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Abstract: We study basic geometric properties of metric ellipses, hyperbolas, and parabolas
in normed (or Minkowski) planes and obtain results on their shapes as well as respective
extensions of further statements well known in the Euclidean plane. For the special case of
polygonal norms, we prove a theorem on bunches of Minkowskian ellipses and hyperbolas
which are pairwise Birkhoff orthogonal.
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1. INTRODUCTION

It is surprising that there are not many results about the geometry of
conics in arbitrary normed planes; see [4], [3], [6], [1] and [2]. In a natural way
we continue here the investigations from [3]. It turns out that various well-
known definitions of conics, equivalent in the Euclidean plane, do no longer
coincide in normed planes, i.e., they can yield, in general, different types of
curves. This is clarified in [3], and we use the most natural analogues of
metrical definitions taken from there for our purpose (see below). Based on
these definitions we present a collection of results describing conics in general
normed planes and, particularly, also in polygonal normed planes. At least for
the case of polygonal norms, we are also able to prove a theorem on bunches of
Minkowskian ellipses and hyperbolas, which are pairwise Birkhoff orthogonal.

2. NOTATION AND PRELIMINARY RESULTS

By M?(B) we denote the Minkowski plane with unit disc B, which is a
compact, convex set with non-empty interior in R?, centered at the origin o.
The boundary of B is called the unit circle of M?(B) and denoted by S, and

||-|| is the norm induced by B. By B(m,r) we denote a homothet of B with
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center m and radius r, i.e., a (Minkowskian) disc. Its boundary is called a
(Minkowskian) circle.

If x and y are two different points of the plane, we write [z,y] for the
straight segment joining = and y, i.e., the convex hull of z and y, and the line
passing through x and y is denoted by (z,y).

A convex curve C' is called smooth if through every point of C' a unique
supporting line of C passes, and it is called strictly convex if it does not contain
any straight segment. A Minkowski plane M?(B) as well as the corresponding
unit disc B are called smooth (strictly convex) if S is smooth (strictly convex).

If for two points = and y we have that ||z| < ||z + ty|| for all ¢ € R, then x
is called Birkhoff orthogonal to y and we write x L y. Note that this relation
is, in general, not symmetric.

For the definition of metric ellipses and hyperbolas we use similar notation
as in [4] and [3].

DEFINITION 1. Let x,55 € M?(B) and ¢ € R be such that 2¢ > |z — y||.
A metric ellipse with foci  and y and of size c is defined by

E(z,y,¢) = {z € M*(B) : ||z — x| + |2 —y|| = 2¢}.
Without loss of generality we can consider the ellipse
E(z,c) ={z € M*(B): ||z — | + ||l + x| = 2¢},
where x € C. In this case, the condition for ¢ is reduced to ¢ > 1.

Due to [3] we have the following

PROPOSITION 1. Let E(x,c) be a metric ellipse. Then
E(z,¢) = {z € M*(B) : 3r > 0 such that B(z,r) touches B(z,2c) from
inside and contains -x in its boundary.}
The boundary of B(z,2c¢) is called the leading circle of E(x,c); see Figure 1.

This statement yields the possibility to visualise the shape of metric ellipses
in an alternative way. We will use this more geometric definition later, in a
proof.

DEFINITION 2. Let 2,y € M?(B) and ¢ € R be such that 0 < 2¢ <||z — y|.
A metric hyperbola with foci x and y and of size 2c¢ is defined by

H(z,y,c) ={z € M*(B): ||z — | — ||z = yll | = 2¢.}
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Figure 1: Two leading circles of an ellipse.

Figure 2: Two leading circles of a hyperbola.

Without loss of generality, we can consider
H(z,c)={z € M*(B): |||z — || — ||z + z[| | = 2¢},
where x € C. In this case, the condition for ¢ reduces to 0 < ¢ < 1.

In analogy to metric ellipses we have the following

PROPOSITION 2. Let H(z,c) be a metric hyperbola. Then

H(z,c) = {z € M*(B) : 3r > 0 such that B(z,r) touches B(x,2¢c) from

outside and contains -x in its boundary}.

The boundary of B(x,2c) is called the leading circle of H(x,c); see Figure 2.
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In addition, we define metric parabolas.

DEFINITION 3. Let L C M?(B) be a line and x € M?(B) \ L. A metric
parabola with focus x and leading line L is defined by

P(e,L) = {z € M*(B) : ||z -« = min{|lz — y| .y € L}}.
Without loss of generality, we let © € S, and L should support B.

It is easy to see that the following statement holds.

PROPOSITION 3. Let P(x, L) be a metric parabola. Then

P(x,L) = {2 € M?*(B) : 3r > 0 such that B(z,r) touches L and

contains x in its boundary}.

From now on, and for the sake of simplicity, we sometimes write ellipse,
hyperbola and parabola instead of metric ellipse, metric hyperbola and metric
parabola.

3. ON THE SHAPE OF CONICS

In this section we will see that strict convexity (smoothness) of the unit
disc is closely related to strict convexity (smoothness) of conic sections.

3.1. ON METRIC ELLIPSES. In [4] we find basic properties of metric el-
lipses.
PROPOSITION 4. Let M?(B) be a Minkowski plane. Then

e F(z,c) is a centrally symmetric, closed convex curve for every z € C
and ¢ > 1, and

e E(x,c) is strictly convex for every x € C and ¢ > 1 if and only if B is
strictly convex.

Senlin Wu clarifies the second property in some unpublished notes.

THEOREM 1. Let x € S, ¢ > 1 and y1, y2 € E(x,c). Then the following
properties are equivalent:

i) [y1,92] € E(x,0),

s T—Y1 T—Y2 T+Y1 T+Y2
11 T aﬂd .
)H%MMWWHCS hHMWHMICS
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This means that in general a segment in E(z,c) is determined by two
segments in the unit circle S. Senlin Wu also showed that, on the other hand,
not any two segments in S yield a segment in E(z, c¢).

THEOREM 2. Let [a,b] C S and [c,d] C S, where a and ¢ as well as b
and d are linearly independent, v € S and d > 1. Then [y1,y2] C E(z,d),

— _z—=y T—Y2 — Y1 _xtys
where a = T b= o=y’ € = ||96+311H and d = Tatwsll’ if and only if
|m| + |r| = |n| + |s|, where m,n,r, s > 0 satisfy 2z = ma + rc = nb + sd.

We introduce the notion of corner points and add a theorem that yields
information about the connection between smoothness of B and smoothness
of ellipses.

DEFINITION 4. A line L is said to support locally a closed curve C' at
x € C, or to be a locally supporting line of C at z, if x € L and there is a
neighbourhood N (z) of = such that N(x) N C is entirely contained in one of
the two half-planes determined by L.

Let now C be a curve and x € C. We call = a corner point of C if C is
non-smooth in z, i.e., there is no unique locally supporting line of C' at x.
The supporting cone of C at x is defined as the set of all directions of locally
supporting lines of C' at x, and we call the two directions enclosing the cone
limit directions of C' at x.

Remark. The notion of locally supporting line coincides with the common
definition for supporting line in the case when C is a convex curve.

THEOREM 3. Let M?(B) be a Minkowski plane. Then E(z,c) is smooth
for every x € C and ¢ > 1 if and only if B is smooth More precisely,
z € E(x,c) is a corner point of E(x, c) if and only if
point of S.

or is a corner

+
Te==ll mH [+l

Proof. Let x € C, ¢ > 1, and L = B(z,2c) be the leading circle of E(z,c).
According to Proposition 1 we consider a disc B(z,r) that touches L from
inside and contains —x in its boundary. When the disc “moves” between
L and =z, its center draws the ellipse E(z,c). If we want to decide whether
a point z € F(z,c) is a corner point of the ellipse, it suffices to study the
movement of the disc (or rather its center) in a neighbourhood of z.

From now on, y denotes the intersection point of the line (z, z) with L and
thus a touching point of L with the disc B(z,r). There are three possibilities
for the locus of the center z.
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e Case 1: Neither iiiu nor HiiﬁH is a corner point of S. In this case, the
disc moves locally between the unique supporting lines at « and y, and
thus we have smoothness.

e Case 2: ﬁ is a corner point of S. First we assume that ”iiiin is not
a corner point of S. This means that y is a corner point of B(z,r) (as
well as of L), but —z is not. So the limit direction of the supporting
lines of the disc in y moving into this position is different from the limit
direction of the supporting lines at y when leaving this position, whereas
the limit directions in —z coincide. As in the first case, for every other
position in a neighbourhood small enough, the change in the direction of
the movement of z occurs exactly in this position, yielding that E(x,c)

is non-smooth.

1S not

e Case 3: Hzii\\ is a corner point of S. Again we assume that Hi:i”
a corner point of S. This means that —z is a corner point of B(z,7),
but y is not. With the same argument as in case 2, we get that FE(z,c)

is non-smooth in z.

It remains to state that if IIzng and IIEiﬁH are both corner points of S at
the same time, then the curve of centers changes its direction two times in

one point. Since the ellipse is convex, this results again in a corner point. [

Remark. The proof of Theorem 3 does not use the property that B is
centrally symmetric. Thus the theorem holds also for gauges, i.e., for convex
distance functions whose unit discs are not necessarily centrally symmetric.

Now we will have a closer look at normed planes with polygonal unit discs.

DEFINITION 5. A Minkowski plane is called polygonal if B is the convex
hull of finitely many points.

For information on conics in a special polygonal plane, the rectangular
plane, we refer to [5].

Theorem 3 yields the following corollary.

COROLLARY 1. Let M?(B) be a polygonal Minkowski plane. Then for
all z € S and ¢ > 1 the ellipse E(z,c) is a polygon. Moreover, the possible
directions of the sides of E(x,c) do not depend on x or ¢, but only on the
shape of B. More precisely, let s be one side of the polygon E(x,c). Then
there exist two sides of B such that the lines containing these sides intersect
in a point u, where (o, u) || s.
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Proof. Both statements follow from the main idea of the proof. We use the
same notions and consider the disc B(z,r) that moves between —x and L. If B
is polygonal, then the supporting lines of B(z,7) at —z and y do not change,
unless one of these two points is a corner point. Let these two supporting
lines intersect in a point v. Then z moves (locally) on the line (z,v). If on
the other hand the two supporting lines are parallel, then z moves on a line
parallel to them.

In particular, z moves on a straight line between each two of the corner
points of the ellipse, and the direction of this straight line (=side of E(z,c))
does not depend on the position of x or the size of the ellipse, but only on the
(local) properties of the supporting lines of B(z,r) in —x and y. |

3.2. ON METRIC HYPERBOLAS. Due to [3] the following holds.

PROPOSITION 5. Let M?(B) be a Minkowsky plane. Its unit disc B is
strictly convex if and only if for every x € C and 0 < ¢ < 1 the hyperbola
H(z,c) consists of two simple curves, called branches, where each of them is
intersected by any line parallel to (o, x) in exactly one point.

We add the following

PROPOSITION 6. Let M?(B) be a Minkowski plane that is not strictly
convex, and let [u,v] C S be a straight segment in the boundary of B. Let
x € M?(B) be such that (o,z) is not parallel to (u,v). Then there exists a
value 0 < ¢ < 1 such that H(x,c) is not the union of two simple curves.

Proof. We consider the leading circle L = B(z,2¢) where c¢ is chosen such
that 2+v € [z +u, —x]; see Figure 3. Let z € M?(B) be the intersection point
of (z,x+v) and (—x, —z+wu). Then every point of the cone {z+ su+tv, s,t €
R} has equal distance to —z and x + v, hence it belongs to H(z,c). 1

Concerning corner points, we have a result for hyperbolas which is similar
like for ellipses.

THEOREM 4. Let M?(B) be a Minkowski plane. Let x € C and 0 < ¢ < 1
be such that H(x,c) consists of two simple curves. If B is smooth, then the
branches of H(x,c) are smooth. More precisely, if z € H(x,c) is a corner

point of H(x,c), then ﬁ or IIQQ\ is a corner point of S.
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T+ —T

x+uZ \

Figure 3: Every point of the shaded cone belongs to the hyperbola.

Proof. The proof works in the same way as that one for ellipses (Theo-

rem 3), where we use local supporting lines instead of supporting lines. With

analogous arguments we have that, for every corner point z of H(z,c), Hj%‘”

x|
IIEiﬁH is a corner point of S. The other direction is, in general, not true.

Assume that IIE':iII and IIEiiH are both corner points of S. In this case we

or

have again two changes in direction. But since the branches of H(z,c) are
not necessarily convex, they may cancel out each other; see Figure 4 for an
example. |1

Figure 4: The hyperbola (thick line) has a “double corner point” in z.
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3.3. ON METRIC PARABOLAS.

THEOREM 5. Let L be a line supporting B, and let x € S\ L. Then
P(xz, L) is a simple, convex curve.

Proof. Ghandehari [1] showed that the area bounded by a parabola is
convex.

It remains to prove that P(x, L) is a simple curve. For this reason we show
that each ray {z 4 tu, t > 0} starting in = with direction u € S intersects
P(z,L) in at most one point. Assume that there are different values s,¢ > 0
such that x + tu = y; € P(z, L) and x + su = ya € P(x, L). Obviously, this
is not possible for (o,u) || L. Let z = (z,z +u) N L, and let wy,wy € L with
minimal distance to y1, 2, respectively; see Figure 5. Then the similarity of
triangles yields

Iy =2l _ lly2 ==l lyr = 2l _ [ly2 — =||
lyr —will [ly2 — wall lyr =2l lly2 — =]

= (lyr —zll + llz = 2[) lv2 — 2l = (ly2 = =l + [l = 2D [ly1 — |

= [z —z|lly2 —zll = llz — 2| |ly1 — zl| = [z — 2| |ly2 — il = 0.
Y2
1
T
z L

/w1 /U)Q
Figure 5: The lines intersecting L are Birkhoff orthogonal to L.

But since = ¢ L and y; # yo, this is a contradiction.

It is not surprising that we have a result on corner points of a parabola,
and that the proof works in the same way as for ellipses and hyperbolas.

THEOREM 6. Let L be a line supporting B, and let x € S\ L. The unit
disc B is smooth if and only if P(x, L) is smooth. More precisely, z € P(x, L)
is a corner point of P(x, L) if and only if ﬁ is a corner point of S.



22 A. FANKHANEL

N

w1

Figure 6: Theorem 7 for the polygonal case.

With the two results above we are able to prove the following theorem that
is well known for the Euclidean subcase.

THEOREM 7. Let L be a line supporting B, and let x € S\ L. Let U =
SN L. Then

i) the ray {x + tu, t > 0} does not intersect P(x,L) for all u € U,
ii) the ray {z —tu, t > 0} does intersect P(x,L) for all u ¢ U.

Proof. First we assume that M?(B) is a polygonal Minkowski plane and
that U = [u,v], where u # v. Let w; € S be the corner point of B such that
v lies between u and w; (with respect to the boundary of B). Let the line
passing through x with direction w; — v intersect L in w). Then each circle

wi—x
centered at m = w| — rv, where r > rg = llllwi—vl‘l"

in its boundary; see Figure 6. The equality r = r¢ yields that m + rv = w]
and m + rwy = x. For r > rp, we still have m +rv = w]. In addition we have
x € [wh,m+ rw;]. Thus, m € P(x, L) for all r > ry.

Analogously we can define wg and w), and we get that wh —ru € P(x, L)

for all r > Hwé_z”. Thus, z — su—tv ¢ P(z, L) for all s,t > 0. Clearly, every

w2 —ull

touches L and contains x
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other ray starting in x intersects P(x, L).

For u = v, let wy and ws be the corner points of B such that u lies between
wy and we. Then the same arguments as above yield that the ray = — tu is
the only one that does not intersect the parabola.

The non-polygonal case follows by continuity. Let n € N, and let n points
be equally distributed in the boundary of a smooth unit disc B. The theorem
holds for the convex hull of these points. With n — oo, the convex hull
converges to B. I

7 :
/ 5

Py

Figure 7: Notation in the proof of Theorem 8.

Another interesting statement is given by

THEOREM 8. Let L be a line supporting B, and let x € S\ L. Let y,z €
P(z, L) such that x € (y, z), where neither y nor z is a corner point of P(z, L).
Then the tangent lines of P(xz, L) in y and z intersect in L.

Proof. Again we discuss the case where M?(B) is a polygonal plane and
conclude the general situation by continuity arguments.

As y is not a corner point of P(z, L), we have that x is not a corner point
of the disc B(y, ||y — z||). Let s, be the (unique) line that supports this disc at
x. From the former theorem we know that s, intersects L. If it were parallel
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to L, then the line through y and x would not intersect the parabola for a
second time. We call the intersection point p,.

Consider now the disc that moves between L and x. Its midpoint “draws”
the parabola. The tangent line t, of P(x, L) at y is determined by the move-
ment of the center of the disc in a neighbourhood of y. As the disc moves
locally between L and s,, every point of B moves towards the intersection
point of s, and L; see Figure 7. In particular, p, € t,.

On the other hand, with the same arguments there is a unique line s, that
supports B(z,||z — z||) at z. Again we have that s, intersects L, and every
point of the disc, that moves between = and L in a neighbourhood of z, moves
towards this intersection point. We call it p.. In particular, the tangent line
t, of P(z,L) at z contains p,.

But since x lies on the line through y and z, we have that y and z lie
on opposite and therefore parallel sides of the (corresponding) leading circle.
Thus sy || s,. Since both of them contain x, they are equal. It follows that
Dy = P, hence t, and ¢, intersect in L. 1

4. INTERSECTING ELLIPSES AND HYPERBOLAS
For the Euclidean plane, the following statement is well known.

THEOREM. Let E(x,c), ¢ > 1, be an ellipse and H(z,d), 0 < d < 1, a
hyperbola with arbitrary foci x and —x that are identical for both conics. Let
te and ty, be lines tangent at a common point of £ and H. Then t. 1 tj,.

A similar, but slightly weaker theorem holds for polygonal Minkowski
planes.

THEOREM 9. Let M?(B) be a polygonal Minkowski plane, and x € S
be arbitrary. Let E(x,c), ¢ > 1, be an ellipse and H(z,d), 0 < d < 1, a
hyperbola that consists of two simple curves. Let t. and t;, be tangent lines
of E(x,c) and H(z,c), respectively, at a common point of E and H. If ¢ is
large enough, then t;, 1p t..

Later on we will see what “large enough” means in this context, and what
happens in case that c is small.

To prove this theorem, we need some additional notation. If M?(B) is a
polygonal plane, then there are only finitely many lines each passing through
the origin and a corner point of B. We call the lines parallel to them and
passing through x and —xz corner lines. These corner lines divide the plane
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into (bounded and unbounded) cells; see Figure 8. Any corner point of any
metric conic with foci x and —x lies on a corner line; within the cells there
are only straight segments. We will have now a closer look at the unbounded
cells.

Figure 8: Cones (light grey) and strips (dark grey).

It is easy to see that the unbounded cells are either strips, bounded by two
parallel corner lines, or cones, bounded by two corner lines corresponding to
two adjacent corner points of B. In this sense, each strip is corresponding to
a corner point of B, and each cone is corresponding to one side of the polygon
B.

The following proposition yields information about the behaviour of el-
lipses and hyperbolas inside the cones.

PROPOSITION 7. Let p1 and ps be two points that lie in the boundary of
one of the cones, but on different corner lines, such that the line (p1,p2) is
parallel to the corresponding side of B; see Figure 9. Denote by q the vertex
of the cone. Then we have

i) lp =zl + lp+ 2zl = [|[pr — 2| + [|p1 + z|| for all p € [p1,p2], and
i) [[lp—zl| = o+l | =1llg— || - |lg+ || for all p € [p1, pa].

In other words, if one point of the segment [p1,p2] belongs to an ellipse
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with foci x and —x, then any point of the line does. If one point of the cone
belongs to a hyperbola with foci x and —x, then any point of the cone does.

b1

y
D2 q —x
/ x

Figure 9: (p1,p2) is parallel to the corresponding side of B.

Proof. Obviously, [p1,p2] C B(z,|lp1 —z[) N B(=,[|p2 +z[[). Thus
lp— =l = llpr — | and [p+ 2| = [lp2+ 2| = [lpr +z|. In particular, i)
holds.

In addition, [p1,p2] C B(g,llp1 — ql)), i-e., [[p— gl = [lp1 —gl| for all p €
[p1,p2]). Thus we have

llp—zll=lp+l|=|lpr— 2| - lIp2 + =l |
= |(lpr — all + llg = =) = (lp2 — all + llg + =|})|
= |llg — || — llg + ||

)

proving ii).
Now we study the behaviour of hyperbolas within the strips.

PROPOSITION 8. Let u € S be a corner point of B. There are two strips
with sides parallel to the line (o,u). We consider the strip for which, with
every point p, also the ray R = {p + tu, t > 0} lies within that strip. If
p € H(x,c) for any 0 < ¢ < 1, then R C H(x,c). In other words: Whenever
a hyperbola enters a strip, it stays inside.

Proof. Let p € H(x,c) be any point of the hyperbola that lies within the
strip, and ¢ be any point of the ray R. We define ¢ and b as the points
that lie on the cornerline that passes through z, such that ||z — p|| = ||z — ||
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and ||z — ¢|| = ||z — b||. Analogously, ¢ and d are defined as the points lying
on the corner line passing through —z, such that |—x — p|| = |-« — ¢|| and
|—z —q|| = |-z —d||; see Figure 10. We note that ||[p—q| = [[a—b| =
|lc — d||. Then we have
[z —pll = ll=2 = pll = lz — al| = [[-2 = <|

= [l —all+lla =0l = [|-z = ¢[| = [lc — d|

= Jlo — bl ~ |~ — ]

=z = qll = l=2 —qll-

In particular, the absolute values of the first and of the last difference are
equal, and thus ¢ € H(z,c). §

NN

Ay =3
P

Figure 10: p € H(z,¢) < q € H(z,c).

Since ellipses are convex curves, we have that the slope of the ellipse within
a strip is somewhere between the slopes in the adjacent cones, and thus some-
where between the slopes of the two sides of B that are adjacent to .

Finally, we are able to prove Theorem 9.

Proof of Theorem 9. Let ¢ > 1 be such that every intersection point of
E(x,c) with H(z,d) lies within one of the unbounded cells. As H(x,d) does
not contain a cone, all these points have to lie within strips. Thus we have
that ¢, || (o,u). By definition, (o,u) is Birkhoff orthogonal to the two sides of
B adjacent to u as well as to any line that has a slope that lies between the
slopes of these two sides. Thus, t;, Lg te. |
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Theorem 9 does not hold for every ¢ > 1 in arbitrary Minkowski planes;
see the counterexample in Figure 11.

oI

C2

Figure 11: Counterexample if ¢ is not large enough.

Within the shaded cell, the boundaries of the ellipse are parallel to the
cornerline ¢y, thus only lines parallel to the vertical cornerline ¢o are Birkhoff
orthogonal to ¢;. However, we have that ||z — a|| = ||z — b|| = 2, but ||a|| = 4
and ||b]| = 5. Thus, the hyperbola that passes through a does not move parallel
to co within the shaded cell. Hence, there the ellipse and the hyperbola do
not intersect Birkhoff orthogonally.

On the other hand, it is possible that the statement holds for every ¢ > 1
in certain normed planes; see Figure 12 for an example.

Again, the boundaries of the ellipse are parallel to cornerlines within the
shaded cells, namely parallel to ¢; in the brighter cells and parallel to ¢ in
the darker ones. But since the plane is a Radon plane, the corner lines are
parallel to the sides of B, and thus the statement of Theorem 9 holds.
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C2 o

C1

Figure 12: Also for arbitrary ¢ > 1 Theorem 9 can be true.
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