
E extracta mathematicae Vol. 26, Núm. 2, 295 – 316 (2011)
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1. Introduction and basic facts

The existence of interesting type of sequences in a Banach has been one
of the most studied topic in the theory of Banach spaces. For example, it is
known from the beginning of the theory that every infinite dimensional Banach
space has a basic sequence. It was a long-standing open problem to know if
infinite dimensional spaces always have sequences equivalent to the unit bases
of some of the classical sequence spaces c0 or ℓp, p ≥ 1. Tsirelson space T [39]
is the first “non-classical” Banach space, as it does not have such sequences.
Indeed this space does not have subsymmetric sequences. It took a little more
time to find a space without unconditional basic sequences (Gowers-Maurey
space [15]). On the other direction there is the Elton’s result stating that
every non-trivial weakly-null sequence has a near-unconditional subsequence
(see [11]), or the result by Ketonen [21] stating that every Banach space X
whose density is a ω-Erdös cardinal has a subsymmetric basic-sequence (see
Definition 2.23 for full details). From this, it readily follows by Rosenthal ℓ1-
dichotomy that in this case X also has unconditional basic sequences. In the
paper [10] it is proved that it is consistently true (relative of the existence of
large cardinals) that every Banach space of density ℵω has an unconditional
sequence.
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The existence of uncountable sequences, e.g. uncountable biorthogonal
sequences, is also known to be interesting, particularly in renorming theory.

In this paper we present several open problems asking for the existence
of certain countable or uncountable sequences, from a combinatorial point of
view.

We pass now to recall some basic concepts. Along this note a Banach
space will be always supposed to be infinite dimensional.

Let κ be a cardinal number and let x̄ = (xα)α<κ be a long sequence in a
Banach space X indexed in κ. The sequence x̄ is called seminormalized when

0 < inf
α<κ

∥xα∥ ≤ sup
α<κ

∥xα∥ < ∞ . (1)

The sequence x̄ is called a Schauder basic sequence if it is seminormalized,
and if there is a constant K ≥ 1 such that∥∥∥∥∥∥

∑
α<β

aαxα

∥∥∥∥∥∥ ≤ K

∥∥∥∥∥∑
α<κ

aαxα

∥∥∥∥∥ (2)

for every sequence (aα)α<κ of scalars and every β < κ. The minimum of
those constants K is called the basic constant of x̄. If in addition the linear
span of {xα}α<κ is dense in X, then the sequence is called a Schauder basis
of X. Equivalently, x̄ is a Schauder basis of X if and only if every point
x ∈ X is uniquely written as x =

∑
α<κ aαxα. It is well known that there are

separable Banach spaces without bases, although every Banach space has an
infinite basic sequence. Indeed, it is a result of Mazur that every non-trivial
weakly-null sequence has a basic subsequence.

Among the basic sequences, there are the unconditional ones: A basic
sequence x̄ is called (suppression) unconditional basic sequence when there is
a constant K ≥ 1 such that∥∥∥∥∥∑

α∈M
aαxα

∥∥∥∥∥ ≤ K

∥∥∥∥∥∑
α<κ

aαxα

∥∥∥∥∥ (3)

for every sequence (aα)α<κ of scalars and every subset M ⊆ κ. The minimum
of those constants K is called the constant of unconditionality. It is not
true that every non-trivial weakly-null sequence has an unconditional basic
subsequence 1. The first example was provided by Maurey and Rosenthal

1 There are very simple non-weakly-null sequences without unconditional subsequences,
for example the summing basis of c0.
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[27]. Many spaces have unconditional bases, as the sequence spaces ℓp(κ), or
c0(κ) but there are also without unconditional bases, as for example C[0, 1].
More difficult to find, but still existing, are spaces without unconditional basic
sequences. The first example was given by Gowers and Maurey [15].

Finally, a basic sequence x̄ is called subsymmetric if there is a constant
C ≥ 1 such that for every s, t ∈ S of the same cardinality the subsequences
(xα)α∈s and (xα)α∈t are C-equivalent, i.e., denoting by θ : s → t the unique
order-preserving bijection between s and t, then the linear extension of xα ∈
⟨xβ⟩β∈s 7→ xθ(α) ∈ ⟨xβ⟩β∈t is an isomorphism of norm at most C. Examples
of subsymmetric bases are the corresponding unit bases of ℓp(κ), or c0(κ).
There are also spaces without subsymmetric basic sequences, for example the
Tsirelson space [39].

The problems we propose are divided into two categories: existence of
countable sequences and existence of uncountable ones.

2. Countable sequences

2.1. Separable spaces. We present here two problems: Elton’s near
unconditionality constant, and the bounded distortion of the Tsirelson space.
Before we state them, we introduce well-known positive results for certain
asymptotic properties. They play an important role in the theory of separa-
ble Banach spaces, and some of the ideas involved are used also to see how
uncountable combinatorial principles force the existence of unconditional ba-
sic sequences. It is also interesting that there is no obvious generalization of
the separable asymptotic properties to non-separable spaces as we will see in
Subsection 2.2 with the notion of asymptotic ℓ1-spaces.

Recall that the Schreier family S is the collection of all finite subsets s of
N such that |s| ≤ min s+ 1.

Definition 2.1. We call a basic sequence (xn)n<ω asymptotically uncon-
ditional 2 when there is a constant C ≥ 1 such that every finite subsequence
(xn)n∈s is C-unconditional for every s ∈ S. In this case we say that (xn)n is
asymptotically C-unconditional.

Proposition 2.2. ([30]) For every non-trivial weakly-null sequence
(xn)n<ω and every C > 1 there is a subsequence (yn)n<ω of (xn)n<ω which is
asymptotically C-unconditional.

2 Often also called Schreier unconditional.
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For a proof of this fact one can use the following result (see [23] for a proof
and more information).

Lemma 2.3. Let n < ω, let M ⊆ ω be an infinite set, and let f : [M ]≤n →
c0 be a mapping whose image is a weakly-pre-compact subset of c0. Then for
every ε > 0 there is an infinite N ⊆ M such that∑

n∈N\s

|(f(s))n| ≤ ε for every s ∈ [N ]≤n.

In other words, the support of f(s) is almost included in s for every s ∈ [N ]≤n.

In the next, given s, t ⊆ N of the same cardinality, we write ϖs,t : s → t
to denote the unique order-preserving mapping between s and t.

Proof of Proposition 2.2. Fix a space X and a seminormalized weakly-
null sequence (xi)i on it. Indeed, by normalizing if needed, we assume that
∥xi∥ = 1 for every i < ω. By the Mazur’s theorem, we may assume, by
going to a subsequence if needed, that (xn)n is 2-basic. Fix now C > 1. We
prove that for every M and n < ω there is N ⊆ M such that (xi)i∈s is C-
unconditional for every s ∈ [N ]n. So, we fix such M and n < ω. Since (xi)i is
normalized and basic,

• there is a finite subset Fn ⊆ Rn such that for every s ∈ [ω]n and every
(bi)i<n ∈ Rn there is (ai)i<n ∈ Fn such that∥∥∥∥∥∑

i∈s
bϖs,|s|(i)xi −

∑
i∈s

aϖs,|s|(i)xi

∥∥∥∥∥ ≤ ε

∥∥∥∥∥∑
i∈s

aϖs,|s|(i)xi

∥∥∥∥∥ .
Now for each b̄ = (bi)i<n ∈ Fn and t ∈ [M ]≤n, let fb̄,t ∈ SX∗ be such that∥∥∥∥∥∑

i∈t
bϖt,|t|(i)xi

∥∥∥∥∥ = fb̄,t

(∑
i∈t

bϖt,|t|(i)xi

)
.

Then by Lemma 2.3 there is some N ⊆ M such that for every b̄ = (bi)i<n ∈ Fn

and every t ∈ [M ]≤n we have that∑
i∈N\t

∣∣fb̄,t(xi)∣∣ ≤ ε , (4)
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where ε > 0 is such that (1 + ε)(1− ε)2 ≤ C Now let s ∈ [N ]n, and we prove
that (xi)i∈s is C-unconditional: Let (ai)i∈s be scalars, and let t ⊆ s. Without
loss of generality, we assume that ∥

∑
i∈s aixi∥ = 1. Find, using the properties

of Fn, b̄ = (bi)i<n ∈ Fn such that∥∥∥∥∥∑
i∈t

aixi −
∑
i∈t

bϖt,|t|(i)xi

∥∥∥∥∥ ≤ ε

∥∥∥∥∥∑
i∈t

aixi

∥∥∥∥∥ .
Then, by (4) and setting f := fb̄,t ,∥∥∥∥∥∑

i∈s
aixi

∥∥∥∥∥ ≥

∣∣∣∣∣f(∑
i∈s

aixi)

∣∣∣∣∣
≥

∣∣∣∣∣f(∑
i∈t

bϖt,|t|(i)xi)

∣∣∣∣∣−
∥∥∥∥∥∑

i∈t
(bϖt,|t|(i) − ai)xi

∥∥∥∥∥− ∑
i∈s\t

|f(xi)|

≥ (1− ε)

∥∥∥∥∥∑
i∈t

bϖt,|t|(i)xi

∥∥∥∥∥− ε

≥ (1− ε)2

∥∥∥∥∥∑
i∈t

aixi

∥∥∥∥∥− ε

∥∥∥∥∥∑
i∈s

aixi

∥∥∥∥∥
and we are done.

Definition 2.4. (Elton’s near unconditionality) A sequence (xn)n<ω is
called δ-near unconditional with constant C ≥ 1 when that for every sequence
of scalars (an)n and every s ⊆ {n < ω : |an| ≥ δ} one has that∥∥∥∥∥∑

n∈s
anxn

∥∥∥∥∥ ≤ C

∥∥∥∥∥∑
n<ω

anxn

∥∥∥∥∥ . (5)

Theorem 2.5. (Elton [11]) Every non-trivial weakly-null sequence has
a δ-near unconditional subsequence with constant proportional to log(1/δ).

A proof of this result can be done by using similar combinatorial ideas as
the ones exposed in Lemma 2.3. The reader can find more information in [23].

Problem 1. Does there exist a constant C ≥ 1 such that every normal-
ized weakly null sequence has for every δ > 0 a δ-near unconditional subse-
quence with constant C ?
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One of the few facts known about this problem is that the constant is at
least 5/4 (see [9]).

The last problem we discuss in this subsection is the distortion of the
Tsirelson space. Although this problem is not of the same nature than the
rest of the questions we propose, the combinatorial nature of the Tsirelson
space invites us to present it here.

Recall that the Tsirelson space T =
(
T, ∥ · ∥T

)
is defined as the unique

norm ∥ · ∥T such that

∥x∥T = max

{
∥x∥∞ , sup

{
1

2

n∑
i=1

∥Eix∥T : n ≤ E1 < · · · < En

}}
(6)

for every x ∈ T . Tsirelson space T is a reflexive space with an unconditional
basis which is asymptotic ℓ1. It follows that T does not contain subsymmetric
sequences.

The distortion of a renorm ∥·∥0 of a given Banach space (X, ∥·∥) is defined
by

D
(
(X, ∥ · ∥), ∥ · ∥0

)
= inf

Y⊆X, dimY=∞

{
sup

x,y∈SY,∥·∥

∥y∥0
∥x∥0

}
. (7)

The space (X, ∥ · ∥) is distortable if

D
(
X, ∥ · ∥

)
:= sup

∥·∥0∼∥·∥
D
(
(X, ∥ · ∥), ∥ · ∥0

)
> 1 , (8)

(X, ∥ · ∥) is arbitrarily distortable when D
(
X, ∥ · ∥

)
= ∞, and (X, ∥ · ∥) has

bounded distortion when 1 < D
(
X, ∥ · ∥

)
< ∞.

It is well known that many Banach spaces, including the separable Hilbert
space [31], are arbitrarily distortable. It follows from a classical work of James
that c0 and ℓ1 are not distortable. It is also known that the Tsirelson space
is (2− ε)-distortable for every ε > 0, but the following is still open.

Problem 2. Has the Tsirelson space bounded distortion? In general, is
there a Banach space with bounded distortion?

It is known (see [17] for full information) that if X has bounded distortion,
then it has an unconditional basic sequence and the space is asymptotic c0 or
asymptotic ℓp, p ≥ 1, and in this last case ℓ1 must be finitely representable
in X.

Perhaps a way to prove that the space T has bounded distortion is to see
first a Ramsey result for it, or more likely for its dual T ∗. Recall that the dual
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space T ∗ is asymptotic c0, and for c0 there is a very strong Ramsey result
by Gowers [14]: Given any uniformly continuous function f : Sc0 → R and
given ε > 0 there is an infinite dimensional subspace X of c0 such that the
oscillation of f in the unit sphere of X is at most ε.

2.2. Non-separable spaces.

Definition 2.6. Let K be a class of Banach spaces. Let ncK be the min-
imal cardinal number with the property that every Banach space in K has an
unconditional basic sequence. For K the class of all Banach spaces, we simply
write nc.

Gowers and Maurey [15] proved that nc is uncountable, and later from
the Argyros and Tolias work [3] we know that nc is indeed bigger than the
continuum. On the other hand, Ketonen result [21] states that nc is smaller
or equal to the first ω-Erdös cardinal number, and in [10] we prove that it is
consistent relative to the existence of large cardinals that nc ≤ ℵω.

Similarly, we introduce the following cardinal number.

Definition 2.7. Let

nc0 := sup

{
κ :

every non-trivial w-null sequence
(xα)α<κ has an unconditional subsequence

}
.

By the Amir-Lindenstrauss Theorem [1] it follows that ncRefl ≤ nc0, where
Refl is the class of all reflexive spaces. The Schauder basic sequence in [2]
gives that nc0 > ℵ1, while a result from [10] says that it is consistent relative
to the existence of large cardinals that nc0 ≤ ℵ0.

The following combinatorial principle is crucial to find unconditional basis
subsequences. Before we need to recall the following standard notation. Given
a set X and an integer n, by [X]n we denote the family of all subsets of X of
cardinality n, and by [X]<ω we denote the set of all finite subsets of X.

Definition 2.8. Given d ≥ 1, we say that κ is d-polarized, and we write
Pold(κ) if for every c : [[κ]d]<ω → ω there is an infinite block sequence (Xi)i
of infinite subsets of κ such that c �

∏
i<n[Xi]

d is constant for every n < ω.

Theorem 2.9. ([10]) Suppose that κ has the property Pol2(κ). Then
nc ≤ κ.
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The proof uses the following multidimensional asymptotic unconditional
fact (see [10] for a proof):

Proposition 2.10. Suppose that (x
(0)
n )n∈N, . . . , (x

(k)
n )n∈N are non trivial

weakly-null sequences. Then for every ε > 0 there is an infinite subset M of

N such that (x
(0)
m0 , . . . , x

(k)
mk) is (1 + ε)-unconditional for every m0 < · · · < mk

in M .

Proof of Theorem 2.9. (Sketch) The proof uses an asymptotic argument.
We first fix a separated sequence (xα)α<κ in a given Banach space X. Without
loss of generality we assume that ℓ1 does not embed in X. Now we color
with c each finite block sequence ({α0 < β0}, . . . , {αk < βk}) by l > 0 if
((xαi−xβi

))i≤k is (1+21−l)-unconditional but it is not (1+2−l)-unconditional
and by 0 if it is 1-unconditional. Since Pol2(κ) holds, there are infinite subsets
X0 < X1 < X2 < · · · < of κ such that c �

∏
i≤k[Xi]

2 is constant with value lk.
We claim that lk = 0 for every k ≥ 0, which gives that if we choose arbitrary
{αn < βn} ⊆ Xn for every n, then (xβn − xαn)n is a 1-unconditional basic
sequence. So, suppose that there is some lk > 0. Since ℓ1 does not embed
in X, we can find, by Rosenthal ℓ1-Theorem weakly-Cauchy subsequences

(xαi
n
)n∈N with {α(i)

n }n∈N ⊆ Xi for every i ≤ k. Then our desired result follows
from Proposition 2.10.

Since it is consistent relative to the existence of large cardinals that
Pol2(ℵω) holds, then we obtain that nc ≤ ℵω. Moreover, we believe that
the following has positive answer:

Problem 3. Is it consistently true that nc = ℵ2 = (2ℵ0)+ ?

Now we pass to discuss some problems concerning the cardinal number
nc0. We know, by the construction in [2], that nc0 > ℵ1. A similar proof that
the corresponding of Theorem 2.9 gives the following.

Theorem 2.11. ([10]) Suppose that Pol(κ) holds. Then nc0 ≤ κ.

Interestingly, the next recent result distinguishes the behavior of nc
and nc0, by assuming a positive answer for the Banach Measure Extension
Problem.

Theorem 2.12. ([25]) Suppose that the Lebesgue measure extends to a
total countably additive measure. Then every non-trivial weakly-null sequence
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of length 2ℵ0 has an unconditional basic subsequence. In particular, every
reflexive space of density 2ℵ0 has an unconditional basic sequence.

The proof is based on a relationship between the possibility of extending
the Lebesgue measure to a total countably additive one, and the combinatorial
principle Pol(2ℵ0). The reader can find the complete proof in [25]. To finish
this part, we take a more direct path, and we explain a measure-theoretical
approach to guarantee the existence of an unconditional basic subsequence,
that we believe may lead to a further interesting research. So, suppose that
(xα)α<κ is a normalized weakly null sequence in some space X. Suppose also
that κ carries a countably additive probability measure µ defined on some
σ-field of subsets of κ that gives measure zero to all countable subsets of
κ. Suppose also that all norm-configurations induced by subsets of the finite
power κn are measurable relative to the power measure µn. Let us see how to
find an unconditional basic subsequence of (xα)α<κ: For each finite set s ⊆ κ,
choose a countable subset Ns ⊆ SX∗ 1-norming ⟨xα⟩α∈s. Let θ : [κ]<ω → [κ]≤ω

be defined for s ∈ [κ]<ω by

θ(s) :=
{
α < κ : there is some f ∈ Ns such that f(xα) ̸= 0

}
.

Let us call a finite subset s ⊆ κ θ-free if

θ(t) ∩ s ⊆ t for every t ⊆ s .

Let Fn ⊆ [κ]n be the set of θ-free sequences of cardinality n. By hypothesis,
each Fn is µn-measurable. We see now, using a Fubini argument, that indeed
µn(Fn) = 1: Suppose otherwise that µn([κ]

n \ Fn) > 0. For each I  n, and
j ∈ n \ I, let

SI,j :=
{
s ∈ [κ]n : (s)j ∈ θ(s[I])

}
,

where s[I] = {ϖ(i) : i ∈ I} for ϖ : |s| → s being the unique order-preserving
bijection between |s| and s. Let I0  n and j0 ∈ n\I0 be such that µn(SI0,j0) >
0. Set J = I0 ∪ {j0}, and let πJ : [κ]n → [κ]J be the canonical projection
πJ(s) = s[J ]. It follows that µm(πJ(SJ)) > 0, where m = |J |. By Fubini’s
Theorem, the set of t ∈ [κ]m−1 such that µ((πJ(SJ))t) > 0, has µm−1-positive
measure, where (πJ(SJ))t := {α < κ : t ∪ {α} ∈ πJ(SJ)}. But (πJ(SJ))t ⊆
θ(t), so (πJ(SJ))t is countable, and hence µ(πJ(SJ))t = 0, a contradiction.

Observe now that if s ∈ [κ]n is θ-free then it is 1-unconditional: Let (aα)α∈s
be a sequence of scalars and fix t ⊆ s. Let f ∈ Nt be such that

f

(∑
α∈t

aαxα

)
=

∥∥∥∥∥∑
α∈t

aαxα

∥∥∥∥∥ . (9)
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Since s is θ-free, it follows that f(t)∩s ⊆ t. This means that for every α ∈ s\t
one has that f(xα) = 0. So,∥∥∥∥∥∑

α∈s
aαxα

∥∥∥∥∥ ≥ f

(∑
α∈s

aαxα

)
= f

(∑
α∈t

aαxα

)
=

∥∥∥∥∥∑
α∈t

aαxα

∥∥∥∥∥ . (10)

Since the sets Un := {s ∈ [κ]n : (xα)α∈s is 1-unconditional} have µn-measure
1 for every n, it follows that the set of sequences (αn)n∈ω such that (xαn)n∈ω
is 1-unconditional has µω-measure 1, where µω denote the infinite product
measure on κω, and we are done.

On the other direction, it is possible to generalize the Maurey-Rosenthal
construction [27] of a normalized weakly-null sequence without unconditional
subsequences to long weakly-null sequences of length ℵn, for every n ∈ N.
This gives

Theorem 2.13. ([25]) nc0 ≥ ℵω.

Its proof is based on the study of the chromatic number of certain graphs
in ℵn defined by the method of minimal walks.

Problem 4. Is it consistently true that nc0 > ℵω?

Notice that in [10] it is proved that it is consistent relative to the existence
of a measurable cardinal that nc0 ≤ ℵω.

2.3. Subsymmetric sequences. The goal is to understand the follow-
ing cardinal number.

Definition 2.14. Let

ns := sup

{
κ :

every space of density κ has a
subsymmetric basic sequence

}
.

We know that 2ℵ0 < ns ≤ first ω-Erdös cardinal (see Definition 2.23), by
Odell [29] and Ketonen [21] results, respectively. We start with the following
simple asymptotic result.

Proposition 2.15. Every basic sequence has a subsequence which is
asymptotically subsymmetric. Moreover for every C > 1 there is a C-
asymptotically subsymmetric subsequence.
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Proof. The main idea here is that, given C > 1 and n ∈ N there is a finite
list of finite basic sequences such that any other finite basic sequence of length
n is C-equivalent to one of the sequences in that list.

The link between subsymmetric and unconditional sequences is the follow-
ing.

Proposition 2.16. Suppose that (xn)n<ω is a subsymmetric sequence.
Then either (xn)n has a subsequence equivalent to the unit basis of ℓ1 or
else there is a subsequence (xnk

)k of (xn)n such that (xn2k+1
− xn2k

)k is an
unconditional sequence.

Proof. We apply Rosenthal ℓ1 dichotomy to the sequence (xn)n∈ω. The
first alternative is to find a subsequence equivalent to the unit basis of ℓ1.
The second one that is that there is a subsequence (xmk

)k<ω which is weakly-
Cauchy. It is not true in general that a block subsequence of a subsymmetric
sequence is subsymmetric, but obviously the different sequence (xm2k+1

−
xm2k

)k is subsymmetric, and in this case also weakly-null. Now the result
readily follows from Proposition 2.2.

Consequently,

Corollary 2.17. ncrefl ≤ nsrefl.

Problem 5. Is it true that ncrefl < nsrefl?

It is worth to point out that Odell’s non-separable space from [29] without
subsymmetric sequences is a dual of a separable space, so non-reflexive. In
our understanding, there are no constructions of non-separable reflexive spaces
without subsymmetric sequences but with unconditional sequences. For sepa-
rable spaces, the typical example is the Tsirelson space, whose most common
presentation is based on the Schreier family. In looking for a natural gener-
alization of this construction to the non-separable context, we introduce the
following generalization of the Schreier family:

Definition 2.18. Let κ be a cardinal number. A family B of finite subsets
of κ is called

(a) hereditary if s ⊆ t ∈ B implies that s ∈ B ;

(b) compact if it is compact when B is identified with the subset of 2κ

consisting on characteristic functions 1s of sets s ∈ B ;
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(c) large if B ∩ [A]n ̸= ∅ for every infinite subset A of κ and every
integer n.

So compact and large families are those that they have “asymptotic copies”
of every infinite set yet no copy of the infinite set. Keeping this simple idea in
mind, one might imagine that such families can be used to define for example
spaces not having copies of ℓ1, yet ℓ1 will appear asympotically.

A typical example of compact, hereditary and large family is the Schreier
family

S := {s ⊆ ω : |s| ≤ min s+ 1} .

We are going to see that compact, hereditary and large families exists for
many uncountable cardinal numbers (see Proposition 2.24).

Definition 2.19. A long basic sequence (xα)α of a Banach space (X, ∥·∥)
is called asymptotic ℓ1-space, hereditary and large family B when there is a
constant C ≥ 1 such that for every block sequence (yn)n of (xα)α we have
that ∥∥∥∥∥∑

n∈s
yn

∥∥∥∥∥ ≥ 1

C

∑
n∈s

∥yn∥

for every s ∈ S. A space is called asymptotic ℓ1 when it has a long basis which
is asymptotic ℓ1-space.

It is easy to see that the Tsirelson space is asymptotic ℓ1. Let us see why
it does not have subsymmetric sequences.

Proposition 2.20. Suppose that X is an asymptotic ℓ1 space without
copies of ℓ1. Then X does not have subsymmetric basic sequences.

Proof. Let (eγ)γ<κ be a Schauder basis of X with basic constant C ≥ 1,
and letK ≥ 1 be a constant witnessing that (eγ)γ<κ is asymptotic ℓ1. Suppose
that (xn)n∈N is a basic sequence in X, and let D ≥ 1. We use first a gliding-
hump argument: Let γ0 be the first ordinal number γ < κ such that there is
ε > 0 and some infinite subset M ⊆ N such that

∥Pγxn∥ ≥ ε for every n ∈ M . (11)

Fix also ε0 > 0 witnessing that γ0 has the property in (11). It follows that we
can find some infinite subsequence (xn)n∈N of (xn)n∈M such that (Pγ0(xn))n∈N
is 2-equivalent to a seminormalized block subsequence (yn)n∈N of (eγ)γ with
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∥yn∥ ≥ ε0 for every n ∈ N . Since the space X does not contain ℓ1, there are
scalars (an)n∈s, s ⊆ N , such that

∑
n∈s

|an| = 1 and

∥∥∥∥∥∑
n∈s

anxn

∥∥∥∥∥ ≤ ε0
3KCD

.

Since (eγ)γ<κ is asymptotic ℓ1, it follows that, fixing t ∈ S � N such that
|t| = |s|, we obtain that∥∥∥∥∥∑

n∈t
aϖt,s(n)yn

∥∥∥∥∥ ≥ 1

K
ε0
∑
n∈s

|an| =
ε0
K

. (12)

Consequently,∥∥∥∥∥∑
n∈t

aϖt,s(n)xn

∥∥∥∥∥ ≥ 1

C

∥∥∥∥∥Pγ0

∑
n∈t

aϖt,s(n)xn

∥∥∥∥∥ ≥ ε0
2CK

> D

∥∥∥∥∥∑
n∈s

anxn

∥∥∥∥∥ , (13)

so (xn)n is not subsymmetric with constant D. Since D ≥ 1 was arbitrary,
we are done.

So in order to prove that ns > κ, one could try to find a reflexive space
with an asymptotic ℓ1 basis of length κ. However this approach does not work.

Proposition 2.21. Suppose that (xα)α<γ is asymptotic ℓ1 basic se-
quence. Then either γ = ω or else (xγ)ω≤α<γ is equivalent to the correspond-
ing ℓ1-unit basis. In particular, there are no non-separable reflexive asymptotic
ℓ1-spaces.

Proof. The proof is very simple: Suppose that γ > ω, let C ≥ 1 be
the constant witnessing that (xα)α<γ is asymptotic ℓ1. Fix a finite subset
ω ≤ α0 < · · · < αn < γ. Let (yk)k be the sequence defined as yi = xi
for i < n; yn+i := xαi for i ≤ n and y2n+i+1 := xαn+i+1 for every i ∈ ω.
Then (yk)k∈ω is a normalized block sequence of (xα)α. Since this sequence is
asymptotic it follows that∥∥∥∥∥

n∑
i=0

aixαi

∥∥∥∥∥ =

∥∥∥∥∥
2n∑
i=n

aiyi

∥∥∥∥∥ ≥ 1

C

n∑
i=0

|ai| .
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Still, formally one can define, given a compact, hereditary and large family
on an uncountable cardinal κ, a norm ∥·∥ on c00(κ), as for the Tsirelson space
in (6), now with respect to the family B. The corresponding completion has
an unconditional basis of length κ, but it is proved in [25] that the space
contains a copy of ℓ1(κ).

We finish the discussion on subsymmetric sequences with the sequence
version of ns.

Definition 2.22. Let ns0 be the minimal cardinal number κ such that
every non trivial weakly-null sequence (xα)α<κ has a subsymmetric basic sub-
sequence.

It is proved in [2] that ns0 > ℵ1. In contrast with the number ns, the
situation for ns0 is completely understood.

Definition 2.23. A cardinal number κ is called ω-Erdös when

κ → (ω)<ω
2 ,

i.e., whenever c : [κ]<ω → 2 there is an infinite c-homogeneous subset A ⊆ κ,
i.e., such that c � [A]n is constant for every n < ω.

It is not difficult to see that the definition above is equivalent to κ → (ω)<ω
c .

Proposition 2.24. ([25]) Let κ be an infinite cardinal. The following
are equivalent:

(1) κ is ω-Erdös;

(2) ns0 ≤ κ, i.e., every non-trivial weakly-null sequence (xα)α<κ has a sub-
symmetric basic subsequence;

(3) there are no large compact and hereditary families on κ.

Proof. (Sketch) (1) implies (2) was proved first by Ketonen: Let C be a set
of finite basic sequences in some Banach space (for example C[0, 1]) such that
every finite linearly independent sequence in a Banach space is 1-equivalent to
some sequence in C, and of cardinality |C| = c. Let c : [κ]<ω → C be defined
for s ∈ [κ]<ω by c(s) ∈ C such that (xα)α∈s is 1-equivalent to c(s). Then if
A ⊆ κ is c-homogeneous, then (xα)α∈A is subsymmetric. Now, by Mazur’s
result, there is some B ⊆ A such that (xα)α∈B is in addition basic.
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(2) implies (3): Let B be a large compact and hereditary family on κ.
Define on c00(κ) the following norm:

∥x∥B := sup
s∈B

⟨x,1s⟩

where ⟨·, ·⟩ denotes the scalar product in c00(κ). Then the unit Hamel basis
(uγ)γ<κ is a 1-unconditional Schauder basis of the completion of (c00(κ), ∥·∥B).
In addition, it follows from Ptak’s Lemma that (uγ)γ<κ is weakly-null, and
by the fact that B is large and again Ptak’s Lemma, it follows that (uγ)γ<κ

does not have subsymmetric basic sequences.
(3) implies (1): Suppose that κ is not ω-Erdös, and let c : [κ]<ω → 2

witnessing that. Let B be the family of c-homogeneous subsets of κ. Then
this is a compact and hereditary family, since c does not have infinite homo-
geneous sets. In addition, it follows from the finite Ramsey Theorem that B is
large.

3. Uncountable special sequences

The last section is devoted to the existence of certain uncountable se-
quences. To motivate this search, we recall the following natural variation of
the well-known separable quotient problem.

Problem 6. Let X be an infinite dimensional Banach space. Does there
exists a quotient of X with a Schauder basis of length the density of X?

This is true if X is separable (Johnson-Rosenthal [20]). This result was
later extended by Todorcevic [37] who proved that assuming a standard Baire
category principle, the previous problem had a positive answer for spaces of
densities at most ℵ1.

Related to this are the existence of the following sequences.

Definition 3.1. A sequence (xα, fα)α<κ of pairs (xα, fα) ∈ X × X∗ is
called an ε-biorthogonal system (0 ≤ ε < 1) if fα(xα) = 1 for every α < κ
and |fα(xβ)| ≤ ε for every β ̸= α. The sequence (xα, fα)α<κ is called an
almost-biorthogonal system if it is ε-biorthogonal for some 0 ≤ ε < 1, and it
is called biorthogonal when it is 0-biorthogonal.

Notice that if X has a quotient with a Schauder basis of length κ, then
X has automatically a biorthogonal system of length κ. As it is well known,
assuming certain set-theoretical axioms, there are examples of non-separable
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Banach spaces without uncountable biorthogonal systems: One such a space
was given by Kunen (see [28]), who proved that under the Continuum Hypoth-
esis (CH) there is a non-metrizable scattered compacta K which is hereditar-
ily separable in all its powers. This was later improved by Todorcevic [36,
Chapter 1] who constructed a compactum with the same properties using the
weaker assumption b = ℵ1, which today appears to be optimal. It follows
that the corresponding space of continuous functions C(K) is a non-separable
c0-saturated Banach space without uncountable biorthogonal systems, indeed
(C(K); weak)n is Hereditarily Lindelöf (HL) in all its finite powers. Slightly
before Kunen’s construction (see the remark of Johnson in [37]) Shelah in [35],
assuming the Diamond principle (3), proved that there is a non-separable Ba-
nach space S which is Gurarij and such that (S; weak)n is again (HL) for all
n ∈ N. The densities of these two examples are ℵ1. Brech and Koszmider
[7] gave the first example of a Banach space, indeed a C(K) space, of den-
sity ℵ2 without uncountable biorthogonal systems. Their proof uses a generic
construction.

With the purpose of understanding a general approach to build this kind
of spaces, we pass now to explain the general methodology introduced in
[24] to give non-separable generic spaces. The construction in [24] is done
using forcing but, with the permission of authors, we reproduce here a direct
construction (which is, in fact, fairly easy given the crucial notions given
below) from a paper in preparation [26] of a non-separable space X with the
following properties:

(a) X is an increasing union X =
∪

α<ω1
Xα of separable spaces Xα isomor-

phic to c0.

(b) X does not have uncountable biorthogonal systems (indeed (X,weak)n

is (HL) for all n ∈ N).

Definition 3.2. An homogeneous family is a family F consisting on fi-
nite subsets of ω1 with the following properties:

(1) F � λ is ⊆-cofinal in λ and ⊆-directed for every λ < ω1 limit.

(2) For every s, t ∈ F , if |s| = |t|, then the unique order-preserving bijection
θ : s → t between s and t is an ⊆-isomorphism between F � s and F � t.

(3) For every s ∈ F the set (F � s)(−) of immediate ⊆-predecessors of s in
F forms a ∆-system of finite sets of the same cardinality.
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Given a set s ∈ F , we say that s = s0∪· · ·∪sn(s) is the canonical decomposition
of s when {si}i≤n(s) is the set of immediate predecessors of s ordered by si < sj
iff max si < max sj .

We pass now to define the normed space. We use x∨y to denote the supre-
mum of the two vectors x, y ∈ c00(ω1) defined by (x ∨ y)γ := max (x)γ , (y)γ .
Given two finite subsets s, t ⊆ ω1 of the same cardinality, we write θs,t : s → t
to denote the unique order-preserving bijection between s and t, and we use
also θs,t as the isomorphism between c00(s) and c00(t) linearly defined by
θs,t(uγ) = uθs,t(γ).

Definition 3.3. Let F be an homogeneous family on ω1. We define in-

ductively on s ∈ F a subset {h(s)γ }γ∈s ⊆ c00(s) as follows:

(a) Suppose that s = {γ}. Then let h
(s)
γ := uγ .

(b) Suppose that |s| > 1. Let s = s0∪· · ·∪sn be the canonical decomposition
of s. Given γ ∈ s, we define

h(s)γ :=


∨

i≤n h
(si)
θs0,si (γ)

if γ ∈ s0 ,

h
(si)
γ if γ ∈ si \ s0, for some 1 ≤ i ≤ n .

It follows that

(c) if t ⊆ s are both in F , then h
(t)
γ � c00(s) = h

(s)
γ ;

(d) (h
(s)
γ )δ ∈ {0, 1}, (h(s)γ )γ = 1 while (h

(s)
γ )η = 0 for every δ, and η < γ ∈

s ∈ F ;

(e) ∥x∥F = maxγ∈s{|⟨hsγ , x⟩} for every x ∈ c00(s) and s ∈ F .

(f) if s, t ∈ F are such that |s| = |t|, then

θs,th
s
γ = h

(t)
θs,t(γ)

for every γ ∈ s .

We can now define hγ :=
∨

γ∈s∈F h
(s)
γ for every γ < ω1. This is well defined

because the family F is cofinal, and (c) above. Now for x ∈ c00(ω1) we can
define

∥x∥F := sup
{
|⟨x, hγ⟩| : γ < ω1

}
.

It follows from (d) that ∥·∥F is a norm on c00(ω1). LetXF be the completion of
(c00(ω1), ∥·∥F ). Since for η < γ < ω1 we have that ∥uγ−uη∥ ≥ ⟨hγ , uγ−uη⟩ =
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1, it also follows that XF is non-separable. For each λ limit, let Xγ
F be the

closed linear span of {uγ}γ<λ. Then the space Xλ
F is isomorphic to c0: Since

F � λ is cofinal in λ, we can find first an strictly increasing sequence (sn)n∈N in
F � λ such that

∪
n∈N sn = λ. Now by filling the gaps if needed, and changing

the enumeration we may assume that sn is an immediate predecessor of sn+1

for every n. Then for each n ∈ N one can find a 1-normalized basis (xγi)i<|sn|,

{γi}i<|sn| = sn, of (c00(sn), ∥ · ∥F ) such that {h(sn)γ }γ∈sn ⊆ {fγ , fγ − fη}γ,η∈sn ,
where (fγ)γ∈sn is the biorthogonal to (xα)α∈sn . It follows then that

1

2
max
γ∈sn

|aγ | ≤

∣∣∣∣∣
⟨
h(sn)γ ,

∑
γ∈sn

aγxγ

⟩∣∣∣∣∣ ≤ 2max
γ∈sn

|aγ | ,

the first inequality because (xγn)n<|sn| is a 1-basis.

The following property of the family is crucial for the space XF to be (KS).

Definition 3.4. We say that a regular family F on ω1 is capturing if for
every uncountable sequence (tα)α<ω1 of subsets of ω1 and every n ∈ N there
is s ∈ F and α0 < · · · < αn−1 such that

(1) n ≤ n(s),

(2) tαi ⊆ si for every i < n;

(3) θsi,sj (tαi) = tαj for every i ≤ j < n.

The existence of capturing families follows from the diamond principle (see
[26] for more details). Then if F is capturing, we obtain that (XF ,weak)

n

is (HL) in all its finite powers: We only sketch how to prove that XF does
not have uncountable biorthogonal sequences. And to do this we prove the
stronger fact that for every uncountable normalized sequence (xα)α<ω1 of
vectors in c00(ω1) and every n ∈ N there is α0 < · · · < αn such that∥∥∥∥∥xα0 −

1

n

n∑
i=1

xαi

∥∥∥∥∥ ≤ 1

n
. (14)

Let sα := suppxα for every α < ω1. By passing to an uncountable subsequence
if needed we may assume that |sα| = |sβ | and that θsα,sβ (xα) = xβ for every
α, β < ω1. Now we use that F is capturing to find α0 < · · · < αn < ω1, and
s ∈ F such that (1), (2) and (3) above hold. Then, xαj = θsi,sj (xαi) for every
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i, j ≤ n. We check that (14) holds. Notice that xαi ∈ c00(s), so by (e), it
suffices to prove that ∣∣∣∣∣

⟨
hsγ , xα0 −

1

n

n∑
i=1

xαi

⟩∣∣∣∣∣ ≤ 1

n
.

Let γ ∈ s. Suppose first that γ ∈ s. Then⟨
hsγ , xα0 −

1

n

n∑
i=1

xαi

⟩
=
⟨
hs0γ , xα0

⟩
− 1

n

n∑
i=1

⟨
h
(si)
θs0,si (γ)

, xαi

⟩

=
⟨
hs0γ , xα0

⟩
− 1

n

n∑
i=1

⟨
θs0,si(h

(s0)
γ ) , θs0,si(xα0)

⟩

=
⟨
hs0γ , xα0

⟩
− 1

n

n∑
i=1

⟨
h(s0)γ , xα0

⟩
= 0 .

Suppose now that γ ∈ si0 \ s0. Then∣∣∣∣∣
⟨
hsγ , xα0 −

1

n

n∑
i=1

xαi

⟩∣∣∣∣∣ =
∣∣∣∣∣⟨hsi0γ , xα0

⟩
− 1

n

n∑
i=1

⟨
h
(si)
θs0,si (γ)

, xαi

⟩∣∣∣∣∣
=

∣∣∣∣ 1n⟨hsi0γ , xαi0

⟩∣∣∣∣ ≤ 1

n
.

Notice that all known examples of non-separable (HS) spaces contain a
copy of c0. So, it is natural to ask the following:

Problem 7. Does there exists a non-separable space without uncountable
biorthogonal systems and copies of c0? Even more, does there exist a non-
separable space X such that (X,weak)n is (HL) in all its finite powers and
without copies of c0?

Some other interesting questions concerning uncountable biorthogonal se-
quences:

Problem 8. Is it true that if X has an uncountable Markushevich system
then it has an uncountable Schauder basic sequence?

Recall that a Markushevich system is a double sequence (xα, fα)α<κ in
X × X∗ which is biorthogonal and such that ⟨xα⟩α is dense in X, and such
that (fα)α separates points of X. It seems that the techniques introduced in
[24] does not help to solve this problem.
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Definition 3.5. Recall that a sequence (xα)α<κ in a Banach space X is
called ω-independent if for any given subsequence (xαn)n<ω of (xα)α<κ , the
equation

∑
n anxαn = 0 implies an = 0 for every n < ω.

The simpler example of an ω-independent sequence is obviously a biorthog-
onal sequence. Sersouri [34] proved that separable Banach spaces do not have
uncountable ω-independent sequences.

Problem 9. Is it true that ifX has an uncountable ω-independent family,
then X has an uncountable biorthogonal sequence?

Recall that in [24] there is the construction of a space without uncount-
able biorthogonal systems but with uncountable ε-biorthogonal systems for all
ε > 0. This space is related to the Problem 9 since it was proved in [16,
Proposition 32, p. 108] that if (xα)α<ω1 is ω-independent, then for every ε > 0

there is an uncountable subset Γε ⊆ ω1 and functionals (f
(ε)
α )α∈Γε such that

(xα, f
(ε)
α )α∈Γε is an ε-biorthogonal sequence.

Problem 10. Does there exist a non-separable Gurarij space with a long
Schauder basis?

We finish this note with a problem concerning elastic spaces. Recall now
the following problem

Problem 11. Suppose that X is a Banach space such that

dBM(X,Y ) < ∞ , (15)

where Y is an isomorphic copy of X and dBM(X,Y ) is the Banach-Mazur
distance between X and Y . Is then X finite dimensional?

Johnson and Odell recently proved [19] that the answer is affirmative,
assuming that X is separable. Later on, Godefroy [13] extended their result
to the case of spaces with an uncountable ω-independent sequence. The key for
the Godefroy’s result is that from the existence of uncountable ε-biorthogonal
sequences for every ε > 0 one can naturally define for each n a renorming
Xn = (X, ∥ · ∥n) such that dBM(X,xn) ≥ n. Perhaps the existence of a
single uncountable ε-biorthogonal sequence would give the same conclusion.
In relation with that, a good space to test this is the generic space provided in
[24, Theorem 4.5. (II)] that does not have uncountable ω-independent families
but it has an uncountable ε-biorthogonal sequence.
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