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Abstract: The object of the present paper is to find a necessary and sufficient condition for
an invariant submanifold of an L P-Sasakian manifold to be totally geodesic. An illustrative
example is given to support the obtained result.
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1. INTRODUCTION

The notion of Lorentzian almost para-contact manifolds was introduced
by K. Matsumoto [6]. In subsequent times, a large number of geometers
studied Lorentzian almost para-contact manifold and their different classes,
viz., Lorentzian para-Sasakian manifolds and Lorentzian special para-Sasakian
manifolds [7], [8], [9], [12]. A beautiful example of a five-dimensional Lorentzian
para-Sasakian manifold has been given by Matsumoto, Mihai and Rosaca [8].
In brief, Lorentzian para-Sasakian manifolds are called LP-Sasakian mani-
folds. The study of LP-Sasakian manifolds is of prime importance due to its
relevant applications in the theory of relativity.

In modern analysis, the geometry of submanifolds have become a subject
of growing interest for its significant application in applied mathematics and
theoretical physics. For instance, the notion of invariant submanifold is used
to discuss properties of non-linear autonomous system [5]. Also, the notion
of geodesics plays an important role in the theory of relativity [8]. For to-
tally geodesic submanifolds, the geodesics of the ambient manifolds remain
geodesics in the submanifolds. Hence, totally geodesic submanifolds have also
importance in physical sciences. The study of geometry of invariant subman-
ifolds was initiated by A. Bejancu and N. Papaghuic [1]. Again N. Papaghuic
has worked on semi-invariant submanifolds of LP-Sasakian manifolds. On
the other hand, a number of works on the geometry of submanifolds of LP-
Sasakian manifolds have been carried out by U. C. De and collaborators [2], [3],
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[4]. B. Prasad [13] also studied semi-invariant submanifolds of LP-Sasakian
manifolds. Recently, in [14] the first author of the present paper studied
submanifolds of Sasakian manifolds.

In [3], it is proved that a submanifold of an L P-Sasakian manifold is invari-
ant if and only if B(X, &) = 0, where B is the second fundamental form of the
submanifold. They also obtained some necessary and sufficient conditions for
such submanifolds to be totally umbilical or minimal. In order to enquire into
under what condition an invariant submanifold will become totally geodesic,
the authors of the paper [10], have obtained some necessary and sufficient
conditions under which an invariant submanifold becomes totally geodesic.
But in the present paper, interestingly, we prove that every three-dimensional
invariant submanifold of an L P-Sasakian manifold is totally geodesic and the
converse is also true.

The present paper is organized as follows: In Section 2, we give some
preliminaries which have been used later. Section 3 is devoted to prove that
a three-dimensional submanifold of an L P-Sasakian manifold is invariant if
and only if it is totally geodesic. Section 4 contains an illustrative example to
support the results obtained in Section 3.

2. PRELIMINARIES

Let M be an n-dimensional real differentiable manifold of differentiability
class C"° endowed with a C°°-vector valued linear function ¢, a C°°-vector
field £, an one form 7 and a Lorentzian metric g of type (0, 2) such that for each
p € M, the tensor 9p: TpM X TpM — R is a non-degenerate inner product of
signature (—,+,+,+,...,+) where TpM denotes the tangent vector space of
M at p and R is the field of real numbers, which satisfies

¢*X =X +n(X)E € =-1, (2.1)

9(0X,90Y) = g(X,Y) +n(X)n(Y),  g(X,§) =n(X), (2.2)

for all vector fields X,Y tangent to M. Such structure (¢, &, 7, g) is termed as
Lorentzian para-contact [6]. In Lorentzian para-contact structure the follow-
ing relations hold:

¢ =0, n(¢X)=0,
rank¢ =n — 1.

A Lorentzian para-contact manifold M is called Lorentzian para-Sasakian
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manifold or LP-Sasakian manifold if [6]
(Vx@)Y = g(X,Y)E +n(Y)X + 29(X)n(Y)E, (2.3)

Vxé = ¢X, (2.4)

for all X,Y tangent to M, where V denotes the Levi-Civita connection with
respect to g. In an LP—Sa~sakian manifold, we also have that the curvature
tensor R of the manifold M is given by

R(&X)Y =g(X,Y)E —n(Y)X. (2.5)

Let M be a submanifold immersed in an n-dimensional Riemannian manifold
M, we denote by the same symbol g the induced metric on M. Let TM be
the tangent space of M and TM is the set of all vector fields normal to M.
Then Gauss and Weingarten formulae are given by

VxY =VxY + B(X,Y), (2.6)

VxN = —AxX + V%N, (2.7)
for any X,Y € TM and N € T+M, where V= is the connection in 7M. The
second fundamental form B and Ay are related by

g(ANX,Y) =g(B(X,Y),N). (2.8)

It is also noted that B(X,Y") is bilinear, and since VyxY = fVxY, for a C*°
function f on a manifold we have

B(fX,Y) = fB(X.Y). (2.9)
Let us now recall the following:

DEFINITION 2.1. Let M be a submanifold of an n-dimensional L P-Sasaki-
an manifold M. The submanifold M of M is said to be invariant if the struc-
ture vector field £ is tangent to M, at every point of M and ¢X is tangent
to M for any vector field X tangent to M, at every point on M, that is,
¢TM CTM at every point on M.

DEFINITION 2.2. A submanifold of an L P-Sasakian manifold is called to-
tally geodesic if B(X,Y) =0, for any X,Y € TM.
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3. INVARIANT SUBMANIFOLDS OF LP-SASAKIAN MANIFOLDS

PROPO§ITION 3.1. Let M be an invariant submanifold of an L P-Sasakian
manifold M. Then there exist two differentiable orthogonal distributions D
and D+ on M such that

TM =D& D ® < € >,

and
¢(D) c D+, ¢(D*) C D.

Proof. For an invariant submanifold M, £ is tangent to M. Hence, we
can write TM = D'® < & >. Let X; € D' Now g(X1,¢X;) = 0 and
9(&,0X1) = 0. So, ¢X is orthogonal to X; and &. Consequently, it is possible
to write D' = D @ D', where X; € D C D' and ¢X; € D C D'. For
$X1 € D+, we note that

o(pX1) = ¢* X1 = X1 +n(X1)é = X1 € D.

Let $X; = Xy € D*. Hence, for X; € D, $X; € D+ and for Xy € D+,
¢Xs € D. Hence, the proposition follows. 1

PROPOSITION 3.2. For an invariant submanifold M of an LP-Sasakian
manifold M, we have [3] for the two differentiable tangent vector fields X,Y
of M

B(X,¢) =0, (3.1)

B(X,$Y) = ¢B(X,Y) = B(¢X,Y). (3.2)

PROPOSITION 3.3. ([10]) An invariant submanifold of an LP-Sasakian
manifold is also LP-Sasakian.

Let us consider a three-dimensional invariant submanifold M of an LP-
Sasakian manifold M. Then, M is LP-Sasakian. Now it is obvious that
B(X,Y) satisfies

¢*(B(X,Y)) = B(X,Y) + n(B(X,Y))<. (3.3)
Let X1,Y7 € D. Then we have from (3.2)

B(X1,¢Y1) = ¢B(X1,Y1).
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Therefore in view of (3.2) and (3.3)
¢B(X1,0Y1) = ¢*B(X1,Y1) = B(X1,Y1) + n(B(X1, 11))&. (3.4)

Since B(X1,Y1) € T+M, B(X1,Y}) is orthogonal to & € TM. Hence, we
obtain 7(B(X1,Y1)) = 0. Thus, in view of (3.2) and (3.4) it follows that

B(¢X1,9Y1) = B(X1,Y1). (3.5)

Let ¢ X1 = Xo, ¢Y1 = Y5. We note that Xy = ¢ X1 € D+ and Yo = oY € D+,
Therefore,

B(X3,Y2) = B(X1, 1), (3.6)

for X1,Y7 € D and X»,Y, € Dt. Since B is bilinear, for X;,Y; € D and
X5,Ys € D+, it follows that

B(X1+ Xy +&£,Y1) = B(X1,Y1) + B(X2, Y1) + B(§, Y1), (3.7)
B(X1+ X2 +§,—Ys) = —B(X1,Y2) — B(X2,Y2) — B(£,Y2), (3.8)
B(X1+ X2 +&,€) = B(X1,§) + B(X2,€) + B(&,€). (3.9)

Keeping in mind that B(X,¢{) = 0, for X € TM and using (3.7), (3.8), and
(3.9) we get, by virtue of (3.6)

B(X1+Xo+&Y1 = Y2 +§) = B(X2, Y1) — B(X1,Y2).

Now,
TM =D& D < € >,

so, U =X14+Xo+&€TMandV =Y, — Yo+ & € TM. Thus, the above
equation yields
B(U,V) = B(X2,Y1) — B(X1,Y2). (3.10)

From the above equation it follows that
¢B(U,V) = B(X2,¢Y1) — B(¢X1,Ys) = B(X2,Y2) — B(X2,Y2) = 0.

The above equation gives ¢2B(U, V) = 0. Consequently, B(U,V) = 0. Now,
we are in a position to state the following:

THEOREM 3.1. Every three-dimensional invariant submanifold of an LP-
Sasakian manifold is totally geodesic.
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Next suppose that the submanifold is totally geodesic. If the submanifold
is even dimensional, then it is not invariant, because, an invariant submanifold
of an L P-Sasakian manifold is also L P-Sasakian and an even dimensional sub-
manifold can not admit L P-Sasakian structure. Suppose that the submanifold
is odd dimensional. Then for X,Y € TM, B(X,Y) = 0. Now we shall show
that ¢X ¢ TM. If possible, let $X has a component, say FX, along T+ M.
For X,Y € TM, we note that ApxY € T M. Let us denote ApxY = Z # 0.
Here Z is also not a null vector, in general. Now, by virtue of (2.8) we get

g(sz) :g(Z,Z) :g(AFXKZ) :g(B(Y7Z)’FX) :g(O,FX) =0.

Since Z is non-null and non-zero vector, the above equation yields a contradic-
tion. This shows that ¢X has no component along 7M. Hence, $X € T'M.
Therefore, the sub manifold is invariant. The above discussion helps us to
state the following:

THEOREM 3.2. Every odd dimensional totally geodesic submanifold of an
L P-Sasakian manifold is invariant.

As a direct consequence of Theorem 3.2, we get the following:

COROLLARY 3.1. Every three-dimensional totally geodesic submanifold of
an L P-Sasakian manifold is invariant.

Combining Theorem 3.1 and Corollary 3.1, we obtain

THEOREM 3.3. A three-dimensional submanifold of an L P-Sasakian man-
ifold is totally geodesic if and only if it is invariant.

4. EXAMPLE

In this section we like to construct an example of a five-dimensional LP-
Sasakian manifold and there on an example of three-dimensional invariant
submanifold of the manifold.

Let us consider the 5-dimensional manifold M = {(z,y,z,u,v) € R
(z,y,z,u,v) # (0,0, 0,0,0)}, where (z,vy, z,u,v) are the standard coordinates
in R5. The vector fields
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are linearly independent at each point of M. Let g be the metric defined by

g(e’iaej) 1, for Z:]#gv
g(e’iaej) :Ov for ’L#]a
g(es,e3) = —1.

Here i and j runs from 1 to 5. Let 7 be the 1-form defined by n(Z) = g(Z, e3),
for any vector field Z tangent to M. Let ¢ be the (1, 1) tensor field defined by
pe3 =0, dles) =e5,  ¢(es) = e

pe1 = ez, Qes = ey,

Then, using the linearity of ¢ and g we have

n(es) = —1, 0’7 =7+ n(Z)es,

for any vector fields Z, W tangent to M. Thus for ez = &, M(¢,£,n, g) defines
an almost para-contact metric manifold. Let V be the Levi-Civita connection
on M with respect to the metric g. Then we have

[617 62] = _263) [617 63] = 07 [617 64] = 07
[617 65] = 07 [627 63] = 07 [627 64] = 07
[627 65] = 07 [63, 64] = 07 [647 65] = _263~

Taking e = ¢ and using Koszul’s formula for g, it can be easily calculated
that

66165 =0, 66164 =0, @eleg = eq, @eleg = —es3, ?elel =0,
@626 =0, 65264 =0, 63263 =eq, 66262 =0, 66261 = e3,
6636 = ey, 66364 = es, @6363 =0, 66362 =eq, 66361 = e2,
@646 = —es, 66464 =0, @,3463 = es, @6462 =0, 66461 =0,
6@56 =0, 68564 = es, @6563 = ey, 66562 =0, @6561 =0.

From the above calculations, we see that the manifold under consideration
—1 and Vx¢& = ¢X. Hence, it is an LP-Sasakian manifold.
Let f be an isometric immersion from M to M defined by flx,y,2) =
(z,y,2,0,0).
Let M = {(x,y,2) € R, (2,9,2) # (0,0,0)}, where (z,y,2) are the stan-
dard coordinates in R3. The vector fields

satisfies 7(§)
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e ——2£+2 9 e _ 9 e _9
L= T T Ve T oy T 0z

are linearly independent at each point of M. Let g be the metric defined by
glei,e3) = g(ea, e3) = gle1, e2) =0,
gler,e1) = glez,e2) =1, g(es e3) = —1.

Let n be the 1-form defined by n(Z) = g(Z, e3), for any vector field Z tangent
to M. Let ¢ be the (1,1) tensor field defined by

pe1 = ez, ¢ex =e1, o¢ez=0.
Then, using the linearity of ¢ and g we have
n(es) =1, ¢*Z=2Z+n(Z)es,

for any vector fields Z, W tangent to M. Thus for e3 = &, M(¢,&, 1, g) defines
an almost para-contact metric manifold.

Let V be the Levi-Civita connection on M with respect to the metric g.
Then we have

[ela 62] — _2637 [617 63] = 07 [627 63] =0.

Taking e3 = £ and using Koszul’s formula for the metric g, it can be easily
calculated that

vele3 = €2, veleQ = —e€s, velel = 07
vege3 = €1, vezeZ = 07 vezel = €3,
ve363 = O, v63€2 = €1, Ve361 = €9.

We see that the (¢,§,n,g) structure satisfies the formula Vx& = ¢ X, n(§) =
—1. Hence M(¢,&,n,g) is a three-dimensional LP-Sasakian manifold. It is
obvious that the manifold M under consideration is a submanifold of the
manifold M.

Let us take D =< e; >, D+ =< ey >. Then clearly we see that TM =
D@D @ < &> . Forany X € D and Y € D', we can write X = \e; and
Y = pea, where A, i are two scalars. Now, ¢(le1) = Ag(e1) = Aex € D+ C
TM. Similarly, ¢(ue2) € D C T M. Hence the submanifold is invariant.
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Let U = Aje1 + Agea + Azes € TM and V = pje; + pgses + pses € T'M,
where )\; and p; are scalars, 1 = 1,2, 3.
Then

B(U,V) = M B(e1,e1) + MipaB(er, e2) + Mz B(er, e3)
+ Aap1B(ez, e1) + AapaB(ez, e2) + Aoz B(ez, e3)
+ A3p1B(es, er) + A3uaB(es, e2) + AzuzB(es, e3).

From the values of @ei ej and V,, e; calculated before and from the relation
Blei, ej) = Ve,e; — Ve,ej, we see that B(U,V) = 0, for all U,V € TM. Hence,
the sub manifold is totally geodesic.

The above arguments tell us that the submanifold M under consideration
agrees with Theorem 3.3 which is the main result of the present paper.
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