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1. INTRODUCTION

The papers [4], [8], [7], [20] are, to a large degree, devoted to various but
somewhat similar characterization of norm continuity for representations of
locally compact group in a Banach algebra and so is the present one. Actually,
the roots of these results can be traced back to Phillip’s work (see [12]) on
one parameter semi-groups. In [8] the following fact was proved:

THEOREM 1.1. (Esterle) Let G be an Abelian locally compact group, A
a unital Abelian Banach algebra and 6 a locally bounded (norm bounded on
compact subsets of G) representation from G in A. The following assertions
are equivalent:

1. 0 is continuous.

2. limg. p(6(g) — 1) = 0, where p denotes the spectral radius in A and
e the unit element of G. (‘This condition is called “spectral continuity”
of 0).

This equivalence is generalized in [7] to some non-Abelian groups. In [4],
using the preceding result, the following was obtained:
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THEOREM 1.2. Let G, A and 0 be as in Theorem 1.1. Then 6 is continuous
if and only if for each character x of A, the composition x o 6 is continuous
from G to the complex plane C.

This strategy was already used by Phillips who divided the proof for G = R
into two steps. First, he proved that the continuity of x o 8 for each character
implies the condition 2 of Theorem 1.1 (by an analytic argument) and next,
that this last condition implies continuity using the Gelfand-Hille theorem and
Riesz-Dunford functional calculus. None of these steps is immediately gener-
alizable to Abelian groups (except perhaps to R™). In the proof of Theorem
1.1 (see [8]), beside the Gelfand-Hille theorem, Silov’s idempotents and the
general structure result on locally compact Abelian groups has been used and
in [4], the fact that continuity of x o 6 for each x implies spectral continuity
for # uses arguments of commutative harmonic analysis (Fourier transforms,
Pontryagin duality,. . . ).

In [20] an analogous continuity criterion is proved in the non-Abelian case
but only for unitary representations with values in C*-algebras.

THEOREM 1.3. Let G be a locally compact group (non-Abelian in gen-
eral), A a C*-algebra and 6 a unitary representation of G in A. The following
assertions are equivalent:

1. 0 is continuous.

2. For each state w on A, the composition w o # is continuous.
If G is first countable, we can replace “states” by “pure states” in 2.

Recall that states on A are positive functionals of norm one and, if we
denote by W (A) the (compact in the weak-x topology of the dual A’) set of
states and by pw(a) = sup,ew () lw(a)l, (a € A), pw is an equivalent norm
on A (see [1, p.34]). Indeed, 6 is continuous if limg_,. pw(6(g) — 1) = 0 and
the only thing to prove in Theorem 1.3 is that

Vw € W(A), wof continuous = lim pw (6(g) — 1) = 0.

g—e
In [20] the proof of this fact used tools of unitary representations theory
(essentially functions of positive type) that are not available outside the scope
of C*-algebras and unitary representations.

The crucial fact in Theorems 1.2 and 1.3 is, for a weak-* compact subset
Q of the dual A’ of the algebra (the set of characters in 1.2, of states in 1.3),
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to prove that:

Vw € Q, wod continuous = sup |w(f(g) —1)| — 0.
weN g—e

Part 2 of this paper is devoted to a general strategy for obtaining such
a result using the Glicksberg-De Leeuw decomposition (see 2.1) in place of
group characters or functions of positive type. We give, in this way, another
proof of Theorem 1.2 and a generalization of Theorem 1.3 to norm bounded
representations of locally compact groups in Banach algebras (not only unitary
representations in C*-algebras).

In Part 3, we apply the results of Part 2 and a recent theorem of Kuznetsova
[16] to prove that, for morphisms from locally compact groups into some
topological groups, Haar measurability implies continuity. These facts are
classical (due to Steinhauss, Weil, Pettis,. .. ) if the range group is Polish but
are, to our knowledge, new if this group is non-separable.

2. CONTINUITY OF REPRESENTATIONS SEEN THROUGH
COMPOSITION BY SOME FUNCTIONALS

2.1. PRELIMINARIES. In this section we collect some facts used below
that cannot be considered as very classical. First, we will introduce the
Glicksberg-De Leeuw decomposition theorem. We will state it in the form
most convenient for us, although not the most general one. Let G a locally
compact group, X a Banach space, £(X) the Banach algebra of bounded op-
erators on X. A representation 6 from G to £(X) is said strongly continuous
if for each x in X the map g — 6(g)x is continuous from G to X (with its norm
topology) and weakly continuous if, for each = the same map is continuous
into X endowed with its weak topology. 6 is said “averaging to zero” if, for
each x € X and each neighborhood V of e, 0 is in the closed convex hull of
O(V) -z ={0(g)xr : g € V}. Finally, 0 is “locally weakly almost periodic” if,
for some neighborhood Vj of e, 8(Vp)z has weakly compact (weak) closure in
X for each x in X.

The following is true (see [6, th. 3.2]):

THEOREM 2.1. (Glicksberg-De Leeuw) Let € be a locally weakly almost
periodic representation of a locally compact group G on a Banach space X
such that g — (z*,0(g)x) is locally Haar-measurable for every x € X and for

x* in a total (in the weak-* topology) subset of the topological dual X' of
X. We have a direct decomposition X = X, ® Xy, X, and Xy being closed
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0(G)-invariant subspaces such that the subrepresentation induced by 6 on X,
is weakly continuous and on Xy is averaging to zero.

We need also the following result well known for unitary Hilbertian repre-
sentations.

Remark 2.2. The equivalence between strong and weak continuity is also
classical for one parameter semi-groups (see e.g. [5] p.15).

THEOREM 2.3. ([6, th.2.8]) Every weakly continuous representation of a
locally compact group on a Banach space is strongly continuous.

2.2. CONTINUITY OF REPRESENTATIONS ON SPACES OF CONTINUOUS
FUNCTIONS. Let G be a locally compact group and 2 a compact Hausdorff
space. We have the following result for representations of C(£2).

PROPOSITION 2.4. Let 6 : G — L(C(R2)) be a locally bounded representa-
tion. The following assertions are equivalent:

(i) For every f € C(2), g+ 6(g)f is continuous from G into C(§2) endowed
with the pointwise convergence topology.

(ii) @ is strongly continuous.

Proof. Clearly, only (i) = (ii) needs to be proved. Let V be a compact
neighborhood of e in G and f € C(2). 6 being locally bounded, §(V)f is
bounded in C(f2) norm and also compact in C(§2) endowed with the point-
wise convergence topology by (i). So, by Grothendieck’s theorem ([11, th. 5]),
O(V)f has weakly compact closure in C(€2) and the representation is weakly
almost periodic.

Denote by Dq = {e,,w € Q} the set of Dirac point masses on Q (e, (f) =
f(w)). Dq is a total subset of (C(2))" and (always by (i)) g — (ew,0(9)f) =
(0(9)f)(w) is continuous for each w € Q2 and f € C(Q2). Thus, by Theorem
2.1, we have

with the properties of Theorem 2.1.
By hypothesis,

VI EC(), VweQ eu(0(9)f) = (0(9)f)(w) — flw)
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and for each f € (C(£2))o and any neighborhood V of e, 0 € e,,(Conv(6(V)f))
where Conv(6(V)f) is the closed convex hull of (V') f. So, for each w € Q,
0 € Nyeye c(Conv(O(V) ) = {f(w)} and (@) = {0}. Thus, C(%)

(C(Q)). and 0 is weakly and also strongly continuous by Theorem 2.3. |}

Remark 2.5. One can use the following recent result of H. Pfitzner [18]
(answering to a question asked in [10] by G. Godefroy):

THEOREM 2.6. (Pfitzner) Let X be a real Banach space and ) a subset
of the dual unit ball of X such that

Ve e X, |lzfl = max(z”, x)

(the max is actually attained on ). Then the weak topology and the o(X,Q)-
topology have the same norm bounded compact sets. (Such sets as Q2 are called
“James boundary” for X and Dq is such a set for C()).

Using this result in place of Grothendieck’s theorem and with some minor
changes (in general the space X considered here is a complex Banach space
but its weak topology is the same if we consider the underlying real structure)
one can prove:

PROPOSITION 2.7. Let G be a locally compact group, 0 : G — L(X) a
locally bounded representation and §) a subset of the dual unit ball such that

Ve e X, |z|| =max Re(z*, z)
z*e)

(Re(2) = {Re(z*), x* € Q} is a James boundary for X with its real structure).
The following properties are equivalent:

1. For every x € X, g — 0(g)x is continuous from G to X endowed with
the o(X,Q)-topology.

2. 0 is strongly continuous.

Only the Proposition 2.4 will be used below.

2.3. APPLICATIONS TO OTHER CONTINUITY CRITERIA. First, we give
a proof of Theorem 1.2 different from [4] by applying Proposition 2.4 to an
auxiliary representation.
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Proof of Theorem 1.2. By Esterle’s continuity criterion (Theorem 1.1), it
is sufficient to prove that the continuity of x o 6 for each x € A (the character
space of A) implies lim, . p(f(g) — 1) = 0. Suppose for every y € A, x 06
continuous. A being a unital Abelian algebra, Aisa compact Hausdorff space.
For a € A, let @ be its Gelfand transform in C(A) (a(x) = x(a) for x € A). Tt
is well known that

Vac A, [l = pla) < [all.

If fisin C (A), we denote by My the operator of multiplication by f. It is
also well known that HMf”L(C(A)) = HfHC(A)‘ We define 6 : G — L(C(A)) by

é(g) =M i) Clearly 6 is a group representation and

16(a)]l = [Mgz55ll < 16(9) Necay < 16)1-

So 6 is locally bounded if 6 is.
Now, for any f € C(A), g = 0(g)f is continuous with C(A) endowed with
the pointwise convergence topology. Indeed, for each x € A,

(0(9) ) () = 0(9) 0).f(x) = (x 2 0)(9) f(x)

depends continuogsly of g by hypothesis. So, by Proposition 2.4, 0 is strongly
continuous and ||f(g) - 1 1HC ———> 0 but

18(9)1 ~ Tllecay = 11600) = 1) - Llegay = 16(@) — D)eay = 2(6(0) — 1)-
|

We can also with another choice of auxiliary representation to which
Proposition 2.4 is applied, prove the following generalization of Theorem 1.3.

THEOREM 2.8. Let G be a locally compact group, A a unital Banach
algebra and 0 a representation of G in A such that for every g € G, ||0(g)| = 1.
The following assertions are equivalent:

1. 8 is continuous.

2. For each functional w € A’, we have w o 0 continuous (0 is continuous if
A is endowed with its weak topology).



SOME RESULTS ON AUTOMATIC CONTINUITY 65

Proof. We can suppose that A is generated, as a Banach algebra by the
range 0(G). Indeed, if it is not the case, we restrict ourselves to the closed
subalgebra B generated by 6(G). Every @ € B’ can be extended in w € A’
(by Hahn-Banach) and so, if w o 6 is continuous for each w € A’, the same is
true for each @ € B'.

We define an algebra anti-representation L* (that L, = Ly L} from A into

L(A")) by
(Liw)(z) = w(az), we A, ze€ A

L? is the transpose of the left multiplication by a. We have
Vwe A, Vo e A |w(az)| < [|wlll|allllz].-

So [|[Liw] < |la|lllw] and ||LE|| < |la||. We can thus define an action of the
opposite group of G on the unit ball B of A" by

0(9) = Lyyw, w€B.

Moreover, we are going to show that, for every w € B, g — é(g)w is
continuous when B is endowed with the weak-* topology. Let (g;)ier be a net
in G such that g; — g. We have to show that

Ya e A, (09w a) = (Ligg@)(@) = (Lig)(@) = (Blg)) (@)

Recall that A is the closed linear span of §(G) and suppose first that a = 6(h)
is in 0(G). We have

(Li(gn@) (@) = (Ljgyw) (0(h)) = w(0(gih)) — w(0(gh)) = (Lgw)(a).

Clearly the same is true for a in the linear span of 6(G) denoted by Lin(6(G)).
Now, let a € A, we have

Ve >0, Ja’ € Lin(0(G)) such that |la —d'|| < g

For such a a’, we have

Jip € I such that ¢ > ip = }(Lz(gi)w)(a’) — (L;(g)w)(a')| <

Wl ™

and the fact that for each h € G (in particular for every g; and g), HL;(h)wH <1
gives
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So, for every a € A, (Lg(gi)w)(a) — (Lg(g)w)(a).

We consider the Banach space C(B) and the representation 6 from G to
L(C(B)) defined by

(0(9) ) (w) = f(O(g)w) = f(Ljw).

For each f € C(B), the map g — 0(g)f is continuous relative to the pointwise
convergence topology on C(B). Indeed, if w is a functional in B, what we have
to show is that if (g;) is a net in G such that g; — g, then

(0(9:) 1) (W) = f(Ligow) = F(Ligyw) = 0(g)w.

f being continuous, it is a consequence of the fact that L;(gi)w — Lz(g)w in B
proved above.

We can thus apply Proposition 2.4 and 0 is strongly continuous. If 1e
C(B) is defined by 1(w) = w(1) we can write

Yw € B, (é(g)i) (w) = i(L;(g)w) = (L;(g)w)(l) = w(@(g)),

and

Jim (9)1 ~ Tllecs) = lim (sup |(6(9) D)) = lim [6(g) 1] = 0

by strong continuity of 8 and so 6 is norm continuous from G to A. 1

COROLLARY 2.9. Let G be a locally compact group and 6 a norm bounded
representation of G into a unital Banach algebra A. The following facts are
equivalent:

1. 6 is continuous.

2. 0 is continuous when A is endowed with its weak topology.
Proof. Setting M = sup e [|0(g)||. We define, for a € 4,

llall| = sup [|6(g) - al|.
geG
I -1ll is clearly a norm on A equivalent to the initial one (||a|| < ||al| < M||al|).

Moreover
Vg€ G, Yac A, |0(g)-al| = lall
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and
llaa’[l = sup [|6(g)aa’|| < sup (l|6(g)all [la’[l) < Illall lla"] < [lall lla'[]-
geG geqG
Hence || - || is a Banach algebra norm on A.
Setting now ||al|g = supjja/<1 llad’[l], for a € A, || [l is a Banach algebra
norm on A equivalent to ||| - || since for each a in A we have |lall¢ < ||al|
and, choosing @’ = 7; € A, we have [|d'|| = 5 [|1]| = 1. So for every a € A,

lallc > 4 [llafl. Moreover

Vg € G, [0(9)llc = sup [l6(g)dll = sup la'lll = 1.
o'l <1 <1

So renorming A with the equivalent Banach algebra norm || - ||, we can apply
the preceding theorem. |

Now we will show how to deduce Theorem 1.3 from the previous results.
Recall that if A is a unital Banach algebra, we call “state” of A a functional
w in A" such that |w| = w(1) = 1. For C*-algebras, this definition coincides
with that given by positivity. We have the following known result:

LEMMA 2.10. (see [2, p.100]) If A is a unital Banach algebra, every con-
tinuous functional on A is a linear combination of (at most) four states.

So the continuity of w o 0 for each state w implies the continuity for each
linear functional and we obtain:

COROLLARY 2.11. Let A be a unital Banach algebra, G a locally compact
group and 6 a norm bounded representation of G to A, the following facts are
equivalent:

1. 0 is continuous.

2. For each state w of A, w o 6 is continuous.

As a special case of this, when A is a C*-algebra and 6 a unitary repre-
sentation, we obtain Theorem 1.3.

If we denote by S(A) the set of states of A, S(A) endowed with the weak-*
topology is a compact subset of A’, and so it is the closed convex hull of the set
PS(A) of his extreme points, called “pure states”. As in [20], an application
of the Choquet-Bishop-De Leeuw integral representation theorem allows us to
obtain:
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COROLLARY 2.12. Iff is a norm bounded representation of a locally com-
pact first countable group in a Banach algebra A, the following assertions are
equivalent:

1. 6 is continuous.

2. For each pure state w of A, w o 0 is continuous.

Proof. The proof proceeds exactly as in [20] but we repeat it for self-
completeness.

S(A) is a convex compact in the weak-* topology of A’. Hence, by the
Choquet-Bishop-De Leeuw integral representation theorem (see [19]), for each
w € S(A), there exists a Baire measure p,, on PS(A) such that for each weak-*
continuous functional ¢ on A’, we have

p(w) = / dy,.
PS(A)

—

Applying this representation to the functional 6(g) on A’ (evaluation of w at
8(g)), we have for any g € G,

(w0 0)(g) = Blg)(w) = /P o s

By Corollary 2.11 above, one only have to prove the continuity for w o 6 for
each w € S(A) to obtain that 6 is. G being first countable, we have to show
that if (gn) is a sequence in G such that g, — g we have wo8(g,) — wob(g).
By hypothesis, for each 7 € PS(A),

—_—

700(gn) = 0(gn)(1) = 0(g9)(7) = 70 0(9).

—

Moreover, for every h € G and every 7 € PS(A), |#(h)T| < 1 so, by the
dominated convergence theorem,

PS(A) PS(A)

and we are done. |1

To conclude this part, we will state and prove a proposition on unitary
representation on C*-algebras which is implicit in [20] but will be used in the
third part below.
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PROPOSITION 2.13. Let G be a locally compact group, A be a unital C*-
algebra and 0 be a unitary representation of G in A. The following facts are
equivalent:

1. 0 is continuous.

2. For each w € S(A), m, 080 is strongly continuous where m,, : A — L(H,,)
is the Gelfand-Naimark-Segal representation associated to w.

Proof. Recall that for each w € S(A), we can construct (see [17]) a Hilbert
space H,, and a Hilbertian cyclic representation ,, (unique up to equivalence)
with cyclic vector x,, € H,, such that

Va€ A, w(a) = (mu(a)zy, , 2u).

(1) = (2) is clear since m, is continuous.
Conversely, if 7, o 6 strongly continuous, we have

g (wob)(g) = ((mwo0)(9)rw , Tw)

continuous and by the results above, 6 is continuous. |

Remarks 2.14.

1. If G and A are Polish, the fact that the weak continuity implies conti-
nuity is a consequence of the Suslin graph theorem ([3]) because, in this
case, the graph of the representation being closed in a Polish space, is
a Suslin set. But in the general case, there is no “closed graph theo-
rem” for group morphisms as it is known by the classical example of the
regular (i.e., by translation) representation of R on L2(R) which, being
strongly continuous, has closed graph but is not norm continuous.

2. We do not claim that the proofs of Theorems 1.2 and 1.3, as conse-
quences of the Proposition 2.4 by using “ad hoc” auxiliary representa-
tions, are simpler than those of [4] or [20]. Indeed, the use of group
characters, Fourier transforms, functions of positive type or GNS rep-
resentations is replaced by Grothendieck’s weak compactness criterion
and Glicksberg-De Leeuw decomposition which are highly nontrivial re-
sults. Nevertheless, this different approach can have its advantages like
the fact that we are able to go further the unitary case for non-Abelian
groups.
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3. MEASURABILITY AND CONTINUITY FOR GROUP MORPHISMS

Well known results due to Steinhauss, A. Weil, and Pettis show that if H
is a Polish group and if G is a Baire group (resp. a locally compact group), a
group morphism 6 from G into H having the Baire property (resp. being Haar
measurable) is in fact continuous (cf. [13], [21]). But, as it is often the case
for infinite dimensional representation, when the range group is not separable,
these results do not generalize. If G is locally compact and H is the group
of invertible elements of a unital Banach algebra or the group of unitaries of
a C*-algebra, the preceding results combined in the non-Abelian case with a
recent theorem of Kuznetsova give analogous automatic continuous criteria.

3.1. THE COMMUTATIVE CASE. We will first prove a lemma on the bound-
edness of regular subadditive or submultiplicative maps from a topological
group into the real field.

LEMMA 3.1. Let G a Baire group (resp. a locally compact group) and
¢ a subadditive map from G to RT with the Baire property (resp. Haar-
measurable). Then ¢ is locally bounded on G (bounded on compact subsets).

Proof. We shall treat the case of Baire Property, the measurable case goes
exactly the same way. We can write

G = U Vi, where V,, = {g € G : ¢(g9) <n, 90(9_1) <n}.
neN

© having the Baire property, all the sets V,, have the Baire property, and
at least one of them, V,,, is non meager. By a well-known result (see [13,
th.9.9]), there is a neighborhood V of e in G such that V. C V,,, - Vn_o1 so, for
each h € V, h=gg ! with g, ¢ in Vo and ¢(h) < 2ng. Hence, ¢ is bounded
on V and by translation, for each g € G, ¢ is bounded on the neighborhood
g-V of g (by ©(g)+2np). Now, an easy compactness argument shows that ¢
is bounded on any compact subset of G. |

COROLLARY 3.2. Let ¢ : G —]0,+oo[ where G is a Baire group (resp. a
locally compact group) such that ¢(gg9’) < v(g) - ¢(¢'). If ¢ has the Baire
property (resp. is Haar measurable), then ¢ is locally bounded on G.

Proof. This is a consequence of the lemma above using the logarithm map
applied to 1(s) = sup(1,¢(s)). I
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We are now ready to prove:

THEOREM 3.3. Let G be a locally compact Abelian group and 6 be a
morphism from G into the group A* of invertible elements in a unital Ba-
nach algebra. If  is Haar measurable or 0 has the Baire property, then 6 is
continuous.

Proof. Let 0 : G — A and A the spectrum of A. If 6 is measurable or has
the Baire property, the same is true for x o 6 for each 6 € A. Since x o0 is
a morphism with values in C, we can deduce that for each y € A, x o0 is
continuous. Moreover, by Corollary 3.2, g — [|6(g)|| being submultiplicative,
0 is locally bounded. We can, thus, apply Theorem 1.2 to obtain continuity
of 6 as a representation or equivalently as a group morphism to A*. |

3.2. THE NON-ABELIAN UNITARY CASE. We cannot deduce directly a
result similar to Theorem 2.8 or its corollaries because w o 6 for w a linear
functional are not morphisms and, to our knowledge, there is no automatic
continuity available in this case. Nevertheless, the continuity of measurable
morphisms from a locally compact group to a unitary group can be obtained
combining Proposition 2.13 and the following recent continuity criterion of
J. Kuznetsova.

THEOREM 3.4. ([16]) Let G be a locally compact group, H a Hilbert
space and 0 : G — L(H) a unitary representation. If 6 is Haar-measurable
when L(H) is endowed with the weak operator topology, then 6 is strongly
continuous.

Remarks 3.5.

1. In the case where H is separable, it is known that weak measurability
of § (ie., Y(u,v) € H% g+ (0(g)u,v) measurable) implies the strong
continuity of 6 (see [9]) but the following example (given in [16]) shows
that this cannot be extended to the nonseparable case.

EXAMPLE 3.6. Let G be a non-discrete locally compact group, £2(G)
be the set of square summable families on G' (i.e., L?(Gy), where Gy is
the discrete version of G) and 6 the left or right regular representation
(by translations) from G on ¢?(G). 6 is weakly (in the above sense)
measurable but not strongly continuous.
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2. Actually, considering for u and v in H and V an open set in C
Aypv ={T € L(H) , (Tu,v) € V},

the weak measurability (in the sense of (1)) for 6 expresses the measur-
ability of sets in GG of the form 9_1(Au,u,v) and the Haar weak operator
measurability of the theorem of Kuznetsova expresses the measurability
of sets of the form #~1(U) with U in the topology generated by the sets

Au,v,V~

Now we can prove the following theorem:

THEOREM 3.7. Let G be a locally compact group, H an Hilbert space,
U(H) the unitary group of H and 6 an Haar-measurable morphism from G
to U(H). Then, 0 is continuous.

Proof. 6 induces a unitary representation on the C*-algebra L£(H). For
each state w of L(H), denote by 7, the GNS representation associated to w. If
0 is measurable, 06 is measurable from G into L(H,,) since 7, is continuous
from L(H) into L(H,) (where H, is the space of the representation ) and
so 7, o 0 is also Haar to weakly operator measurable from G into £(H,). By
Kuznetsova’s theorem, 7, o 6 is strongly continuous from G into £(H,,) and
by Proposition 2.13, 6 is continuous from G into L(H) (or U(H)). 1

Remark 3.8. Kuznetsova’s theorem can also be used to give a quick proof
of the following theorem due to A. Kleppner.

THEOREM 3.9. (see [15]) Let G, H be a locally compact groups (no sepa-
rability hypothesis) and ¢ : G — H a group morphism. Then ¢ is continuous
if and only if it is Haar-measurable.

As does Kleppner’s proof, one use the regular representation through the
following, certainly well known, lemma which is proved in [14].

LEMMA 3.10. If G is a locally compact group, p: G — L(L?(G)) the left
regular representation (i.e., (p(9)f)(h) = f(g'h)), p is a homeomorphism
onto is range endowed with the strong topology of L(IL?(G))

Proof of Kleppner’s theorem. Let G, H be locally compact groups and
¢ : G — H an Haar measurable morphism. One can consider py : H —
L(L*(H)) the left regular representation of H and § = py o ¢ from G to
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L(L2(H)). pg being continuous (for the strong topology of £(IL?(H))) and ¢
being measurable from G into H, # is Haar to strong-operator (and so also
Haar to weak operator) measurable and, by Kuznetsova’s theorem, continuous.
Now, let V be an open set in H, o~ 1(V) = 0~ (pg(V)) since py is injective.
By the preceding lemma, pg (V) is a relative strong open set in pg(H) so
there is a strong open set U in £(IL?(H)) such that

(V)= 0" (pu(V)) =071 (U N p(H)) = 071(U)

since 6(G) C p(H). So, by the continuity of 8, =1 (V) = §~1(U) is open in G
and ¢ is continuous. |

Remark 3.11. This proof of the fact that, for a morphism from a locally
compact group G to a topological group H, measurability implies continuity
can be used in all cases where H admits a unitary representation that is an
homeomorphism onto its range endowed with the strong topology. Neverthe-
less, we do not know if, beside the locally compact groups (by the regular
representation) and the unitary group itself, there are classes of groups ad-
mitting such representations.
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