ |⟨y∗∗ − T̂ (gn), y∗α⟩| + |⟨T̂ (gn) − TS(fn), y∗α⟩|
+ |⟨TS(fn) − y, y∗α⟩| + |⟨y, y∗α⟩|

<
ε

2
+ ∥y∗α∥∥T̂ (gn) − TS(fn)∥

≤ ε

2
+

∥∥∥∫
K\K0

gn − S(fn) dm
∥∥∥

≤ ε

2
+ 2∥gn∥m̂(K \K0) < ε.

But this contradicts (1).

Conversely, if T̂ : B(B, X) → Y ∗∗ is Rcc then, by Corollary 3.12,
T : C(K,X) → Y ∗∗ is Rcc. Hence, every Right-Cauchy sequence (fn) in
C(K,X) is mapped into a Right-convergent sequence in Y ∗∗. Since RightY ∗∗-
topology is compatible with the norm topology and (T (fn)) is contained in
the closed convex set Y ⊂ Y ∗∗, the limit point y of (T (fn)) must be a member
of Y (see, e.g., [31, Chapter IV, 3.1]). Now, Proposition 3.10 implies that
T (fn) → y in the RightY -topology.

Proposition 4.2. Let K be metrizable. Then an operator T : C(K,X) →
Y is pseudo weakly compact if and only if its extension T̂ : B(B, X) → Y ∗∗ is
pseudo weakly compact.

Proof. Let T : C(K,X) → Y be a pwc operator. By Proposition 3.2(ii)
and Corollary 3.20, T is uc. Let m and λ be as in the proof of Proposition 4.1.
Let (gn) be a Right-null sequence in B(B, X). Suppose, for contradiction, that
T̂ is not pwc. Without loss of generality we may assume that there is ε > 0
so that

∥T̂ (gn)∥ > ε for all n ∈ N. (2)

Choose δ > 0, δ < λ(K), verifying

m̂(E) <
ε

4 sup ∥gn∥
for each E ∈ B with λ(E) < δ.

Reasoning as in the proof of Proposition 4.1, there exist a non-empty compact
set K0 ⊂ K with λ(K \K0) < δ such that fn = gn �K0 is continuous for all
n ∈ N and an isometric extension operator S : C(K0, X) → C(K,X). By
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the same argument as in the proof of Proposition 4.1, (fn) is Right-null in
C(K0, X). So TS(fn) → 0 in Y and there exists n0 ∈ N such that

∥TS(fn)∥ <
ε

2
for all n ≥ n0.

Thus if n ≥ n0 one has

∥T̂ (gn)∥ ≤ ∥T̂ (gn) − TS(fn)∥ + ∥TS(fn)∥

<
∥∥∥∫

K\K0

gn − S(fn) dm
∥∥∥ +

ε

2

≤ 2∥gn∥m̂(K \K0) +
ε

2
< ε.

But this contradicts (2). The converse follows from Corollary 3.12.

Lemma 4.3. ([6, Lemma 6]) Let K be a metrizable scattered compact
space and let T : C(K,X) → Y be an operator whose representing measure
m verifies

(i) m(B) ⊂ L(X,Y ),

(ii) m(E) : X → Y is weakly compact for each E ∈ B,

(iii) m̂ is continuous at ∅.

Then T is weakly compact.

Theorem 4.4. Suppose that K is scattered. Then C(K,X) is sequen-
tially Right (resp. has property (RD)) if and only if X has the same property.

Proof. The necessity follows from Proposition 3.8, since X can be identified
with a complemented subspace of C(K,X).

For the sufficiency, assume that X is sequentially Right (resp. has property
(RD)) and T : C(K,X) → Y is a pwc (resp. Rcc) operator.

(A) Suppose first that K is metrizable. Since T is uc, by [10, Theorem
3] its representing measure m satisfies conditions (i) and (iii) of Lemma 4.3.
For each E ∈ B we define an operator ΦE : X → B(B, X) by ΦE(x) =
xχE , x ∈ X, where χE is the characteristic function of E on K. It follows
from Proposition 4.2 (resp. 4.1) that the operator m(E) = T̂ ◦ ΦE : X → Y
is pwc (resp. Rcc) and so, since X is sequentially Right (resp. has property
(RD)), m(E) is weakly compact. Therefore, all conditions of Lemma 4.3 are
satisfied and thus T is weakly compact.
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(B) For a general K, let (fn) be an arbitrary sequence in the unit ball
of C(K,X). The method used in [2, p. 236] shows there is a subspace H
of C(K,X) such that (fn) ⊂ H and H is isometric to some C(L,X), where
L is a compact metric space and a quotient space of K. Since a metrizable
quotient space of a scattered space is scattered (see [34, Proposition 8.5.3]),
L is scattered. Corollary 3.12 in conjunction with the part (A) of this proof
shows that T �H is weakly compact. So there is a subsequence (fnk

) of (fn)
such that (T (fnk

)) is weakly convergent in Y . This shows that T is weakly
compact.

Analogues of Propositions 4.1 and 4.2 for cc, wcc and uc operators and
general compact Hausdorff space K have been shown in [3]. The arguments of
[3] cannot be employed here, since, unlike the weak topology, the Right topol-
ogy is not preserved under subspaces in general. We do not know whether
the metrizability assumption in Propositions 4.1 and 4.2 can be dropped com-
pletely. In the rest of this paper we show, however, that it is possible under
the Continuum Hypothesis (CH) or if the weight of K is at most ℵ1.

Let M and N be arbitrary Hausdorff topological spaces and let F be a map
from M to non-empty subsets of N . We say that F is upper semi-continuous
(usc) if {m ∈ M : F (m) ∩C ̸= ∅} is closed for every closed subset C of N . A
map f : M → N is called a selection for F if f(m) ∈ F (m) for all m ∈ M .
The weight w(M) of the topological space M is the smallest cardinality of
a base for the topology of M . We denote by B(M) the σ-algebra of Borel
subsets of M . If M is completely regular in addition then B0(M) will be the
σ-algebra of Baire subsets of M , i.e., the σ-algebra generated by the zero-sets
of continuous functions on M . We recall that if M is a normal space then the
zero-sets of continuous functions on M are precisely the closed Gδ-subsets of
M and if M is a metric space then B0(M) = B(M) (see, e.g., [34, Proposition
6.5.2]).

Lemma 4.5. Let (gn) be a Right-null sequence in B(B(K), X). Let K0 be
a compact subset of K such that gn �K0∈ C(K0, X) for all n ∈ N. Assume
(CH) or w(K0) ≤ ℵ1. Then there is a Right-null sequence (f̃n) in C(K,X)
such that ∥f̃n∥ ≤ ∥gn∥ and f̃n(t) = gn(t) for every t ∈ K0 and n ∈ N.

Proof. Put fn := gn �K0 for all n ∈ N. We have already shown in the proof
of Proposition 4.1 that (fn) is Right-null in C(K0, X).

We will continue by employing the method from [2, p. 236]. Let us define
the pseudo-metric p (see, e.g., [1, p. 15] for the definition of pseudo-metric)
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on K0 by

p(t, t′) =

∞∑
n=1

2−n∥fn(t) − fn(t′)∥, t, t′ ∈ K0.

Let L be the set of equivalence classes τ of K0 under the relation: t ∼ s if and
only if p(t, s) = 0. The continuous mapping ϕ : t 7→ τ of a point t ∈ K0 into
its equivalence class is a continuous mapping from K0 onto L and thus L is a
compact metric space equipped with the metric ρ(τ, τ ′) = p(t, t′), t ∈ τ, t′ ∈
τ ′. The mapping i : h 7→ h ◦ ϕ defines an isometric embedding of C(L,X)
into C(K0, X). We denote by H the image of C(L,X) in C(K0, X) under i.
Clearly, fn ∈ H for all n ∈ N.

Now we show that (fn) is Right-null in H. Consider the multi-valued map
F : L → 2K0 defined by F (τ) = ϕ−1(τ), τ ∈ L. Since ϕ is continuous, F
is compact-valued and usc. If we assume (CH) (resp. w(K0) ≤ ℵ1) then,
by [13, Theorem 7] (resp. [13, Theorem 3]), there exists a B(L)-B0(K0)-
measurable selection φ for F . It is easy to verify that every continuous
function f ∈ C(K0, X) is a uniform limit of B0(K0)-simple functions. Since
Φ : g 7→ g ◦ φ defines a bounded linear map from the normed vector space of
all B0(K0)-simple functions to B(B(L), X), extending Φ by continuity to all
of B(B0(K0), X) and then restricting to C(K0, X) provides an operator, de-
noted again by Φ, from C(K0, X) into B(B(L), X) such that Φ(f) ∈ C(L,X)
and i(Φ(f)) = f for every f ∈ H. Hence, (Φ(fn)) is Right-null in B(B(L), X)
and so, by the same argument as in the proof of Proposition 4.1, Right-null
in C(L,X). Since fn = i(Φ(fn)) for all n ∈ N, (fn) is Right-null in H.

The theorem of Arens [1, Theorem 4.2] (put A := K0, X := K,F :=
BH ,K := BX , L := X and q := p) yields an extension operator S : H →
C(K,X) with ∥S∥ = 1. Defining f̃n := S(fn), n ∈ N, finishes the proof.

Proposition 4.6. Assume (CH) or w(K) ≤ ℵ1. Then Propositions 4.1
and 4.2 hold without the metrizability assumption.

Proof. The only reason for the metrizability asumption on K in Proposi-
tions 4.1 and 4.2 was the Borsuk-Dugundji theorem. We used this theorem
only to obtain the conclusion of Lemma 4.5.
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