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1. INTRODUCTION

Lichnerowicz [17] introduced the notion of a Poisson manifold as well as a
Jacobi manifold. Such manifolds have found applications in classical mechan-
ics and play an important role in quantisation. In this paper we introduce the
notion of (Grassmann) odd Jacobi (super)manifolds. The main motivation for
doing so is the fact that odd Poisson brackets, also known as Schouten brackets
or in the physics literature as antibrackets have found important application
in the Batalin-Vilkoviski antifield formalism of gauge theories [4, 5].

Let us briefly recall the definition of a (classical or even) Jacobi manifold!
as a manifold equipped with a bi-vector I' and a vector field E such that

[[,T] =2EAT, Lgl =[E,I] =0, (1.1)

where [Je, o] is the Schouten-Nijenhuis bracket. (There is some leeway here in
signs due to conventions). Given these structures one builds a Lie algebra on
C*®(M) viz

{f,9%s =T(df,dg) + fE(9) — E(f)g.

Importantly this Jacobi bracket is not a derivation unless £ = 0, which
reduces the theory to that of Poisson geometry. That is if £ # 0 the Leibniz
rule is not exactly satisfied but contains a correction proportional to {f, 1} ;.
For a modern review of Jacobi structures, including Z-graded versions see
[8, 9].

In this paper we construct a Grassmann odd analogue of Jacobi structures
on supermanifolds?.

Studying geometric structures on supermanifolds provides a method of
confirming the philosophy that supermanifolds can informally be thought of
as “manifolds” with commuting and anticommuting coordinates. More than
this, the inclusion of Grassmann odd degrees of freedom allow one to construct
geometric structures that have no classical analogue on manifolds. These “odd
structures” such are of mathematical interest and often find applications in
physics. For example, odd symplectic and Schouten structures are at the heart
of the Batalin-Vilkoviski antifield formalism.

The theory of Schouten manifolds and Q-manifolds (supermanifolds with
a homological vector field) are both well established within the mathematical

! This can all be generalised to supermanifolds, however doing so is inessential for this
paper.

2 We refrain from calling odd Jacobi structures Schouten-Jacobi structures as this name
has been already allocated in [8] to mean something specific and not identical to construc-
tions found in this work.
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physics literature. However, construction of an odd analogue of classical Ja-
cobi structures appears to have been overlooked. The expected properties of
such a construction cannot be taken for granted. In this work we preform an
examination of the basic properties of odd Jacobi structures.

The theory of odd Jacobi structures is described by “almost Schouten
structure” S € C®°(T*M), that is a Grassmann odd fibre-wise polynomial
of degree two and a homological vector field @ € Vect(M), together with
natural conditions analogous to Eqn.(1.1). The associated odd Jacobi brackets
satisfy the standard properties of Schouten brackets, with the exception of the
derivation property.

A large proportion of this paper is devoted to making the previous state-
ment concrete and exploring the elementary properties of supermanifolds
equipped with odd Jacobi structures. We then proceed to use this technology
to reexamine Jacobi algebroids.

Jacobi algebroids were first introduced by Iglesias and Marrero [13] under
the name of generalised Lie algebroids. Such structures were the revisited by
Grabowski and Marmo [8]. Jacobi algebroids represent a nice generalistion of
the concept of a Lie algebroid. Indeed, Jacobi algebroids can be understood
as Lie algebroids in the presence of a 1-cocycle [13]. Recall the notion of a
Lie algebroid as a vector bundle ' — M equipped with a Lie bracket on the
sections [e,e] : I'(E) @ I'(F) — I'(E) together with an anchor a : T'(E) —
I'(T'M) that satisfy the Leibniz rule

[, fo] = a(u)[f] v + (=1)* flu,0],

where u,v € I'(E) and f € C°°(M). The Leibniz rule implies that the anchor
is actually a Lie algebra morphism: a ([u,v]) = [a(u),a(v)]. A Lie algebroid
can also be understood in terms of:

1. a homological vector field of weight one on the total space of I1F;
2. a weight minus one Poisson structure on the total space of E*;

3. a weight minus one Schouten structure on the total space of ILE*.

Here 1II is the parity reversion functor which shifts the Grassmann parity
of the fibre coordinates, but does not effect the base coordinates. Also the
parity reversion functor does not effect the assignment of the weights.

At this point we must remark that we will be working the the category
of graded manifolds when discussing algebroids. That is we will be work-
ing with supermanifolds equipped with a privileged class of atlases where the
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coordinates are assigned weights taking values in Z and the coordinate trans-
formations are polynomial in coordinates with nonzero weights respecting the
weight. Generally the weight will be independent of the Grassmann parity.
Moreover, any sign factors that arise will be due to the Grassmann parity
and we do not include any possible extra signs due to the weight. In simpler
terms, we have a manifold equipped with a distinguished class of charts and
diffeomorphisms between them respecting the Zs-grading as well as the addi-
tional Z-grading. These gradings then pass over to geometric objects (tensor
and tensor-like objects) on graded manifolds. For further details about graded
manifolds one can consult [12, 23, 25].

Jacobi algebroids c.f. [8, 13] are understood in terms of a weight minus
one even Jacobi bracket on C*°(E*) for a given vector bundle £ — M. By
an even Jacobi bracket we mean a Poisson-like bracket in which the Leibnitz
rule is weakened in very specific way. We say more about this shortly.

In this paper we address the “odd” approach to Jacobi algebroids general-
ising 1. and 3. of the above list mimicking the odd-super constructions related
to Lie algebroids. We shall show that Jacobi algebroids can be described in
terms of an odd vector field D € Vect(ILE) of weight one that satisfies the
condition that [D, D] = ¢ D for some odd zero form ¢ € C*°(IIE).

The description of Lie algebroids in terms of homological vector fields
is due to Vaintrob [24]. The deep links between Poisson geometry and Lie
algebroids can be traced back to Coste, Dazord & Weinstein [7].

Remark. Antunes and Laurent-Gengoux [2] studied Jacobi structures us-
ing the supergeometric formulation of Buttin’s big bracket. They use this for-
mulism to efficiently describe Jacobi algebroids and Jacobi bialgebroids. The
supergeometric approach of the big bracket is different, but certainly related
to that presented here. Grabowski [11], just after this work was completed,
provided a systematic and quite general approach to contact and Jacobi struc-
tures on graded supermanifolds. Also note the work of Mehta [22], which we
will comment on later.

PRELIMINARIES

All vector spaces and algebras will be Zs-graded. We will generally omit
the prefix super. By manifold we will mean a smooth supermanifold. We
denote the Grassmann parity of an object by tilde: A€ Z,. By even or odd
we will be referring explicitly to the Grassmann parity.

A Poisson (¢ = 0) or Schouten (¢ = 1) algebra is understood as a vector
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space A with a bilinear associative multiplication and a bilinear operation
{e,0} : A® A — A such that:

—_—~—

e grading {a,b}. =a—+b+e,
o skewsymmetry {a,b}. = —(—1)@+)E+)p g}, |
o Jacobi Identity > (—1)@*)E g (b e} =0,

cyclic(a,b,c)
e Leibniz Rule {a,bc}. ={a,b}cc+ (—1)(a+5)i’b{a,c}5,

for all homogenous elements a, b, c € A.
If the Leibniz rule does not hold identically, but is modified as

{a,bc}e = {a,b}.c+ (—1)(a+6)l~’b{a, c}te —{a,1}be, (1.2)

then we have even (e = 0) or odd (e = 1) Jacobi algebras.

A manifold M such that C*°(M) is a Poisson/Schouten algebra is known
as a Poisson/Schouten manifold. In particular the cotangent of a manifold
comes equipped with a canonical Poisson structure. B

Let us employ natural local coordinates (x4, pa) on T*M, with 74 = A
and ps = A. Local diffeomorphisms on M induce vector bundle automorphism
on T*M of the form

o B
EA = EA(QZ) ) Da = <@j4> PB -

We will in effect use the local description as a natural vector bundle to
define the cotangent bundle of a supermanifold. The canonical Poisson bracket
on the cotangent is given by

AF+A OF 0G

{F.G} = (1) 8}7,4897‘_(_1)

ir OF 0G

_— 1.
0xA Opa (1.3)

A manifold equipped with an odd vector field @, such that the non-trivial
condition Q? = %[Q, Q] = 0 holds, is known as a Q-manifold. The vector field
@ is known as a homological vector field for obvious reasons.

The structure of a Schouten manifold is encoded in an “odd Hamiltonian”
S € C(T*M) which Poisson self-commutes, {S,S} = 0. The associated
Schouten bracket is given by

[f.9] = (~1)7 (S, f1. g} .
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with f,g € C>*(M).

A Schouten manifold equipped with a homological vector field such that
LQS’ = 0 is known as a QS-manifold, see [25] and for the odd symplectic
case see [1]. Importantly the homological vector field is a derivation over the
Schouten bracket.

DEFINITION 1. The triple (M, D, ¢) with M a manifold, D € Vect(M) an
odd vector field and g € C*°(M) an odd function such that:

1
D? = 5[D:D]=¢D  and D¢ =0, (1.4)

shall be called a quasi Q-manifold. The vector field D shall be known as an
almost homological vector field. The odd function ¢ shall be known as the
curving function.

DEFINITION 2. Let (M,Dys,qa) and (N,Dy,qn) be quasi Q-manifolds
and let ¢ : M — N be a smooth map. Then ¢ is said to be a morphism of
quasi Q-manifolds if and only if

1. Dy (¢*f) = ¢* (D f) for all f € C°(N), that is the almost homological
vector fields are ¢-related;

2. ¢*qn = qur, that is the curving functions match.

Quasi Q-manifolds and their morphisms form a category. Also note that if
g = 0 then we have the category of Q-manifolds and D is a homological vector
field, [1]. The curving functions “measure” the failure of the homological
condition of D and thus represent a kind of “curvature”. The other extreme
is to set D = 0 and then keep ¢ as some distinguished odd function. For
example, one could consider (higher) Schouten manifolds as examples of quasi
Q-manifolds. The far extreme is the trivial structure of D = 0 and ¢ = 0 and
we recover the full category of supermanifolds.

2. GENERAL THEORY

2.1. ODD JACOBI STRUCTURES

In this section we define odd Jacobi manifolds and show that much of the
theory of classical Jacobi manifolds carries over to the odd case. One should
of course keep in mind the similarities and difference with Schouten manifolds.
To some extent many of the results here are known to experts, though they
appear not to have been written down in one place.
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DEFINITION 3. An odd Jacobi structure (S,Q) on a manifold M con-
sists of

e an odd function S € C®°(T*M), of degree two in fibre coordinates,

e an odd vector field € Vect(M),

such that the following conditions hold:

1. the homological condition Q% = %[Q, Q] =0,
2. the invariance condition LgS = 0,

3. the compatibility condition {5, S} = —2Q5.

Here Q € C*°(T*M) is the principle symbol or “Hamiltonian” of the vec-
tor field Q. The brackets {e, e} are the canonical Poisson brackets on the
cotangent bundle of the manifold.

Remark. Note [E, E] = 0 automatically for the even vector field E in the
definition of an even or classical Jacobi structure. For odd structures this is
a non-trivial condition. Specifically, the underlying manifold M is in fact a
Q-manifold in the odd case.

Note that the above conditions 1. and 2. can be written entirely in terms
of S and Q and the canonical Poisson bracket as

1. {Q,0} =0,
2. {Q,8} =0,

which will be very convenient for calculational purposes.

Remark. Note that a QS-manifold can also be understood in a very sim-
ilar way by taking the principle symbol of the homological vector field. In
particular we have the triple (M,S,Q), such that {S,S} =0, {Q,5} =0
and {Q,Q} = 0.

In natural local coordinates (z4,p4) on T*M the odd Jacobi structure is
given by

1
S = ES’AB(:L‘)poA and Q= QA(:n)pA, (2.1)
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the homological vector field is in local coordinates given by @ = QAaxiA. In
local coordinates the conditions on the structures can be written as

004
19,01 =20" 9% p1 =0,

(10955 aencd@
@51 = (5305 5 + 075550 ) papn =0,

_(_1\C cp 9S4 C oBA _
{S,8} +29S = (-1 (S 52D +Q-S papBpc = 0.

DEFINITION 4. A manifold equipped with an odd Jacobi structure (S, Q)
shall be known as an odd Jacobi manifold.

As we shall see, the algebra of smooth functions C*° (M) of an odd Jacobi
manifold is in fact an odd Jacobi algebra. Following the natural analogue of
Lichnerowicz’s constructions we have the following definition:

DEFINITION 5. The odd Jacobi bracket on C*°(M) is defined as

If, 9y = (=1)77{LS, £3, 9} — (—1)TTQ, fg} (2.2)

BT of dg 7 of dg
_ (_1\(B+1)f BA Y Yd _1\f AYJ A
= (-)FHTs OxA OxB +(=1) <Q aa:A> g+f (Q 837’4> ’

with f,g € C°(M).

THEOREM 1. The odd Jacobi bracket defines an odd Jacobi algebra on
C°(M). That is the odd Jacobi bracket has the following properties:

(i) Symmetry: [f,gls = —(—1)IFD@D[g, f],;

(ii) Jacobi identity : Z (—1)(f+1)(7‘+1)[[f, lg,R]s]s=0;
cyclic(f,g,h)

(ili) Generalised Leibniz rule: [f,gh]; = [f,9]sh + (—1)(f+1)5g[[f, hll; —
[[fa ]]-]]Jgh .

Proof. We proceed to prove the above theorem by making use of the local
descriptions.

(i) The symmetry is clear from the definition given that

SAB _ (—1)A§SBA.
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(ii) Asthe odd Jacobi bracket is odd and skew-antisymmetric it is sufficient
to examine the even diagonal in proving the Jacobi identity. That is we only
need to consider [f, [f, fls]l; = 0 for an arbitrary even function. Thus, via
direct computation we have

_ c CDaS coBa\ 9f Of Of
[[f7 [[faf]]]]]]_(_]') <S o a..D +Q ) >8$A0x3 o0xC

BA
_f<( )BSBCaQ +Q° c 05 >8f of

0xC ) 0xzA 0xB

oQ* of

0B 9zA”

« 8f ”

+ 2f2QB

collecting terms order by order in . Note that all terms involving higher
order derivatives exactly cancel. Then we see that [f,[f, f]s]; = 0 given the
conditions on S and @ to form an odd Jacobi structure on M. Thus, the
Jacobi identity is satisfied.

(iii) Via direct computation in local coordinates it is easy to see that

1£. 940y = If, ot + ()T L1, 1] — (-1 Q4 L gh.

Thus the “anomaly” is given by [f, 1]s. 1

DEFINITION 6. Given a function f € C°°(M) the associated Hamiltonian
vector field is given by

[ ~ Xy € Vect(M) (2.3)
Xi(9) = (~1)'[f,90s—Q(f)g.

In natural local coordinates the Hamiltonian vector field of a function f is
i7 of 0 ra 0
X;=(-)AgaB L _— 4 (1)t — . 2.4

We will explore the properties of Hamiltonian vector fields later. Before
we do this, let us examine morphisms of odd Jacobi manifolds.

DEFINITION 7. Let (Mj,S1,Q1) and (Ma,S2,Q2) be odd Jacobi mani-
folds. Then a smooth map
(b : M1 — MQ s (25)
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is said to be an odd Jacobi morphism if and only if

¢*[[f> gIIJQ = [[gb*fv ¢*g]]J1 s (26)
for all f,g € C°°(Ma).

In other words, a morphism ¢ : M; — My is an odd Jacobi morphism if the
associated pull-back morphism is a homomorphism of odd Lie algebras. Odd
Jacobi manifolds form a category under composition of odd Jacobi morphisms.

PROPOSITION 1. Let (M, S,Q) be an odd Jacobi manifold and ¢ : M —
M a diffeomorphism. Then the following are equivalent:

(i) ¢ is an odd Jacobi (auto)morphism; ¢*[[f, gll; = [¢* f, d*g] s ;
(ii) ¢*S =S and ¢*Q=Q;
(i) Xy and Xy-5 are ¢-related.

Proof. (i) <= (ii) follows from the fact that pull-back associated with the
diffeomorphism ¢ is a symplectomorphism on the cotangent bundle and the
definition of the odd Jacobi bracket. Explicitly:

¢*[f.90s = ¢ (D7 HLS, ) g} = (-1, f})
— (—1)T{6*S, 6" 1,679} — (—1) {672, 6" (f9)} .

Then via (i) we obtain (ii).
(ii) <= (iii) follows similarly. Explicitly:

" (Xp(9) = ¢" (=1)1F.9)s - Q(f9))
= (=17 [¢" f.¢*gls — {Q.¢"(f9)}
where we have used (ii). Thus,
9" (Xr(9)) = Xy p(079) -
Thus X; and Xy are ¢-related. I

Taking the nomenclature from classical mechanics, we will say that an odd
Jacobi automorphism is a canonical transformation with respect to the odd
Jacobi bracket.
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DEFINITION 8. A vector field X € Vect(M) is said to be a Jacobi vector
field if and only if

LxS={x,5}=0 and LxQ={x,9} =0, (2.7)
where x € C*°(T*M) is the symbol or “Hamiltonian” of the vector field X.

The above definition is the infinitesimal version of a Jacobi automorphism.
Note that the homological vector field @ is a Jacobi vector field.

LEMMA 1. Let X € Vect(M) be a vector field on an odd Jacobi manifold.
Then the following are equivalent:

(a) X is a Jacobi vector field;
(b) X is a derivation over the odd Jacobi bracket

X(If,gls) = [X(£), gy + (~1)XTD[, X (g)] 5

(c) [X,Yy] = (—I)XYX(f), for all Hamiltonian vector fields Y.

Proof. Let X € Vect(M) be a vector field. Then consider the symbol or

“Hamiltonian” of such a vector field: XA% — x = X4 € C®(T*M).

The Lie derivative with respect to the vector field acting on C*°(T*M) is just

Lx = {x,e}.
(a) <= (b) is proved via successive use of the Jacobi identity for the

canonical Poisson bracket together with (a). Explicitly:
X([f.9ly) = (DTS {x, 1) g) — ()T (v, fig)
+ (—)XTHDHHLLS 11 fy, g})
— ()X £y g},

which establishes the result.
(a) <= (c) via direct computation. Explicitly:

X(V3(9)) = (DI [X(£), gls + (~) KT, X ()]s

~ X(QN)g = DXR(N9).
using the derivation property of X over the odd Jacobi bracket. Then

Y3(X(9)) = (~V)1f, X(9)]s — QU)X (9) .
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gives ~ N
[X,Y5)(9) = (=D [X(£), 9] = (=D)¥QX())g,
using 1. Thus the result is established. 1

COROLLARY 1. The homological vector field () satisfies the following:

(@) QLS gly) = [Q(f) 9] + (—~V)T[£, Q)]
(b) [Q . Xf] = —Xo(p) -
for all f,g € C>(M).

PROPOSITION 2. The assignment f ~+ Xy is a morphism between the
odd Lie algebra on C*°(M) provided by the odd Jacobi brackets and the Lie
algebra of vector fields. Specifically, the following holds:

(X5 Xgl = = X141, (2.8)
for all f,g € C(M).

Proof. Writing out the commutator explicitly we obtain
(X1, X )(h) = (=)7L, [g, h]]s — (1) TG g £, m]],
— (I, Q)]s+ (—1)THITEIE D6 Q(f)] sk

+ terms that cancel .

In the above we have explicitly used the generalised Leibniz rule for the odd
Jacobi bracket. Importantly all other possible terms cancel. Then using the
Jacobi identity for the odd Jacobi brackets in the form

ILf, 91s, ks = [f, [g: k] 1y — (=)ITDE D g [£,h],1,,

and the differential property of Q) over the odd Jacobi bracket we obtain

(X7, Xg) = (~)TI[1L. 91, 55 + QLS g).0) B
and thus the result is established.

Unlike the Schouten or indeed the Poisson case, Hamiltonian vector fields
on a Jacobi manifold (both even or odd) in general do not generate infinites-
imal automorphisms of the bracket structure.
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PROPOSITION 3. A Hamiltonian vector field Xy € Vect(M) is a Jacobi
vector field if and only if f € C*°(M) is Q-closed.

Proof. If and only if f is Q-closed, i.e. Q(f) =0 then X; = (—1)17[[]", o] ;.
Using Proposition 2. we have

(X7, Xg] = =Xprg1, = (D) Xy, ()

for any g € C*°(M). Then via Lemma 1. the result is established. 1

2.2. BASIC EXAMPLES

Let us turn our attention to straight forward examples to show that the
category of odd Jacobi manifolds is not completely empty.

EXAMPLE 1. The superline. Consider the supermanifold R, which we
equip with local coordinates (t,&). Here ¢ is commuting and ¢ anticommuting.
There is a canonical odd Jacobi structure on R given by

S:_ﬂ-p)
Q=—m,

where we have used fiber coordinates (p,n) on T*(R''). Direct computation
produces

{s, S}T*([RM) = =2 (-m)(-7p),

which established the fact we have an odd Jacobi structure. Note that as
72 =0, S can also be considered as a Schouten structure. The odd Jacobi
brackets are given by

_ (7% 0fd9 f(af) _ (3g>
1.0l = (D550 = oot — U (G ) o~ £(56)

which we recognise as the canonical Schouten bracket on R'! plus a term that
spoils the strict Leibniz rule.

EXAMPLE 2. Schouten manifolds. These are understood as odd Jacobi
manifolds for which ) = 0. Schouten manifolds are of particular interest in
mathematical physics due to their connection with the BV-antifield formalism.
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1. Lie-Schouten structures: A vector space g is a Lie algebra if and only
if IIg comes equipped with a weight minus one (“linear”) homological
vector field. Here II is the parity reversion functor. If we employ local
coordinates (£“) on IIg then the homological vector field is given by:

_ Leagsgr 9
Qo = 36 Qg
A weight minus one Schouten structure on T*(IIg*) can be associated
with the homological vector field. Employing natural local coordinates
(Na, ™) the Schouten structure is given by

1 o~
S = 5(—I)O"WWO‘WBQlﬁn7 .
The Schouten condition {S,S} = 0, is equivalent to the homological
condition on )y and in turn is equivalent to the Jacobi identity on the
initial Lie algebra structure g.

2. Odd symplectic manifolds: An odd symplectic manifold is defined as a
manifold M of dimensions (n|n) equipped with a closed non-degenerate
odd two form denoted w, understood as a function on the total space of
IITM . In natural local coordinates the odd symplectic form is given by

1
w= EdJ:AdewBA(x) .

The non degeneracy condition means that, as an matrix wp,4 is invert-
ible. Let us denote this inverse by wAZ. Then associated with an odd
symplectic form is a Schouten structure given by

1 ~
S = 5(—1)Bw”3poA € C®(T*M).
The Schouten condition {S,S} = 0 is directly equivalent to the closed

of w.

EXAMPLE 3. Q-manifolds. These are understood as odd Jacobi manifolds
with S = 0. The odd Jacobi bracket on a Q-manifold is given by [f,g]g =
(—1)/Q(fg). Such manifold, and in particular their algebra of functions is of
wide interest in mathematics due to the fact that many algebraic structures
can be encoded on formal Q-manifolds.
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1. The de Rham complex: The algebra of differential (pseudo)forms over
a manifold M is understood as the algebra of functions on the man-
ifold IITM. The de Rham differential is the canonical homological
vector field d = d:cAa%, where we have employed natural local co-
ordinates (z, dz4). Then over any manifold, the algebra of differential
forms comes equipped with an odd Jacobi bracket given by [, 5]lq =

(—=1)%(da) B + a(dB) with a, f € C®(IITM).

2. Lie algebras: Let the vector space g be a Lie algebra. Then as seen in
the previous example, (IIg, Qg) is a Q-manifold. Thus, C*°(Ilg) has an
odd Jacobi bracket (of weight one in linear coordinates) given by

.50 = (-1 367 Qui ) g + £ (56€ P2 ).

Remark. It is worth noting that this construction of an odd Jacobi bracket
generalises directly to Loo-algebras (c.f. [15]), which can be understood in
terms of homological vector fields inhomogeneous in the linear coordinate &.
Thus, the associated odd Jacobi bracket is also inhomogeneous in weight, yet
remarkably binary. Similarly, one can build an odd Jacobi bracket associated
with a Lie algebroid or even an L.-algebroid.

ExXAMPLE 4. Odd contact manifolds. Rather than diverge into the gen-
eral theory of contact manifolds let us explore a specific example. Consider
the manifold M := IIT*N xR where N is a pure even (classical) manifold.

Let us employ natural local coordinates (z% 2%, 7). The coordinates z“
are even, while the other coordinates z} and 7 are odd. The dimension of M
is (n|n 4 1) assuming the dimension of N is n.

The manifold IIT*N comes equipped with a canonical odd symplectic
structure w = —dz}dx®. Also note that all odd sympelctic manifolds are
equivalent to an anticotangent bundle and that the base manifold can be cho-
sen to be a classical manifold [14, 21]. The manifold M comes equipped with
an odd contact one form, which is the even one form

a=dr —x,dz’.

We will for the purposes of this example stipulate that the above is the correct
form via “superisation” of the even contact structure on R?"*!. Clearly

3 Due to a Darboux theorem for contact manifolds this example is also generic. One can
generalise the arguments of Arnold (see [3, Appendix 4]) without much difficulty to include
odd contact structures on supermanifolds.
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the two form da = —dx)dx® is, unsurprisingly, the canonical odd symplectic
structure on II7*N C M. We employ natural fibre coordinates (dx®, dx},dr)
on IITM and (pg,p%,m) on T*M. The coordinates dx}, dr, p, are even and
dx®, p¢, m are odd. Then let us define the almost Schouten structure via

¢s5(@) =0  and  ¢g(da) =S5,

where we have the standard fibre-wise morphism ¢g : T*M — IIT'M associ-
ated with any almost Schouten structure. Let us take the Ansatz

S = pi (pa + xgm) € C(T"M),

based on standard constructions related to even contact structures. Then

05

* (da®) = I}
¢5(dz®) ap. e
¢S(dxa) = _8pf: = - (pa + $a77) )

* _ 8S _ Qa . *
(bS(dT) - _87 = TDyZq -

Direct computation gives
¢s(a) = —plag —aaps =0  and  @g(da) = (po +aam)ps = 5.

Thus our Ansatz is confirmed to be correct. To extract the homological vector
field one needs to calculate the self Poisson bracket of the almost Schouten
structure. Explicitly

0s 05
op¢ Oy,

= 2((pa + z3m)(—1)pim)
= —2(—=m) (P (pa + 257)) ,

{8, 8}pens =2

thus Q = —m. It is easy to see that {Q,S}r«y = 0 and {Q,Q}r+pr = 0.

Furthermore, notice that the homological vector field Q) = _a% satisfies

iga =1 and ig(da) =0.
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STATEMENT: Adding an extra odd variable (“odd time”) to the canoni-
cal odd symplectic manifold IIT*N produces a manifold with an odd Jacobi
bracket rather than a Schouten bracket.

In natural local coordinates the odd Jacobi bracket is given by

fr10f 99 Of 9y

[ 9] = (=1) ozt Dz Oz oz
«0f 09 . \fn0f .99
+x“8$2 or (=1) 87'%855;
99 i 9f
* f@T (=1) 87'g'

We will return to this example in Section 3.4.

2.3. THE SCHOUTENIZATION OF AN ODD JACOBI STRUCTURE

In this section we show that via an extension of an odd Jacobi manifolds
one can canonically construct a QS-manifold. This mimics very closely the
classical situation of Poissonization.

Consider the manifold M x R, which we equip with natural coordinates
(z4,t). Here t is the commuting coordinate on the factor R. Assuming that
M is in fact an odd Jacobi manifold one can build

S=e"(S—Qp) e C®T*(M xR)), (2.9)
where p is the momenta associated with ¢.

THEOREM 2. Let (M,S,Q) be an odd Jacobi manifold. Then the triple
(M x R, S,9Q) is a QS-manifold in the sense of Voronov.

Proof. First observe that S is of order two in the momenta and is Grass-
mann odd. Second note the Poisson bracket on T%(M x R) has the natural
decomposition as {,} = {, }r=am + {, }r+r. It is then a straight forward ex-
ercise to take into account terms that contain conjugate variables and those
that do not to show that

1. {S,58} =72 ({S, S} + 29 — 2p{S, Q} + p*{Q, Q}),
2. {5,9} = e *{S,Q} — p{Q,Q},

and thus as (M, S, Q) be an odd Jacobi manifold we establish that {S,S} =0
and {S,Q} = 0. This establishes the proposition. |



108 A. J. BRUCE

STATEMENT: Adding “time” to an odd Jacobi manifold produces a QS-
manifold.

2.4. EXACT QS-MANIFOLDS AND ODD JACOBI STRUCTURES

In this section we define the notion of an exact QS-manifold, understood
as a fairly direct generalisation of an exact or homogeneous Poisson manifold.
We then, taking Petalidou [20] as our inspiration establish a link between
exact QS-structures and odd Jacobi structures. In particular these structures
are on the same manifold and no extension is required. This is in contrast to
the process of Schoutenization of an odd Jacobi manifold, which requires the
manifold to be extended by one even direction.

DEFINITION 9. An exact QS-manifold is the quadruple (M, S,Q, E),
where (M, S, Q) is a QS-manifold and E € Vect(M) is an even vector field,
referred as the homothety vector field that satisfies

LgS=-S and LzpQ=-Q. (2.10)

The existence of the homothety vector field on a QS-manifold means that
both Q and S are exact

(6.5 = -5 —s §=1{5.€},
(6,0} = -0 — 0—{0,¢},

with respect to the operators on C* (T M) they generate. Here € € C*°(T* M)
is the symbol of the homothety vector field. In other words, the Schouten
structure is itself a trivial element in the Schouten cohomology as generated
by 65 := {S,e}. The homological structure is similarly a trivial element
in the cohomology of the operator Lg. Poisson cohomology goes back to
Lichnerowicz [17], who also introduced the notion of (even) Jacobi manifolds.
For a discussion of the cohomology of a Q-manifold see [18, 19].

Let us now proceed to the theorem relating exact QS structures to odd
Jacobi structures on the same underlying manifold.

THEOREM 3. Let (M, S,Q, E) be an exact QS-manifold. Then the pair
(S=S+E9,Q =Q), provides an odd Jacobi structure on the manifold M.

Proof. The proof requires one to examine the the invariance and com-
patibility conditions for odd Jacobi structures. The homological condition is
given.
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o Writing out the self-Poisson bracket of S one obtains
{8,898} ={S5,S} +2{S,&}Q +2&{S,Q}
—{&,810% —2e{€,Q10 + £2{Q,Q}
=20 ({&,5} + &{¢,Q})
— 20(5+¢£Q).
e Writing out the Poisson bracket between Q and S one obtains
{Q,5} = {Q,5} +{0Q,610+¢&{Q,Q} = Q? = 0.

Thus S and @ define an odd Jacobi structure on the manifold M. |

Via a mild generalisation of the above proof we arrive at the following
corollary:

COROLLARY 2. Associated with any exact QS-structure on M is a pencil
of odd Jacobi structures also on M given by (S = aS + b€Q, Q) = b)) where
a,b are even parameters (or just real numbers).

STATEMENT: Every exact QS-manifold is also an odd Jacobi manifold.

Setting a = b = 1 produces a “canonical” odd Jacobi structure on M.
Setting a = 1 and b = 0 confirms the notion that a Schouten manifold can
be thought of as an odd Jacobi manifold with the trivial homological vector
field. Setting a = 0 and b = 1 confirms the notion that a Q-manifolds can be
thought of as an odd Jacobi manifold with the trivial Schouten structure. In
a loose sense, intermediate values of a and b interpolate between the extremes
of Schouten manifolds and Q-manifolds understood as examples of odd Jacobi
manifolds.

3. JACOBI ALGEBROIDS

3.1. QUASI Q-MANIFOLDS AND JACOBI ALGEBROIDS

In this section we propose a definition of a Jacobi algebroid in terms of
an odd Jacobi structure on the total space of IIE*, given a vector bundle
E — M. It will turn out that this definition is equivalent to that given by
Grabowski & Marmo [8] (also see Iglesias & Marrero [13]). We postpone the
details of this equivalence to the next section and take the following definition
as the starting point of this work.
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DEFINITION 10. A vector bundle £ — M is said to have the structure of
a Jacobi algebroid if and only if the total space of IIE* comes equipped with
a weight minus one odd Jacobi structure.

Recall that an odd Jacobi structure on a manifold is a pair of odd func-
tions on the total space of the cotangent bundle quadratic and linear in
the fibre coordinates together with a series of conditions expressed in terms
of the canonical Poisson bracket. Let us employ natural local coordinates
(4,70, pa, ™) on the total space of T*(IIE*). The weight is assigned as
w(z4) = 0, w(pa) = 0, w(ne) = +1 and w(7®) = —1. This is the natural
weight associated with the vector bundle structure £* — M. The parity of
the coordinates is given by 74 = A, 7, = (@ + 1), pa = A and 7 = (a + 1).
In these natural local coordinates the odd Jacobi structure is given by

§ = ()T QAP + ()T Lo Qo (31)
Q=7%QRu(z),

which are both functions on the total space of T*(IIE*). The notation and
the sign factors employed make clear the relation with Lie algebroids.
This structure satisfies the conditions:

L {9, 9} g+ = 0;
2. {9, S}reues) = 0;
3. {8, S} (g = —298.

Setting Q = 0 means that S is a Schouten structure and thus we have a
genuine Lie algebroid. Note that due to the fact that the function Q does not
contain conjugate variables the condition 1. is automatically satisfied. This
is not generally the case and typically 1. will be a non-trivial condition.

The Jacobi algebroid structure on the vector bundle £ — M is directly
equivalent to the existence of a weight minus one odd Jacobi bracket on
C°(IIE*). That is the algebra of “multivector fields” comes equipped with
the structure of an odd Jacobi algebra viz

[X,Y]E = (-1)T{{S, X }reup), Y 3+ (i)
— (1) XY e

with X,V € C*°(I1E*).
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In natural local coordinates this bracket is given by
0X oy (_1)()?+1)&87X87Y
Ong OxA Oz O,
4~ 00X 0Y

"o o
of 8"7[3 87701

5. 0X oY

“1)*Qa7n—Y + XQar—,
DT QupY + X Qo

« «

[X, Ve = Q4 ((—D“ﬁa“)(g“)

. (_1)()?+1)a+BQ

where
1
X = X(a,n) = X (2) + X*(@)0 + 5; X ()70 + -+

The above odd Jacobi bracket is the natural generalisation of the weight mi-
nus one Schouten bracket associated with a Lie algebroid, which itself is a
generalisation of the Schouten-Nijenhuis bracket between multivector fields
over a manifold.

THEOREM 4. The existence of a Jacobi algebroid structure on the vector
bundle E — M is equivalent to IIE being a weight one quasi Q-manifold.

Proof. Recall that the canonical double vector bundle morphism
T*(E*) -2 T*(IE),

is a symplectomorphism between the respective canonical symplectic struc-
tures. We place details of this morphism in an appendix. Thus we can move
the odd Jacobi structure from IIE* to IIE. However the resulting structure
over IIE will not be a genuine odd Jacobi structure as the degree in momenta
(fibre coordinates of the cotangents) is not conserved under the canonical
double vector bundle morphism.

Let us employ natural local coordinates (24, &%, pa, Tq) on T*(IIE). The
weight of the coordinates is assigned as w({*) = —1 and w(m,) = +1. The
parities are £* = T, = (@ + 1). Then the canonical double vector bundle
morphism is given by

R (ma) =Na, R (§%) = (1)
Then let us consider
& —1\* « 1 «
S = (R71)'S = £*Qa(@)pa + 56 Q@)

Q:= (R7H*Q = (-1)%¢“Qu (),
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both of which are functions on the total space of T*(IIE). Note that the
function S is now linear in moneta and that Q is independent of momenta.
As R is a symplectomorphism we naturally have

{S, S}T*(HE) = —2@51 and {Q, S}T*(HE) =0.

Then we can “undo” the symbol map which gives an odd vector field on
IIE and an odd function linear in the fibre coordinate:

0
OrA

Q— g =—(—1)%"Qqu(z) € C(IIE).

S — D =¢"Q(x)=— + gagﬂcﬂa( )7 € Vect(I1E) ,

gy

Note the extra minus sign in the definition of ¢q. As the symbol map takes
commutators of vector fields to Poisson brackets, etc., it is not hard to see
that the conditions that (S5,Q) be an odd Jacobi structure translates to IIE
being a quasi Q-manifold:

[D, D] = 2¢D and Dlg] =0.

The grading is with respect to the natural grading associated with the vector
bundle structure E — M. That is we assign the weight as w(2z4) = 0 and
w(£Y) = 1. Note that w = —w. |

3.2. LIE ALGEBROIDS IN THE PRESENCE OF A 1-COCYCLE

In this section we in essence restate Grabowski & Marmo’s theorem (see
[8, Theorem 5]) giving a one-to-one correspondence between Jacobi algebroids
and Lie algebroids in the presence of a 1-cocycle.

As we are considering the total space IIE to be a graded manifold we
naturally have an Euler vector field, which counts the weight of objects via
it’s Lie derivative. In natural local coordinates the Euler vector field is given by
B = §aa%a as we have assigned weight w(z) = 0 and w(§) = 1. A “differential
form” w € C*°(IIF) is homogeneous and of weight p if =(w) = pw. In a
similar way, a vector field, V' € Vect(ILE) is homogeneous and of weight r if
[E,V] = rV. The action of the Euler vector field can be extended to higher
tensor objects, but we will have no call to use it in this work. In relation to
Jacobi algebroids, we will be exclusively interested in object of weight one.
Such objects are invariant under the action of the Euler vector field, or in
more classical language they are linear objects.
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PROPOSITION 4. Let (ILE, D, q) be the weight one quasi Q-manifold asso-
ciated with a Jacobi algebroid. Then

Q::D—QE,

defines a homological vector field on 11E of weight one and thus a Lie algebroid
structure on E — M. Furthermore, we have Q(q) = 0 and thus we have a Lie
algebroid in the presence of a 1-cocycle.

Proof. The weight conditions are clear from the definitions. We need to
prove that @ is homological. Explicitly

Q*w = D’w + ¢= (¢=(w)) — D (¢ E(w)) — ¢ E (Dw)
- |D2w - Q[Eu [D]w
= D2UL) — qu 5

for any w € C*°(IIE). Then using the fact that we have a quasi Q-manifold
gives

Q*=0.
It is clear that Q(¢q) = 0 and thus we have a 1-cocycle. §

PROPOSITION 5. Let (ILE, Q) be a Lie algebroid and let ¢ € C*°(IIE) be
an odd 1-cocycle, that is Z(¢) = 1, Q(¢) =0 and ¢ = 1. Then

(IIED=Q+¢E,q=9),

defines a quasi Q-manifold of weigh one, and thus a Jacobi algebroid.

Proof. The conditions on the weights is clear. Then via calculation we
obtain

D’w=Q*w+ ¢ Z(¢E(w)) + Q (¢ E(w)) + ¢ E (Qw)
=[5, Qlw=0(Q+¢=)w = ¢Dw.

The 1-cocycle condition implies D(¢) = 0. 1

Remark. The above proposition partially generalises to higher order odd
cocycles, one loses the homogeneity in weight of the quasi Q-manifold struc-
ture. Thus Lie algebroids in the presence of higher cocycles cannot directly
be associated with Jacobi algebroids.
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THEOREM 5. (GRABOWSKI-MARMO [8]) There is a one-to-one corre-
spondence between Jacobi algebroids and Lie algebroids in the presence of
an odd 1-cocycle.

We must again remark that everything here is done in the category of
supermanifolds and that we have both Grassmann even and odd cocycles.
For the classical case where £ — M is in the category of pure even classical
manifolds 1-cocycles are necessarily odd. Thus the above propositions and
theorem include the classical structures.

For clarity let us examine the association of a Lie algebroid in the presence
of a 1-cocycle with a Jacobi algebroid in natural local coordinates. It is not
hard to see that given D and ¢ we have

1 .
Q=L+ (€€, + (1)) (3:2)
¢ =(-1)"€Qa
By careful symmetrisation we see that building the Lie algebroid struc-

ture on IIFE associated with a Jacobi algebroid is essentially described by the
replacement

9
06

D—Q,
viz B B
ﬂa N QV ( 1)&+,6’ <5a'yQ5 + (_1)(&+1)(B+1)Qa66’7> )
One can then more-or-less read off the Lie bracket on the sections of £ and

the anchor map a : T'(E) — Vect(M). Picking a basis of sections (s,) for
I'(E) and being intentionally slack with the signs we have

[Sa, 58] = :l:taﬁS’Y + Qasg £ 5,03,

( ) :l:Qa 81”4 .

Dual to this one can consider the associated Schouten structure which is
given by

§ = (-1 Qdpa + 5 (CVFrn0 Q) + (-T2 Qur )y (33)
Similarly, the 1-cocycle becomes ¢ = —m*Q,, and it is not hard to see that
{S,S}remp-) =0,
{S, ¢}rmp- = 0.
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COROLLARY 3. If g is a Lie algebra with a distinguished odd 1-cocycle
¢ € C(Ilg) then Ilg* is a (formal) odd Jacobi manifold.

In local coordinates we have QQ = %fafﬁan% € Vect(Ilg) which encodes

the Lie algebra structure on g. The 1-cocycle is given by ¢ = (—1)%¢*Q., the
sign is picked for convenience. Then the odd Jacobi structure on Ilg* is given
by

S = (_1)&+51

27T°‘7r'8627a777 + (—1)F7v71'aQoé7TW777 )

Q=70 .

The associated odd Jacobi brackets should be thought of generalisation
of the “Lie-Schouten” bracket on IIg* [25] in the presence of a l-cocycle.
Both these odd brackets are then considered as odd generalisations of the
“ Lie-Poisson-Berezin-Kirillov” bracket on g*.

COROLLARY 4. If (ILE, Q) is a Lie algebroid, then ILE* x RO is a Jacobi
algebroid.

Let us employ natural local coordinates on T*(IIE* x R%) which we denote
as (:L'A,na,’l', pa, 7, m). The weight assigned to these extra coordinates is
w(7) = 1 and w(m) = —1. In these local coordinates the weight minus one
Jacobi structure is given by

_ a1
S = (—1)%7%QApa + (—1)a+5§7ra7r5Qg,am + TN
Q=—7.

STATEMENT: Extending the fibres of the vector bundle £ — M underly-
ing a Lie algebroid by R allows one to directly construct a Jacobi algebroid
structure on IIE* x RO,

Naturally the proceeding corollary includes Lie algebra as Lie algebroids
over a point. Then, if g is a Lie algebra one can extend the vector space
structure to g x R. Directly associated with this is the (formal) manifold
II(g* x R) which comes with an odd Jacobi structure of weight minus one.

COROLLARY 5. Let M be a manifold and A be a closed, odd one-form (a
flat Abelian connection). Then IITM can be made into quasi Q-manifold of
weight one, or in other words, IIT* M can be considered as a Jacobi algebroid.
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In natural local coordinates (z4,dz?) on IITM, the quasi Q-manifold
structure is given by

0 0
_ - _ A B A
D=d+A==dzx 7axA+d:L’ Ag dx dad

g=A=dz®Ap.

The weight here is simply assigned as w(z4) = 0 and w(dz?) = 1. Picking
natural local coordinates (24, 2%, pa, p*) on T*(IIT* M) allows us to write the
corresponding odd Jacobi structure on IIT* M as

S = (=1)*pfpa + (—1)PpPAg plary,
Q= —pfAA.

Note that the first term of the almost Schouten structure is the canonical
Schouten structure on the anticotangent bundle.

3.3. SCHOUTENIZATION AND LIE ALGEBROIDS

In this section we show that given arbitrary Jacobi algebroid one can ex-
tend the structure via the Schoutenisation process described earlier to con-
struct a genuine Lie algebroid. Consider the manifold 7%(ILE* x R) which we
equip with local coordinates (xA, Nay t, pA, ™, p). The weight we assign as:

PROPOSITION 6. Let (ILE*,S,Q) be a Jacobi algebroid. Then IIE* X R is
a weight minus one Schouten manifold where the Schouten structure is given

by
S=e"(S—Qp). (3.4)

Proof. Follows directly from Theorem 2. The assignment of the weight
follows directly from the definition. I

In natural local coordinates this Schouten structure is given by

a — a_o a 5l « «
S =t <(—1) T QﬁpA+(—1) +6§7r W’BQZ}anﬂ,—ﬂ Qap>. (3.5)
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We need to understand the vector bundle structure in order to really iden-
tify the Lie algebroid structure. Given the weight assigned to the coordi-
nates on IIE* x R the associate underlying (dual) vector bundle structure is
proj* E — M x R. That is the pullback of E — M by proj: M x R — M.

COROLLARY 6. IfIIE* has the structure of a Jacobi algebroid then
proj* E — M x R is a Lie algebroid.

STATEMENT: Given a Jacobi algebroid structure on IIE*, one can extend
the base space M of the underlying vector bundle £ — M by R to directly
construct a Lie algebroid.

3.4. ODD CONTACT MANIFOLDS AND JACOBI ALGEBROIDS

In this section we show that the manifold M := IIT*N x R considered
as an odd contact manifold provides a canonical example of a Jacobi algebroid
than lends itself to the description in terms of odd Jacobi brackets.

Let N be a pure even classical manifold of dimension n. Consider the man-
ifold M := IIT*N x R equipped with natural local coordinates (z%,z%, 7).
The coordinates x® are even, while the other coordinates z} and 7 are odd.
The dimension of M is (n|n + 1). The manifold M comes equipped with an
odd contact one form, which is the even one form

a =dr — z,dz®. (3.6)

It was shown in Example 4. that M is an odd Jacobi manifold with the
odd Jacobi structure being

S =t (o + 257),
Q=-—m, (3.7)

where we have employed natural coordinates (z%, x}, 7, pq, p%, ) on T*M. In-
deed this odd Jacobi structure is directly equivalent to the odd contact struc-
ture. Without details, both the odd contact and odd Jacobi structure on M
can be considered as the “mnatural superisation” of the classical structures
on R3. Note that IIT*N comes equipped with a canonical Schouten (odd
symplectic) structure, but IT*N x R comes with a canonical odd Jacobi
structure.
Let us attach the weight to the local coordinates on M as:
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w(z®)

)

=1 || w(m)=-1

0 W(pa) =0
1

~— Q%

w(T

This weight is the “natural weight” with respect to the underling vector
bundle structure T*N x R — N. With respect to this weight it is clear that
the odd Jacobi structure on M := IIT*N x R is of weight minus one and
we thus have a Jacobi algebroid.

Now consider M* := IITN x R equipped with natural local coordi-
nates (z%, €%, 1, pa, Ta, 0). The canonical double vector bundle morphism
R : T*M — T*M* act on the coordinates as R*({%) = p¢, R*(n) = =,
R*(mg) = x} and R*(0) = 7. Then we can pull-back the odd Jacobi struc-
ture to give X R

Szfa(pa+7ra77)» Q=-n,
both of which are now functions on the total space of M*. Then we can
“undo” the symbol (and after a little reordering) to produce

o .0 B
aanr”gaTa’ q=n. (3.8)

Direct calculation confirms that M* := IITN x R is a quasi Q-manifold.

D =¢°

STATEMENT: In light of Proposition 4, TN x R — N is a Lie algebroid in
the presence of a 1-cocycle. The de Rham differential on N is the associated
homological vector field and the 1-cocycle is identified with the “odd time”.

Remark. As this work was being completed, Mehta [22] established a one-
to-one correspondence between Jacobi manifolds and degree 1 contact NQ-
manifolds. Mehta shows how to interpret the “Poissonisation” of a Jacobi
manifold as the “symplectification” of the corresponding degree 1 contact
N@-manifold. There is no doubt that Mehta’s results can be slightly refor-
mulated to sit comfortably with the conventions used here: one would con-
sider “Shoutenization” and “symplectification” of odd contact structures.
This generalises the correspondence between Poisson manifolds and degree 1
symplectic N@Q-manifolds, as established by Roytenberg [23]. We also direct
the reader to Grabowski [11] who studies degree 2 contact N@-manifolds as
a generalisation of Courant algebroids. The author conjectures that interest
in contact structures on super and graded manifolds will continue to grow.
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4. CONCLUDING REMARKS

In this paper we defined the notion of an odd Jacobi manifold and exam-
ined their basic properties. In particular, it was shown that on a supermani-
fold equipped with an odd Jacobi structure J := (5, Q) the algebra of smooth
functions over the supermanifold C°°(M) comes with the structure of an odd
Jacobi algebra. Furthermore such the homological vector field @) satisfies a
derivation property over the odd Jacobi brackets.

However, it remains open as to if interesting or realistic gauge theories exist
that require the use of odd Jacobi structures (with @ # 0) in a generalised
Batalin-Vilkovisky formalism. The notion of a gauge system c.f. [18] in the
context of odd Jacobi manifolds is straight forward.

In truth there appears no applications in physics of even Jacobi structures
that cannot simply be restated in terms of Poisson geometry. That said, it is
conceivable that odd contact structures could find quite direct application in
theories with explicit dependency on gauge parameters.

The idea of “odd time” (see Example 4) has already been applied in the
Batalin-Vilkovisky formalism to get at general and direct solutions of the
master equation for a large class of gauge theories, see Dayi [6]. In essence
one understands the BRST operator as the partial derivative with respect to
the “odd time” and then one can formulate the BV formalism in a way akin
to classical mechanics. It would be very desirable to properly understand the
supergeometry of Dayi’s constructions and how this relates to the work here,
in particular to odd contact manifolds. The notion of “odd time” is also
essential when constructing flows of odd vector fields. It is certainly expected
that odd contact structures are of wider interest than just their relation with
odd Jacobi manifolds.

We defined Jacobi algebroids in terms of an odd Jacobi structure on I1E*
of weight minus one. That is the “multivector fields” come equipped with
an odd Jacobi bracket. For Lie algebroids the bracket between “multivector
fields” is a Schouten bracket, i.e., satisfies a strict Leibniz rule.

This construction was then used to construct a weight one almost homo-
logical vector field. That is the “differential forms” come equipped with a
kind of deformed de Rham differential. Importantly we no longer have a
homological vector field as in the case of Lie algebroids, but rather the ho-
mological condition is weakened in a very specific way as to provide a quasi
Q-manifold structure. As such Jacobi algebroids can be considered as very
specific examples of skew algebroids [10], which are a kind of Lie algebroid
in which the Jacobi identity is lost. If the corresponding anchor is a Lie al-
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gebra morphism between sections of the vector bundle and vector fields over
the base then we have the notion of an almost Lie algebroid [16]. Interest in
algebroids without the Jacobi identity comes from nonholonomic mechanics,
where skew algebroids provide a general geometric setting.

However, via a simple redefinition one can rephrase Jacobi algebroids in
terms of Lie algebroids in the presence of a 1-cocycle, which are also known as
generalised Lie algebroids. In doing so we recover, maybe up to conventions,
the notion of a Jacobi algebroid in the sense of [8, 13].

The obvious areas of the present work that require further illumination
include:

e Do Jacobi bialgebroids have an efficient description in terms of a com-
patible odd Jacobi structure and a quasi Q-structure?

e Can one define non-linear Jacobi algebroids in terms of odd Jacobi struc-
tures over non-negatively graded supermanifolds? Are these naturally
related to Voronov’s ([26]) non-linear Lie algebroids?

e Can one develop a theory of higher or homotopy odd Jacobi structures
and the related Lo-algebras.

5. APPENDIX: CANONICAL DOUBLE VECTOR BUNDLE MORPHISMS

For completeness we present the canonical double vector bundle morphisms
used in this work. In particular we prove that the morphisms are symplecto-
morphisms. We describe vector bundles in terms of coordinates on their total
spaces and the associated vector bundle automorphisms. Specifically we have:

EFE—M E*— M

(x4, e?) = (z2) | (24, eq) — (z4)

74 = 74(2) 74 = 74(2)

@ =T () | ea= (T (2)

«

«

Where TH (Tﬁl)w = 64", etc. We take e = e, = a.
Let us employ natural local coordinates:

T*(E*) || (#4,7a,pa, ©)
T*(HE) (angaapAaﬂ-a)
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_ The Grassmann parities are given by A =py = g, No = T = Ty =
€% = (@ + 1). The weights are assigned as w(z4) = 0, w(na) = 1, w(pa) = 0,
w(m®) = -1, w(&*) = —1, w(m,) = 1. The admissible changes of coordinates
are:

THIE*) || 74 =742), 7o = (T"Nd 1

B A5 5 o(T—1
Pa= (%) vs+ (_1)A(7+1)+57T6T67< ((%A)” )Ua

T*IIE) |74 =

x
pa= (228 o + ()AL (PG o,

The canonical double vector bundle morphism R : T*(IIE*) — T*(IIE) is
given in local coordinates by

R (ma) = Na R* (&%) = (=1)%7".
LEMMA. The canonical double vector bundle morphism
R:T*(IIE*) — T*(I1E)

is a symplectomorphism.

Proof. The canonical even symplectic structure on T*(ILE*) is given by
Wrs(IE*) = dp adz? 4 dr®dn, and on T*(I1E) is given by Wr(1E) = dp adz? +
dmad§®. Thus, R*wp«qEp) = wp=qp+) and we see that R is indeed a symplec-
tomorphism. 1
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