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Abstract: We introduce the notion of topologically weakly null tree and, as a consequence,
we get a characterization of the point of continuity property in general Banach spaces by
extending to the general case some known results.
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1. INTRODUCTION

We recall that a bounded subset C' of a Banach space satisfies the point of
continuity property (PCP) if every nonempty closed subset of C' admits a point
of continuity of the identity map from the weak to norm topologies. A Banach
space is said to verify the point of continuity property whenever its closed
unit ball satisfies this property. It is well known that Banach spaces with
Radon-Nikodym property, including separable dual spaces, satisfy PCP, but
the converse is false (see [3]). The PCP has been characterized for separable
Banach spaces in [3] and [6], and this characterization implies that Banach
spaces with PCP have many boundedly complete basic sequences, and as many
subspaces which are separable dual spaces. As PCP is separably determined
[1], that is, a Banach space satisfies PCP if every separable subspace has
PCP, it is natural to look for a characterization of PCP in terms of boundedly
complete basic sequences. In this sense, it has been proved in [11] that every
semi-normalized basic sequence in a Banach space with PCP has a boundedly
complete subsequence. The converse of the above result is false in general,
(see Remark 2 in [11]), even for Banach spaces not containing ¢; [7]. Also, it
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was proved in [5] that a Banach space X with a separable dual satisfies PCP if,
and only if, every weakly null tree in the unit sphere of X has some boundedly
complete branch. In [8] it is proved that the last characterization of PCP holds
for Banach spaces not containing isomorphic subspaces to ¢1. It seems then
natural to look for a characterization of PCP for general Banach spaces in
terms of trees with boundedly complete branches. For this, we introduce the
concept of topologically weakly null tree, which is a weaker condition than the
weakly null tree condition, and we characterize in terms of trees the PCP for
general bounded subsets of Banach spaces in theorem 2.2. As a consequence,
we get in theorem 2.3 that a general Banach space X has PCP if, and only
if, every seminormalized and topologically weakly null tree in the unit sphere
of X has some boundedly complete branch. This result extends then to the
general case the aforementioned statement in [5].

We begin with some notation and preliminaries. Let X be a Banach space
and let By, respectively Sx, be the closed unit ball, respectively sphere, of
X. The weak topology in X, will be denoted by w. If A is a subset in X,
A" stands for the weak closure of A in X. Recall that for every subset A
in a Banach space X and for every a € A" there is a countable subset F
of A such that a € F" (see [2]). Given {e,} a basic sequence in X, {e,} is
said to be semi-normalized if 0 < inf, |le,|| < sup, ||en| < oo and the closed
linear span of {e,} is denoted by [e,]. {e,} is called boundedly complete
provided whenever scalars {\;} satisfy sup,, || >r; Aies]| < oo, then Y, Anen
converges. {e,} is called shrinking if [e,|* = [e], where {e}} denotes the
sequence of biorthogonal functionals associated to {ey}.

A boundedly complete basic sequence {e,} in a Banach space X spans
a dual space. In fact, [e}]* = [en], where {e}} denotes the sequence of
biorthogonal functionals in the dual space X* [9]. Following the notation
in [12], it is said that a sequence {e,} in a Banach space is type P if the set
{3 r_ier : n € N} is bounded. Observe, from the definitions, that type P
seminormalized basic sequences always fail to be boundedly complete basic

sequences.

N<% stands for the set of all ordered finite sequences of natural numbers
joint to the empty sequence denoted by (). We consider the natural order in
N<“/ that is, given o = (av1,...,05), 8= (B1,...,8) € N, one has o < 8
if p<gand oy = B; V1 < i < p. Also |a| denotes the length of sequence
a, and () is the minimum of N<% with this partial order. A tree in a Banach
space X is a family {x4}aen<e of vectors in X indexed on N<“. The tree
will be said seminormalized if 0 < infy ||z4|| < supy ||z4]] < co. We will say
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that the tree {z4}aen<w is weakly null if the sequence {74 n)}n is weakly
null for every A € N<“. The tree {z4}aen<w I8 topologically weakly null
if 0 € {zan:n€ N} for every A € N<“. A sequence {z 4, }n>0 is called
a branch if {A,} is a maximal totally ordered subset of N<“ | that is, there
exists a sequence {a,} of natural numbers such that A, = (aq,...,qy) for
every n € N and Ag = (). The tree {4} 4en<w is said to be uniformly type P
if every branch of the tree is type P and the partial sums of every branch are
uniformly bounded.

Finally, we recall that a boundedly complete skipped blocking finite di-
mensional decomposition (BCSBFDD) in a separable Banach space X is a
sequence {F}} of finite dimensional subspaces in X such that:

1. X =[F;:jeN].
2. FyN[Fj:j#k]={0} for every k € N.

3. For every sequence {n;} of non-negative integers with n; +1 < n;; for
all j € N and for every f € [Fiy, n,;,,) * J € N there exists a unique
sequence { f;} with f; € Fi,, . for all j € N such that f = Z;’il fj-

njt1)
4. Whenever f; € F,

for all j € N and sup,, | 227, f;] < oo then
> 521 [j converges.

nj+1)

Here, [A] denotes the closed linear span in X of the set A and, for some
nonempty interval of non-negative integers I, we denote the linear span of the
Fis for j € I by Fy.

If {F;} is a BCSBFDD in a separable Banach space X and {z;} is a
sequence in X such that z; € F{,,; 5, ) for some sequence {n;} of non-negative
integers with n; +1 < n;yq for all j € N, we say that {z;} is a skipped block
sequence of {F,}. It is standard to prove that there is a positive constant K
such that every skipped block sequence {x;} of {F,} with z; # 0 for every j
is a boundedly complete basic sequence with constant at most K.

From [6], we know that the family of separable Banach spaces with PCP
is exactly the family of separable Banach spaces with a BCSBFDD.

2. MAIN RESULTS

As we have said in the introduction, we know that every basic sequence in
a Banach space with PCP has a boundedly complete basic subsequence [11]
and that every weakly null tree in the unit sphere of a Banach space with a
separable dual and PCP has a boundedly complete branch [5]. The converse
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of the first result is false, even for Banach spaces not containing ¢, —copies
[7] and the second one fails to be true in general Banach spaces since, for
example in Banach spaces with the Schur property (spaces where the weak
sequential convergence implies the norm convergence), there are no seminor-
malized weakly null trees and there are Banach spaces with the Schur property
failing PCP (see [4]). So it is natural to look for a general characterization
of PCP in terms of trees and boundedly complete basic sequences. Our main
goal is getting such a characterization. For this we begin with an easy lemma
which shows that PCP is separably determined from a local point of view.

LEMMA 2.1. Let K be a bounded subset of a Banach space X. If K fails
PCP, then there is a closed and separable subset B C K failing PCP.

Proof. As K fails PCP, then there is B C K and § > 0 such that every rel-
atively weak open subset of B has diameter at least 25. Thus b € B\ B(b, )
for every b € B, where B(b,d) stands for the open ball with center b and
radius 6. Now, from [2], for every b € B there is a countable subset B}, C
B\ B(b,0) such that b € B,". Choose b; € B and define B; = By, U {b;}
and Bp+1 = B, UUpep, By for every n € N. Put A = U,enB,, and let us see
that A fails PCP. For this we show that every relatively weak open subset of
A has diameter at least §. Indeed, let U be a relatively weakly open subset of
A. Then there is n € N such that B,NU # (. Pick b€ B,NU. Now b € B},"
and so there is some € B, NU. Therefore x € ANU and ||z —b|| > ¢ which
shows that U has diameter at least . It is now clear that B = A is a closed
and separable subset of K failing PCP. 1

The following result is a local characterization of PCP for general bounded
subsets of Banach spaces.

THEOREM 2.2. Let X be a Banach space and let K be a bounded subset
of X. Then the following assertions are equivalent:

i) K fails PCP.

ii) There is a seminormalized topologically weakly null tree {x s} gen<w in
X such that {d o470 A€ N} C K.

Proof. 1)=-ii) Assume that K fails PCP. Then, from lemma 2.1, there is
B a closed and separable subset of K failing PCP and then there exists § > 0

such that every relatively weak open subset of B has diameter greater than
25. Sobe B\ B(b,d) for every b € A, where B(b, ) stands for the open ball
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with center b and radius §. Now, from [4], for every b € B there is a countable
set F, C B\ B(b,d) such that b € Fy".
First, we construct a tree {y4}aen<w in B satisfying:

a) ya € B\ B(ya,0) for every A € N<“,
b) [lya — yca,ll > 0 for every A € N<«.
¢) ya € {ya,) i € N} for every A € N<v.

We do the construction by induction on n = |A|, the length of A € N<“. For
n =0, A =10 and we pick yp € B\ {0}. Forn =1, as yy € B\ B(yy,0)
then there is a countable set Fy, = {y;) : 7 € N} C B\ B(yp,0) such that
yp € Fy, . Then a), b) and c) are verified.

Assume that ya is constructed whenever A € N<“ and |A| = n. Pick
A € N<“. From a), y4 € B\ B(ya,0)  and so, from [4], there is a countable
set Iy, = {y(a, 1 € N} C B\ B(ya, ) such that y4 € F,,". This finishes
the construction of the tree {ya}aen<w satisfying a), b) and c).

Now we define a new tree {za}aen<w by 29 = yp and x4 = ya4) —
ya for every i € N and A € N<¥. From b) we get that {x4}sen<w is a
seminormalized tree, since B is bounded. From c), we deduce that {x 4} s4en<w
is topologically weakly null. Furthermore, if A € N<“ then Y .., 2zc = ya,
from the definition of the tree {x 4} gcn<w. S0 {#4}aen<w is a uniformly type
P tree, since B is bounded and y4 € B for every A € N<“. This finishes the
proof of i)=ii).

ii)=1) Let {x4} be a seminormalized weakly null tree such that B =
{Dccazc : A e N¥} C K and let § > 0 such that ||za] > 0 for ev-
ery A € N<“. For every A € N<“ and for every n € N we have that
ZCg(A,n) o = ZCSA Te + T(ap), but 0 € {.CC(A,n)N € N}, since the tree
{za} is topologically weakly null. So 3 nopzc € {Dccan e in€ N}
and || - o< (4, ¢ — 2oc<a el > 0. This proves that B has no points where
the identity map is continuous from the weak to the norm topologies. In fact,
we have proved that every relatively weak open subset of B has diameter
grater than 6. Now, B is a closed and bounded subset of K such that ev-
ery relatively weak open subset of B" has diameter grater than 8, since B is
weakly dense in B, and so K fails PCP. 11

We show now our characterization of PCP in terms of boundedly complete
basic sequences in a general setting.
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THEOREM 2.3. Let X be a Banach space. Then the following assertions
are equivalent:

1

X has PCP.
Every topologically weakly null tree in Sx is not uniformly type P.

11

iii) Every topologically weakly null tree in Sx does not have type P branches.

~— ~— ~— —

iv) Every topologically weakly null tree in Sx has a boundedly complete

branch.

We need the following easy

LEMMA 2.4. Let X be a Banach space and let {x;} a bounded net in X.
Then the following assertion are equivalent:

i) {=z;} is weakly null.

ii) The scalars net {dist(x;,Y)} is null for every Y subspace of X with finite
codimension.

iii) The scalars net {dist(x;,Y)} is null for every Y subspace of X with
codimension one.

Proof. 1)= ii). Assume that ii) is false. Then there is a subspace Y of
X with finite codimension such that the scalars sequence {dist(z;,Y")} is not
null. We can assume, passing to a subnet if it is necessary, that there is 6 > 0
such that dist(x;,Y) > ¢ for every i. By a separation argument, for every 14
there is f; € Sx+ such that f;(z;) = dist(z;,Y) > 0 and f; € Y° := {f €
X*: flyy=0VyeY} AsY has finite codimension, (X/Y)* = Y° is finite
dimensional and so we can assume, passing to a subnet if it is necessary, that
{fi} converges to some f € Sx+ in the norm topology, since {f;} is a bounded
sequence by hypothesis. Now one has that f(x;) = (f — fi)(x;) + fi(z;) for
every i. But {(f — fi)(z;)} is null and f;(x;) > § for every i, thus { fi(z;)} is
not null, which is a contradiction with i).

ii)=iii) is trivial and for iii)=i) pick f € X*, f # 0 and do Y = Ker f.
Then Y is a subspace of X with codimension one and so {dist(x;,Y")} is null.
As dist(z;,Y) = @l for every i we deduce that {f(zi)} is a null net and

A1l
thus {z;} is weakly null.

Proof of theorem 2.3. iv)=iii) is a consequence of the fact that every
boundedly complete basic sequence is not type P, commented in the introduc-
tion and iii)=-i) is trivial.
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For ii)=1) it is enough to apply theorem 2.2 for K = Bx by assuming that
X fails PCP and normalizing.

i)=1iv) Assume that X has PCP. As it was said in the introduction we can
assume that X has a BCSBFDD from [6]. Then there is a sequence {F}} of
finite dimensional subspaces in X such that:

1. X =[F;j:jeN].

2. F, N [Fj:j# k] ={0} for every k € N.

3. For every sequence {n;} of non-negative integers with n; +1 < n;j; for
all j € N and for every f € [F(nj,nj +1) ¢ J € N] there exists a unique
sequence {f;} with f; € F(,, ,,,,) for all j € N such that f = Z;’il fj-

4. Whenever f; € F,, for all j € N and sup,, || 327, fj|| < oo then
> 721 fj converges.

nj+1)

Here, [A] denotes the closed linear span in X of the set A and, for some
nonempty interval of non-negative integers I, we denote the linear span of the
Fls for j € I by Fy.

Take a topologically weakly null tree {x4} in Sx. We have to construct a
boundedly complete branch of the tree {x4}. For this, fix a sequence {¢;};>¢
of positive real numbers with Z?io ej < 1/2K, where K > 0 is such that every
skipped block sequence of {F},}, has basic constant at most K, as we said in
the introduction. Now we construct a sequence {n;};>o of integers positive
numbers with n;_; +1 < n; for all j > 0, doing n—; = 0, a sequence {y;};>0
in X with y; € F,,,_, o) for all j > 0, that is, a skipped block sequence of
{Fu}n, and a branch {z 4, } of the tree such that ||z, —y;|| < ¢; for all j > 0.

Define Ag = . By i), there exists ng > 2 and yo € Flgp,) such that
|lza, — wol < €o0. Now, assume that ng,...,nj, yo,...,y; and Ag,..., A4;
have been constructed such that 4g < A; < --- < Aj and |A| = k for
1 <k <j. Then Ay = (p1,p2,...,pk) for all 1 < k < j for some positive
integers p1,p2,...,p;. As the tree is topologically weakly null we have that

0€{z,p:PE N} and so there is a net {2 (4, py) Fren converging weakly to
0. Then, by lemma 2.4, we deduce that {dist(2 (4, p,), Fln;+1,00)) }a converges
to 0, since Fl,,41.00) IS @ finite codimensional subspace in X. Then there exist
pj+1 €N, nji1 >n;+1and yj41 € F(n].’anrl) such that ||x(Aj,pj+1) — yj_HH <
gj+1. Now we define Aj11 = (A4;,pj41) and we have that A; < Aj; and
|Aj+1| = j + 1. This finishes the inductive construction of the branch {x4,}
satisfying that [|z4; —y;|| < e; for all j. Finally we get that > 272, [lza, —y;| <
1/2K, being {y;} a skipped block sequence of {F;}. Then {z4;} is a branch
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of the tree {x4}aen<w which is a basic sequence equivalent to {y;}, hence
boundedly complete and the proof of theorem 2.3 is finished. |

Remark 1. If X is a Banach space with a separable dual, the result in [5]
stating that X has PCP if, and only if, every weakly null tree in Sx has a
boundedly complete branch is a consequence of the above theorem, since in
this case the weak topology in X has a metrizable behavior, and then we can
change the topologically weakly null condition by the weakly null condition.
Furthermore, in this setting, the fact that every weakly null tree in Sx has
a boundedly complete branch can be seen in terms of the following game G:
player I chooses finite codimensional subspaces X1, Xs, etc of X and player
IT chooses normalized vectors z1 € Xj, x9 € Xo, etc. Following [10], if X
is a Banach space with a separable dual, then the fact that every weakly
null tree in Sy has a boundedly complete branch, equivalently X has PCP,
is equivalent to the fact that the player I in the game G can always force
player II to come up with a boundedly complete basis. We don’t know if
PCP can be characterized in this way for general Banach spaces. In other
words, we don’t know if the fact that every topologically weakly null tree in
a Banach space X has a boundedly complete branch is equivalent to the fact
that the player I in the game G can always force player II to come up with a
boundedly complete basis. In the case of a Banach space X with a separable
dual the above equivalence is true because we can take a dense sequence {z}:}
in X* and consider in X the subspaces {X,, = [z1,...2,]"}. Then player I
only needs to choose among the spaces {X,} and thus player II, who tries
to avoid boundedly completes sequences, has a winner srategy if, and only
if, there is a tree {z4}aen<e in X with x4 € X4 for every A € N<¢ and
without boundedly complete branches. This tree can then be seen as a winner
strategy for player II.

Remark 2. It is unknown if PCP is basically determined, that is, it is a well
known open problem if every Banach space failing PCP has a subspace with
a Schauder basis and failing PCP. In relation with this problem we consider
interesting to know if every sequence {z,} in a Banach space X such that

0 € {z,:neN} and 0 ¢ {x,:n¢€ N}H'” has a basic subsequence {y,}
such that 0 € {y, : n € N} . The existence of {y,} without the requirement
0 € {yp:n€ N}w is a consequence of the well known Mazur’s procedure
to extract basic sequences. Observe that if a Banach space X fails PCP,
from theorem 2.2 we get that there is a topologically weakly null tree in Sx
without boundedly complete branches. The question then is if it is possible to
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construct a basic subtree from this tree. If this is the case, again from theorem
2.2 we get a subspace with a Schauder basis failing PCP. On the other hand,
it is proved in [8] that a Banach space failing PCP contains a seminormalized
basic tree without boundedly complete branches.
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